123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 |
- //-----------------------------------------------------------------------------
- // Copyright (c) 2012 GarageGames, LLC
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- //-----------------------------------------------------------------------------
- #include "platform/platform.h"
- #include "math/util/frustum.h"
- #include "math/mMathFn.h"
- #include "math/mathUtils.h"
- #include "math/mSphere.h"
- #include "platform/profiler.h"
- static const MatrixF sGFXProjRotMatrix( EulerF( (M_PI_F / 2.0f), 0.0f, 0.0f ) );
- //TODO: For OBB/frustum intersections and ortho frustums, we can resort to a much quicker AABB/OBB test
- // Must be CW ordered for face[0] of each edge! Keep in mind that normals
- // are pointing *inwards* and thus what appears CCW outside is CW inside.
- FrustumData::EdgeListType FrustumData::smEdges
- (
- PolyhedronData::Edge( PlaneNear, PlaneTop, NearTopRight, NearTopLeft ),
- PolyhedronData::Edge( PlaneNear, PlaneBottom, NearBottomLeft, NearBottomRight ),
- PolyhedronData::Edge( PlaneNear, PlaneLeft, NearTopLeft, NearBottomLeft ),
- PolyhedronData::Edge( PlaneNear, PlaneRight, NearTopRight, NearBottomRight ),
- PolyhedronData::Edge( PlaneFar, PlaneTop, FarTopLeft, FarTopRight ),
- PolyhedronData::Edge( PlaneFar, PlaneBottom, FarBottomRight, FarBottomLeft ),
- PolyhedronData::Edge( PlaneFar, PlaneLeft, FarBottomLeft, FarTopLeft ),
- PolyhedronData::Edge( PlaneFar, PlaneRight, FarTopRight, FarBottomRight ),
- PolyhedronData::Edge( PlaneTop, PlaneLeft, FarTopLeft, NearTopLeft ),
- PolyhedronData::Edge( PlaneTop, PlaneRight, NearTopRight, FarTopRight ),
- PolyhedronData::Edge( PlaneBottom, PlaneLeft, NearBottomLeft, FarBottomLeft ),
- PolyhedronData::Edge( PlaneBottom, PlaneRight, FarBottomRight, NearBottomRight )
- );
- //-----------------------------------------------------------------------------
- Frustum::Frustum( bool isOrtho,
- F32 nearLeft,
- F32 nearRight,
- F32 nearTop,
- F32 nearBottom,
- F32 nearDist,
- F32 farDist,
- const MatrixF &transform )
- {
- mTransform = transform;
- mPosition = transform.getPosition();
- mNearLeft = nearLeft;
- mNearRight = nearRight;
- mNearTop = nearTop;
- mNearBottom = nearBottom;
- mNearDist = nearDist;
- mFarDist = farDist;
- mIsOrtho = isOrtho;
- mNumTiles = 1;
- mCurrTile.set(0,0);
- mTileOverlap.set(0.0f, 0.0f);
- mProjectionOffset.zero();
- mProjectionOffsetMatrix.identity();
- }
- //-----------------------------------------------------------------------------
- void Frustum::set( bool isOrtho,
- F32 fovYInRadians,
- F32 aspectRatio,
- F32 nearDist,
- F32 farDist,
- const MatrixF &transform )
- {
- F32 left, right, top, bottom;
- MathUtils::makeFrustum( &left, &right, &top, &bottom, fovYInRadians, aspectRatio, nearDist );
- tile( &left, &right, &top, &bottom, mNumTiles, mCurrTile, mTileOverlap );
- set( isOrtho, left, right, top, bottom, nearDist, farDist, transform );
- }
- //-----------------------------------------------------------------------------
- void Frustum::set( bool isOrtho,
- F32 nearLeft,
- F32 nearRight,
- F32 nearTop,
- F32 nearBottom,
- F32 nearDist,
- F32 farDist,
- const MatrixF &transform )
- {
- mTransform = transform;
- mPosition = mTransform.getPosition();
- mNearLeft = nearLeft;
- mNearRight = nearRight;
- mNearTop = nearTop;
- mNearBottom = nearBottom;
- mNearDist = nearDist;
- mFarDist = farDist;
- mIsOrtho = isOrtho;
- mDirty = true;
- }
- //-----------------------------------------------------------------------------
- #if 0
- void Frustum::set( const MatrixF &projMat, bool normalize )
- {
- // From "Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix"
- // by Gil Gribb and Klaus Hartmann.
