123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2018 by Raul Herraiz.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <cmath>
- #include <cstdlib>
- #include <algorithm>
- #include "alcmain.h"
- #include "alcontext.h"
- #include "core/filters/biquad.h"
- #include "effectslot.h"
- #include "vecmat.h"
- namespace {
- constexpr float GainScale{31621.0f};
- constexpr float MinFreq{20.0f};
- constexpr float MaxFreq{2500.0f};
- constexpr float QFactor{5.0f};
- struct AutowahState final : public EffectState {
- /* Effect parameters */
- float mAttackRate;
- float mReleaseRate;
- float mResonanceGain;
- float mPeakGain;
- float mFreqMinNorm;
- float mBandwidthNorm;
- float mEnvDelay;
- /* Filter components derived from the envelope. */
- struct {
- float cos_w0;
- float alpha;
- } mEnv[BufferLineSize];
- struct {
- /* Effect filters' history. */
- struct {
- float z1, z2;
- } Filter;
- /* Effect gains for each output channel */
- float CurrentGains[MAX_OUTPUT_CHANNELS];
- float TargetGains[MAX_OUTPUT_CHANNELS];
- } mChans[MaxAmbiChannels];
- /* Effects buffers */
- alignas(16) float mBufferOut[BufferLineSize];
- void deviceUpdate(const ALCdevice *device, const Buffer &buffer) override;
- void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
- DEF_NEWDEL(AutowahState)
- };
- void AutowahState::deviceUpdate(const ALCdevice*, const Buffer&)
- {
- /* (Re-)initializing parameters and clear the buffers. */
- mAttackRate = 1.0f;
- mReleaseRate = 1.0f;
- mResonanceGain = 10.0f;
- mPeakGain = 4.5f;
- mFreqMinNorm = 4.5e-4f;
- mBandwidthNorm = 0.05f;
- mEnvDelay = 0.0f;
- for(auto &e : mEnv)
- {
- e.cos_w0 = 0.0f;
- e.alpha = 0.0f;
- }
- for(auto &chan : mChans)
- {
- std::fill(std::begin(chan.CurrentGains), std::end(chan.CurrentGains), 0.0f);
- chan.Filter.z1 = 0.0f;
- chan.Filter.z2 = 0.0f;
- }
- }
- void AutowahState::update(const ALCcontext *context, const EffectSlot *slot,
- const EffectProps *props, const EffectTarget target)
- {
- const ALCdevice *device{context->mDevice.get()};
- const auto frequency = static_cast<float>(device->Frequency);
- const float ReleaseTime{clampf(props->Autowah.ReleaseTime, 0.001f, 1.0f)};
- mAttackRate = std::exp(-1.0f / (props->Autowah.AttackTime*frequency));
- mReleaseRate = std::exp(-1.0f / (ReleaseTime*frequency));
- /* 0-20dB Resonance Peak gain */
- mResonanceGain = std::sqrt(std::log10(props->Autowah.Resonance)*10.0f / 3.0f);
- mPeakGain = 1.0f - std::log10(props->Autowah.PeakGain / GainScale);
- mFreqMinNorm = MinFreq / frequency;
- mBandwidthNorm = (MaxFreq-MinFreq) / frequency;
- mOutTarget = target.Main->Buffer;
- auto set_gains = [slot,target](auto &chan, al::span<const float,MaxAmbiChannels> coeffs)
- { ComputePanGains(target.Main, coeffs.data(), slot->Gain, chan.TargetGains); };
- SetAmbiPanIdentity(std::begin(mChans), slot->Wet.Buffer.size(), set_gains);
- }
- void AutowahState::process(const size_t samplesToDo,
- const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- const float attack_rate{mAttackRate};
- const float release_rate{mReleaseRate};
- const float res_gain{mResonanceGain};
- const float peak_gain{mPeakGain};
- const float freq_min{mFreqMinNorm};
- const float bandwidth{mBandwidthNorm};
- float env_delay{mEnvDelay};
- for(size_t i{0u};i < samplesToDo;i++)
- {
- float w0, sample, a;
- /* Envelope follower described on the book: Audio Effects, Theory,
- * Implementation and Application.
- */
- sample = peak_gain * std::fabs(samplesIn[0][i]);
- a = (sample > env_delay) ? attack_rate : release_rate;
- env_delay = lerp(sample, env_delay, a);
- /* Calculate the cos and alpha components for this sample's filter. */
- w0 = minf((bandwidth*env_delay + freq_min), 0.46f) * al::MathDefs<float>::Tau();
- mEnv[i].cos_w0 = std::cos(w0);
- mEnv[i].alpha = std::sin(w0)/(2.0f * QFactor);
- }
- mEnvDelay = env_delay;
- auto chandata = std::addressof(mChans[0]);
- for(const auto &insamples : samplesIn)
- {
- /* This effectively inlines BiquadFilter_setParams for a peaking
- * filter and BiquadFilter_processC. The alpha and cosine components
- * for the filter coefficients were previously calculated with the
- * envelope. Because the filter changes for each sample, the
- * coefficients are transient and don't need to be held.
- */
- float z1{chandata->Filter.z1};
- float z2{chandata->Filter.z2};
- for(size_t i{0u};i < samplesToDo;i++)
- {
- const float alpha{mEnv[i].alpha};
- const float cos_w0{mEnv[i].cos_w0};
- float input, output;
- float a[3], b[3];
- b[0] = 1.0f + alpha*res_gain;
- b[1] = -2.0f * cos_w0;
- b[2] = 1.0f - alpha*res_gain;
- a[0] = 1.0f + alpha/res_gain;
- a[1] = -2.0f * cos_w0;
- a[2] = 1.0f - alpha/res_gain;
- input = insamples[i];
- output = input*(b[0]/a[0]) + z1;
- z1 = input*(b[1]/a[0]) - output*(a[1]/a[0]) + z2;
- z2 = input*(b[2]/a[0]) - output*(a[2]/a[0]);
- mBufferOut[i] = output;
- }
- chandata->Filter.z1 = z1;
- chandata->Filter.z2 = z2;
- /* Now, mix the processed sound data to the output. */
- MixSamples({mBufferOut, samplesToDo}, samplesOut, chandata->CurrentGains,
- chandata->TargetGains, samplesToDo, 0);
- ++chandata;
- }
- }
- struct AutowahStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new AutowahState{}}; }
- };
- } // namespace
- EffectStateFactory *AutowahStateFactory_getFactory()
- {
- static AutowahStateFactory AutowahFactory{};
- return &AutowahFactory;
- }
|