123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2018 by Raul Herraiz.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <cmath>
- #include <cstdlib>
- #include <array>
- #include <complex>
- #include <algorithm>
- #include "alcmain.h"
- #include "alcomplex.h"
- #include "alcontext.h"
- #include "alu.h"
- #include "effectslot.h"
- #include "math_defs.h"
- namespace {
- using complex_d = std::complex<double>;
- #define HIL_SIZE 1024
- #define OVERSAMP (1<<2)
- #define HIL_STEP (HIL_SIZE / OVERSAMP)
- #define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1))
- /* Define a Hann window, used to filter the HIL input and output. */
- std::array<double,HIL_SIZE> InitHannWindow()
- {
- std::array<double,HIL_SIZE> ret;
- /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
- for(size_t i{0};i < HIL_SIZE>>1;i++)
- {
- constexpr double scale{al::MathDefs<double>::Pi() / double{HIL_SIZE}};
- const double val{std::sin(static_cast<double>(i+1) * scale)};
- ret[i] = ret[HIL_SIZE-1-i] = val * val;
- }
- return ret;
- }
- alignas(16) const std::array<double,HIL_SIZE> HannWindow = InitHannWindow();
- struct FshifterState final : public EffectState {
- /* Effect parameters */
- size_t mCount{};
- uint mPhaseStep[2]{};
- uint mPhase[2]{};
- double mSign[2]{};
- /* Effects buffers */
- double mInFIFO[HIL_SIZE]{};
- complex_d mOutFIFO[HIL_STEP]{};
- complex_d mOutputAccum[HIL_SIZE]{};
- complex_d mAnalytic[HIL_SIZE]{};
- complex_d mOutdata[BufferLineSize]{};
- alignas(16) float mBufferOut[BufferLineSize]{};
- /* Effect gains for each output channel */
- struct {
- float Current[MAX_OUTPUT_CHANNELS]{};
- float Target[MAX_OUTPUT_CHANNELS]{};
- } mGains[2];
- void deviceUpdate(const ALCdevice *device, const Buffer &buffer) override;
- void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
- DEF_NEWDEL(FshifterState)
- };
- void FshifterState::deviceUpdate(const ALCdevice*, const Buffer&)
- {
- /* (Re-)initializing parameters and clear the buffers. */
- mCount = FIFO_LATENCY;
- std::fill(std::begin(mPhaseStep), std::end(mPhaseStep), 0u);
- std::fill(std::begin(mPhase), std::end(mPhase), 0u);
- std::fill(std::begin(mSign), std::end(mSign), 1.0);
- std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0);
- std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{});
- std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{});
- std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{});
- for(auto &gain : mGains)
- {
- std::fill(std::begin(gain.Current), std::end(gain.Current), 0.0f);
- std::fill(std::begin(gain.Target), std::end(gain.Target), 0.0f);
- }
- }
- void FshifterState::update(const ALCcontext *context, const EffectSlot *slot,
- const EffectProps *props, const EffectTarget target)
- {
- const ALCdevice *device{context->mDevice.get()};
- const float step{props->Fshifter.Frequency / static_cast<float>(device->Frequency)};
- mPhaseStep[0] = mPhaseStep[1] = fastf2u(minf(step, 1.0f) * MixerFracOne);
- switch(props->Fshifter.LeftDirection)
- {
- case FShifterDirection::Down:
- mSign[0] = -1.0;
- break;
- case FShifterDirection::Up:
- mSign[0] = 1.0;
- break;
- case FShifterDirection::Off:
- mPhase[0] = 0;
- mPhaseStep[0] = 0;
- break;
- }
- switch(props->Fshifter.RightDirection)
- {
- case FShifterDirection::Down:
- mSign[1] = -1.0;
- break;
- case FShifterDirection::Up:
- mSign[1] = 1.0;
- break;
- case FShifterDirection::Off:
- mPhase[1] = 0;
- mPhaseStep[1] = 0;
- break;
- }
- const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
- const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
- mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, lcoeffs.data(), slot->Gain, mGains[0].Target);
- ComputePanGains(target.Main, rcoeffs.data(), slot->Gain, mGains[1].Target);
- }
- void FshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- for(size_t base{0u};base < samplesToDo;)
- {
- size_t todo{minz(HIL_SIZE-mCount, samplesToDo-base)};
- /* Fill FIFO buffer with samples data */
- size_t count{mCount};
- do {
- mInFIFO[count] = samplesIn[0][base];
- mOutdata[base] = mOutFIFO[count-FIFO_LATENCY];
- ++base; ++count;
- } while(--todo);
- mCount = count;
- /* Check whether FIFO buffer is filled */
- if(mCount < HIL_SIZE) break;
- mCount = FIFO_LATENCY;
- /* Real signal windowing and store in Analytic buffer */
- for(size_t k{0};k < HIL_SIZE;k++)
- mAnalytic[k] = mInFIFO[k]*HannWindow[k];
- /* Processing signal by Discrete Hilbert Transform (analytical signal). */
- complex_hilbert(mAnalytic);
- /* Windowing and add to output accumulator */
- for(size_t k{0};k < HIL_SIZE;k++)
- mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k];
- /* Shift accumulator, input & output FIFO */
- std::copy_n(mOutputAccum, HIL_STEP, mOutFIFO);
- auto accum_iter = std::copy(std::begin(mOutputAccum)+HIL_STEP, std::end(mOutputAccum),
- std::begin(mOutputAccum));
- std::fill(accum_iter, std::end(mOutputAccum), complex_d{});
- std::copy(std::begin(mInFIFO)+HIL_STEP, std::end(mInFIFO), std::begin(mInFIFO));
- }
- /* Process frequency shifter using the analytic signal obtained. */
- float *RESTRICT BufferOut{mBufferOut};
- for(int c{0};c < 2;++c)
- {
- const uint phase_step{mPhaseStep[c]};
- uint phase_idx{mPhase[c]};
- for(size_t k{0};k < samplesToDo;++k)
- {
- const double phase{phase_idx * ((1.0/MixerFracOne) * al::MathDefs<double>::Tau())};
- BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) +
- mOutdata[k].imag()*std::sin(phase)*mSign[c]);
- phase_idx += phase_step;
- phase_idx &= MixerFracMask;
- }
- mPhase[c] = phase_idx;
- /* Now, mix the processed sound data to the output. */
- MixSamples({BufferOut, samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target,
- maxz(samplesToDo, 512), 0);
- }
- }
- struct FshifterStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new FshifterState{}}; }
- };
- } // namespace
- EffectStateFactory *FshifterStateFactory_getFactory()
- {
- static FshifterStateFactory FshifterFactory{};
- return &FshifterFactory;
- }
|