- //
- // http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
- // Right clipping plane.
- mPlanes[ PlaneRight ].set( projMat[3] - projMat[0],
- projMat[7] - projMat[4],
- projMat[11] - projMat[8],
- projMat[15] - projMat[12] );
- // Left clipping plane.
- mPlanes[ PlaneLeft ].set( projMat[3] + projMat[0],
- projMat[7] + projMat[4],
- projMat[11] + projMat[8],
- projMat[15] + projMat[12] );
- // Bottom clipping plane.
- mPlanes[ PlaneBottom ].set( projMat[3] + projMat[1],
- projMat[7] + projMat[5],
- projMat[11] + projMat[9],
- projMat[15] + projMat[13] );
- // Top clipping plane.
- mPlanes[ PlaneTop ].set( projMat[3] - projMat[1],
- projMat[7] - projMat[5],
- projMat[11] - projMat[9],
- projMat[15] - projMat[13] );
- // Near clipping plane
- mPlanes[ PlaneNear ].set( projMat[3] + projMat[2],
- projMat[7] + projMat[6],
- projMat[11] + projMat[10],
- projMat[15] + projMat[14] );
- // Far clipping plane.
- mPlanes[ PlaneFar ].set( projMat[3] - projMat[2],
- projMat[7] - projMat[6],
- projMat[11] - projMat[10],
- projMat[15] - projMat[14] );
- if( normalize )
- {
- for( S32 i = 0; i < PlaneCount; ++ i )
- mPlanes[ i ].normalize();
- }
- /*// Create the corner points via plane intersections.
- mPlanes[ PlaneNear ].intersect( mPlanes[ PlaneTop ], mPlanes[ PlaneLeft ], &mPoints[ NearTopLeft ] );
- mPlanes[ PlaneNear ].intersect( mPlanes[ PlaneTop ], mPlanes[ PlaneRight ], &mPoints[ NearTopRight ] );
- mPlanes[ PlaneNear ].intersect( mPlanes[ PlaneBottom ], mPlanes[ PlaneLeft ], &mPoints[ NearBottomLeft ] );
- mPlanes[ PlaneNear ].intersect( mPlanes[ PlaneBottom ], mPlanes[ PlaneRight ], &mPoints[ NearBottomRight ] );
- mPlanes[ PlaneFar ].intersect( mPlanes[ PlaneTop ], mPlanes[ PlaneLeft ], &mPoints[ FarTopLeft ] );
- mPlanes[ PlaneFar ].intersect( mPlanes[ PlaneTop ], mPlanes[ PlaneRight ], &mPoints[ FarTopRight ] );
- mPlanes[ PlaneFar ].intersect( mPlanes[ PlaneBottom ], mPlanes[ PlaneLeft ], &mPoints[ FarBottomLeft ] );
- mPlanes[ PlaneFar ].intersect( mPlanes[ PlaneBottom ], mPlanes[ PlaneRight ], &mPoints[ FarBottomRight ] );
- */
- // Update the axis aligned bounding box.
- _updateBounds();
- }
- #endif
- //-----------------------------------------------------------------------------
- void Frustum::setNearDist( F32 nearDist )
- {
- setNearFarDist( nearDist, mFarDist );
- }
- //-----------------------------------------------------------------------------
- void Frustum::setFarDist( F32 farDist )
- {
- setNearFarDist( mNearDist, farDist );
- }
- //-----------------------------------------------------------------------------
- void Frustum::setNearFarDist( F32 nearDist, F32 farDist )
- {
- if( mNearDist == nearDist && mFarDist == farDist )
- return;
- // Recalculate the frustum.
- MatrixF xfm( mTransform );
- const F32 CENTER_EPSILON = 0.001f;
- F32 centerX = mNearLeft + (mNearRight - mNearLeft) * 0.5;
- F32 centerY = mNearBottom + (mNearTop - mNearBottom) * 0.5;
- if ((centerX > CENTER_EPSILON || centerX < -CENTER_EPSILON) || (centerY > CENTER_EPSILON || centerY < -CENTER_EPSILON) )
- {
- // Off-center projection, so re-calc use the new distances
- FovPort expectedFovPort;
- expectedFovPort.leftTan = -(mNearLeft / mNearDist);
- expectedFovPort.rightTan = (mNearRight / mNearDist);
- expectedFovPort.upTan = (mNearTop / mNearDist);
- expectedFovPort.downTan = -(mNearBottom / mNearDist);
- MathUtils::makeFovPortFrustum(this, mIsOrtho, nearDist, farDist, expectedFovPort);
- }
- else
- {
- // Projection is not off-center, use the normal code
- set(mIsOrtho, getFov(), getAspectRatio(), nearDist, farDist, xfm);
- }
- }
- //-----------------------------------------------------------------------------
- void Frustum::cropNearFar(F32 newNearDist, F32 newFarDist)
- {
- const F32 newOverOld = newNearDist / mNearDist;
- set( mIsOrtho, mNearLeft * newOverOld, mNearRight * newOverOld, mNearTop * newOverOld, mNearBottom * newOverOld,
- newNearDist, newFarDist, mTransform);
- }
- //-----------------------------------------------------------------------------
- bool Frustum::bakeProjectionOffset()
- {
- // Nothing to bake if ortho
- if( mIsOrtho )
- return false;
- // Nothing to bake if no offset
- if( mProjectionOffset.isZero() )
- return false;
- // Near plane points in camera space
- Point3F np[4];
- np[0].set( mNearLeft, mNearDist, mNearTop ); // NearTopLeft
- np[1].set( mNearRight, mNearDist, mNearTop ); // NearTopRight
- np[2].set( mNearLeft, mNearDist, mNearBottom ); // NearBottomLeft
- np[3].set( mNearRight, mNearDist, mNearBottom ); // NearBottomRight
- // Generate the near plane
- PlaneF nearPlane( np[0], np[1], np[3] );
- // Far plane points in camera space
- const F32 farOverNear = mFarDist / mNearDist;
- Point3F fp0( mNearLeft * farOverNear, mFarDist, mNearTop * farOverNear ); // FarTopLeft
- Point3F fp1( mNearRight * farOverNear, mFarDist, mNearTop * farOverNear ); // FarTopRight
- Point3F fp2( mNearLeft * farOverNear, mFarDist, mNearBottom * farOverNear ); // FarBottomLeft
- Point3F fp3( mNearRight * farOverNear, mFarDist, mNearBottom * farOverNear ); // FarBottomRight
- // Generate the far plane
- PlaneF farPlane( fp0, fp1, fp3 );
- // The offset camera point
- Point3F offsetCamera( mProjectionOffset.x, 0.0f, mProjectionOffset.y );
- // The near plane point we'll be using for our calculations below
- U32 nIndex = 0;
- if( mProjectionOffset.x < 0.0 )
- {
- // Offset to the left so we'll need to use the near plane point on the right
- nIndex = 1;
- }
- if( mProjectionOffset.y > 0.0 )
- {
- // Offset to the top so we'll need to use the near plane point at the bottom
- nIndex += 2;
- }
- // Begin by calculating the offset point on the far plane as it goes
- // from the offset camera to the edge of the near plane.
- Point3F farPoint;
- Point3F fdir = np[nIndex] - offsetCamera;
- fdir.normalize();
- if( farPlane.intersect(offsetCamera, fdir, &farPoint) )
- {
- // Calculate the new near plane edge from the non-offset camera position
- // to the far plane point from above.
- Point3F nearPoint;
- Point3F ndir = farPoint;
- ndir.normalize();
- if( nearPlane.intersect( Point3F::Zero, ndir, &nearPoint) )
- {
- // Handle a x offset
- if( mProjectionOffset.x < 0.0 )
- {
- // The new near plane right side
- mNearRight = nearPoint.x;
- }
- else if( mProjectionOffset.x > 0.0 )
- {
- // The new near plane left side
- mNearLeft = nearPoint.x;
- }
- // Handle a y offset
- if( mProjectionOffset.y < 0.0 )
- {
- // The new near plane top side
- mNearTop = nearPoint.y;
- }
- else if( mProjectionOffset.y > 0.0 )
- {
- // The new near plane bottom side
- mNearBottom = nearPoint.y;
- }
- }
- }
- mDirty = true;
- // Indicate that we've modified the frustum
- return true;
- }
- //-----------------------------------------------------------------------------
- void FrustumData::_update() const
- {
- if( !mDirty )
- return;
- PROFILE_SCOPE( Frustum_update );
- const Point3F& cameraPos = mPosition;
- // Build the frustum points in camera space first.
- if( mIsOrtho )
- {
- mPoints[ NearTopLeft ].set( mNearLeft, mNearDist, mNearTop );
- mPoints[ NearTopRight ].set( mNearRight, mNearDist, mNearTop );
- mPoints[ NearBottomLeft ].set( mNearLeft, mNearDist, mNearBottom );
- mPoints[ NearBottomRight ].set( mNearRight, mNearDist, mNearBottom );
- mPoints[ FarTopLeft ].set( mNearLeft, mFarDist, mNearTop );
- mPoints[ FarTopRight ].set( mNearRight, mFarDist, mNearTop );
- mPoints[ FarBottomLeft ].set( mNearLeft, mFarDist, mNearBottom );
- mPoints[ FarBottomRight ].set( mNearRight, mFarDist, mNearBottom );
- }
- else
- {
- const F32 farOverNear = mFarDist / mNearDist;
- mPoints[ NearTopLeft ].set( mNearLeft, mNearDist, mNearTop );
- mPoints[ NearTopRight ].set( mNearRight, mNearDist, mNearTop );
- mPoints[ NearBottomLeft ].set( mNearLeft, mNearDist, mNearBottom );
- mPoints[ NearBottomRight ].set( mNearRight, mNearDist, mNearBottom );
- mPoints[ FarTopLeft ].set( mNearLeft * farOverNear, mFarDist, mNearTop * farOverNear );
- mPoints[ FarTopRight ].set( mNearRight * farOverNear, mFarDist, mNearTop * farOverNear );
- mPoints[ FarBottomLeft ].set( mNearLeft * farOverNear, mFarDist, mNearBottom * farOverNear );
- mPoints[ FarBottomRight ].set( mNearRight * farOverNear, mFarDist, mNearBottom * farOverNear );
- }
- // Transform the points into the desired culling space.
- for( U32 i = 0; i < mPoints.size(); ++ i )
- mTransform.mulP( mPoints[ i ] );
- // Update the axis aligned bounding box from
- // the newly transformed points.
- mBounds = Box3F::aroundPoints( mPoints.address(), mPoints.size() );
- // Finally build the planes.
- if( mIsOrtho )
- {
- mPlanes[ PlaneLeft ].set( mPoints[ NearBottomLeft ],
- mPoints[ FarTopLeft ],
- mPoints[ FarBottomLeft ] );
- mPlanes[ PlaneRight ].set( mPoints[ NearTopRight ],
- mPoints[ FarBottomRight ],
- mPoints[ FarTopRight ] );
- mPlanes[ PlaneTop ].set( mPoints[ FarTopRight ],
- mPoints[ NearTopLeft ],
- mPoints[ NearTopRight ] );
- mPlanes[ PlaneBottom ].set( mPoints[ NearBottomRight ],
- mPoints[ FarBottomLeft ],
- mPoints[ FarBottomRight ] );
- mPlanes[ PlaneNear ].set( mPoints[ NearTopLeft ],
- mPoints[ NearBottomLeft ],
- mPoints[ NearTopRight ] );
- mPlanes[ PlaneFar ].set( mPoints[ FarTopLeft ],
- mPoints[ FarTopRight ],
- mPoints[ FarBottomLeft ] );
- }
- else
- {
- mPlanes[ PlaneLeft ].set( cameraPos,
- mPoints[ NearTopLeft ],
- mPoints[ NearBottomLeft ] );
- mPlanes[ PlaneRight ].set( cameraPos,
- mPoints[ NearBottomRight ],
- mPoints[ NearTopRight ] );
- mPlanes[ PlaneTop ].set( cameraPos,
- mPoints[ NearTopRight ],
- mPoints[ NearTopLeft ] );
- mPlanes[ PlaneBottom ].set( cameraPos,
- mPoints[ NearBottomLeft ],
- mPoints[ NearBottomRight ] );
- mPlanes[ PlaneNear ].set( mPoints[ NearTopLeft ],
- mPoints[ NearBottomLeft ],
- mPoints[ NearTopRight ] );
- mPlanes[ PlaneFar ].set( mPoints[ FarTopLeft ],
- mPoints[ FarTopRight ],
- mPoints[ FarBottomLeft ] );
- }
- // If the frustum plane orientation doesn't match mIsInverted
- // now, invert all the plane normals.
- //
- // Note that if we have a transform matrix with a negative scale,
- // then the initial planes we have computed will always be inverted.
- const bool inverted = mPlanes[ PlaneNear ].whichSide( cameraPos ) == PlaneF::Front;
- if( inverted != mIsInverted )
- {
- for( U32 i = 0; i < mPlanes.size(); ++ i )
- mPlanes[ i ].invert();
- }
- AssertFatal( mPlanes[ PlaneNear ].whichSide( cameraPos ) != PlaneF::Front,
- "Frustum::_update - Viewpoint lies on front side of near plane!" );
- // And now the center points which are mostly just used in debug rendering.
- mPlaneCenters[ PlaneLeftCenter ] = ( mPoints[ NearTopLeft ] +
- mPoints[ NearBottomLeft ] +
- mPoints[ FarTopLeft ] +
- mPoints[ FarBottomLeft ] ) / 4.0f;
- mPlaneCenters[ PlaneRightCenter ] = ( mPoints[ NearTopRight ] +
- mPoints[ NearBottomRight ] +
- mPoints[ FarTopRight ] +
- mPoints[ FarBottomRight ] ) / 4.0f;
- mPlaneCenters[ PlaneTopCenter ] = ( mPoints[ NearTopLeft ] +
- mPoints[ NearTopRight ] +
- mPoints[ FarTopLeft ] +
- mPoints[ FarTopRight ] ) / 4.0f;
- mPlaneCenters[ PlaneBottomCenter ] = ( mPoints[ NearBottomLeft ] +
- mPoints[ NearBottomRight ] +
- mPoints[ FarBottomLeft ] +
- mPoints[ FarBottomRight ] ) / 4.0f;
- mPlaneCenters[ PlaneNearCenter ] = ( mPoints[ NearTopLeft ] +
- mPoints[ NearTopRight ] +
- mPoints[ NearBottomLeft ] +
- mPoints[ NearBottomRight ] ) / 4.0f;
- mPlaneCenters[ PlaneFarCenter ] = ( mPoints[ FarTopLeft ] +
- mPoints[ FarTopRight ] +
- mPoints[ FarBottomLeft ] +
- mPoints[ FarBottomRight ] ) / 4.0f;
- // Done.
- mDirty = false;
- }
- //-----------------------------------------------------------------------------
- void Frustum::invert()
- {
- mIsInverted = !mIsInverted;
- _update();
- }
- //-----------------------------------------------------------------------------
- void Frustum::setTransform( const MatrixF &mat )
- {
- mTransform = mat;
- mPosition = mTransform.getPosition();
- mDirty = true;
- }
- //-----------------------------------------------------------------------------
- void Frustum::scaleFromCenter( F32 scale )
- {
- // Extract the fov and aspect ratio.
- F32 fovInRadians = mAtan2( (mNearTop - mNearBottom)*mNumTiles/2.0f, mNearDist ) * 2.0f;
- F32 aspectRatio = (mNearRight - mNearLeft)/(mNearTop - mNearBottom);
- // Now move the near and far planes out.
- F32 halfDist = ( mFarDist - mNearDist ) / 2.0f;
- mNearDist -= halfDist * ( scale - 1.0f );
- mFarDist += halfDist * ( scale - 1.0f );
- // Setup the new scaled frustum.
- set( mIsOrtho, fovInRadians, aspectRatio, mNearDist, mFarDist, mTransform );
- }
- //-----------------------------------------------------------------------------
- void Frustum::mul( const MatrixF& mat )
- {
- mTransform.mul( mat );
- mDirty = true;
- }
- //-----------------------------------------------------------------------------
- void Frustum::mulL( const MatrixF& mat )
- {
- MatrixF last( mTransform );
- mTransform.mul( mat, last );
- mDirty = true;
- }
- //-----------------------------------------------------------------------------
- void Frustum::setProjectionOffset(const Point2F& offsetMat)
- {
- mProjectionOffset = offsetMat;
- mProjectionOffsetMatrix.identity();
- mProjectionOffsetMatrix.setPosition(Point3F(mProjectionOffset.x, mProjectionOffset.y, 0.0f));
- }
- //-----------------------------------------------------------------------------
- void Frustum::getProjectionMatrix( MatrixF *proj, bool gfxRotate ) const
- {
- if (mIsOrtho)
- {
- MathUtils::makeOrthoProjection(proj, mNearLeft, mNearRight, mNearTop, mNearBottom, mNearDist, mFarDist, gfxRotate);
- proj->mulL(mProjectionOffsetMatrix);
- }
- else
- {
- MathUtils::makeProjection(proj, mNearLeft, mNearRight, mNearTop, mNearBottom, mNearDist, mFarDist, gfxRotate);
- proj->mulL(mProjectionOffsetMatrix);
- }
- }
- //-----------------------------------------------------------------------------
- void Frustum::tileFrustum(U32 numTiles, const Point2I& curTile, Point2F overlap)
- {
- //These will be stored to re-tile the frustum if needed
- mNumTiles = numTiles;
- mCurrTile = curTile;
- mTileOverlap = overlap;
-
- tile(&mNearLeft, &mNearRight, &mNearTop, &mNearBottom, mNumTiles, mCurrTile, mTileOverlap);
- }
- //-----------------------------------------------------------------------------
- void Frustum::tile( F32 *left, F32 *right, F32 *top, F32 *bottom, U32 numTiles, const Point2I& curTile, Point2F overlap )
- {
- if (numTiles == 1)
- return;
- Point2F tileSize( ( *right - *left ) / (F32)numTiles,
- ( *top - *bottom ) / (F32)numTiles );
-
- F32 leftOffset = tileSize.x*overlap.x;
- F32 rightOffset = tileSize.x*overlap.x*2;
- F32 bottomOffset = tileSize.y*overlap.y;
- F32 topOffset = tileSize.y*overlap.y*2;
- *left += tileSize.x * curTile.x - leftOffset;
- *right = *left + tileSize.x + rightOffset;
- *bottom += tileSize.y * curTile.y - bottomOffset;
- *top = *bottom + tileSize.y + topOffset;
- }
|