|
@@ -0,0 +1,259 @@
|
|
|
+/******************************************************************************
|
|
|
+ * Spine Runtimes Software License v2.5
|
|
|
+ *
|
|
|
+ * Copyright (c) 2013-2016, Esoteric Software
|
|
|
+ * All rights reserved.
|
|
|
+ *
|
|
|
+ * You are granted a perpetual, non-exclusive, non-sublicensable, and
|
|
|
+ * non-transferable license to use, install, execute, and perform the Spine
|
|
|
+ * Runtimes software and derivative works solely for personal or internal
|
|
|
+ * use. Without the written permission of Esoteric Software (see Section 2 of
|
|
|
+ * the Spine Software License Agreement), you may not (a) modify, translate,
|
|
|
+ * adapt, or develop new applications using the Spine Runtimes or otherwise
|
|
|
+ * create derivative works or improvements of the Spine Runtimes or (b) remove,
|
|
|
+ * delete, alter, or obscure any trademarks or any copyright, trademark, patent,
|
|
|
+ * or other intellectual property or proprietary rights notices on or in the
|
|
|
+ * Software, including any copy thereof. Redistributions in binary or source
|
|
|
+ * form must include this license and terms.
|
|
|
+ *
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
|
|
|
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
|
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
|
+ * EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
|
|
|
+ * USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
|
+ * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
+ * POSSIBILITY OF SUCH DAMAGE.
|
|
|
+ *****************************************************************************/
|
|
|
+
|
|
|
+module spine {
|
|
|
+ export class ConvexDecomposer {
|
|
|
+ private convexPolygons = new Array<Array<number>>();
|
|
|
+ private convexPolygonsIndices = new Array<Array<number>>();
|
|
|
+
|
|
|
+ private indicesArray = new Array<number>();
|
|
|
+ private isConcaveArray = new Array<boolean>();
|
|
|
+ private triangles = new Array<number>();
|
|
|
+
|
|
|
+ private polygonPool = new Pool<Array<number>>(() => {
|
|
|
+ return new Array<number>();
|
|
|
+ });
|
|
|
+
|
|
|
+ private polygonIndicesPool = new Pool<Array<number>>(() => {
|
|
|
+ return new Array<number>();
|
|
|
+ });
|
|
|
+
|
|
|
+ public decompose (input: ArrayLike<number>): Array<Array<number>> {
|
|
|
+ let vertices = input;
|
|
|
+ let vertexCount = input.length >> 1;
|
|
|
+
|
|
|
+ let indices = this.indicesArray;
|
|
|
+ indices.length = 0;
|
|
|
+ for (let i = 0; i < vertexCount; i++)
|
|
|
+ indices[i] = i;
|
|
|
+
|
|
|
+ let isConcave = this.isConcaveArray;
|
|
|
+ isConcave.length = 0;
|
|
|
+ for (let i = 0, n = vertexCount; i < n; ++i)
|
|
|
+ isConcave[i] = ConvexDecomposer.isConcave(i, vertexCount, vertices, indices);
|
|
|
+
|
|
|
+ let triangles = this.triangles;
|
|
|
+ triangles.length = 0;
|
|
|
+
|
|
|
+ while (vertexCount > 3) {
|
|
|
+ // Find ear tip.
|
|
|
+ let previous = vertexCount - 1, i = 0, next = 1;
|
|
|
+ while (true) {
|
|
|
+ outer:
|
|
|
+ if (!isConcave[i]) {
|
|
|
+ let p1 = indices[previous] << 1, p2 = indices[i] << 1, p3 = indices[next] << 1;
|
|
|
+ let p1x = vertices[p1], p1y = vertices[p1 + 1];
|
|
|
+ let p2x = vertices[p2], p2y = vertices[p2 + 1];
|
|
|
+ let p3x = vertices[p3], p3y = vertices[p3 + 1];
|
|
|
+ for (let ii = (next + 1) % vertexCount; ii != previous; ii = (ii + 1) % vertexCount) {
|
|
|
+ if (!isConcave[ii]) continue;
|
|
|
+ let v = indices[ii] << 1;
|
|
|
+ let vx = vertices[v], vy = vertices[v + 1];
|
|
|
+ if (ConvexDecomposer.positiveArea(p3x, p3y, p1x, p1y, vx, vy)) {
|
|
|
+ if (ConvexDecomposer.positiveArea(p1x, p1y, p2x, p2y, vx, vy)) {
|
|
|
+ if (ConvexDecomposer.positiveArea(p2x, p2y, p3x, p3y, vx, vy)) break outer;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (next == 0) {
|
|
|
+ do {
|
|
|
+ if (!isConcave[i]) break;
|
|
|
+ i--;
|
|
|
+ } while (i > 0);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ previous = i;
|
|
|
+ i = next;
|
|
|
+ next = (next + 1) % vertexCount;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Cut ear tip.
|
|
|
+ triangles.push(indices[(vertexCount + i - 1) % vertexCount]);
|
|
|
+ triangles.push(indices[i]);
|
|
|
+ triangles.push(indices[(i + 1) % vertexCount]);
|
|
|
+ indices.splice(i, 1);
|
|
|
+ isConcave.splice(i, 1);
|
|
|
+ vertexCount--;
|
|
|
+
|
|
|
+ let previousIndex = (vertexCount + i - 1) % vertexCount;
|
|
|
+ let nextIndex = i == vertexCount ? 0 : i;
|
|
|
+ isConcave[previousIndex] = ConvexDecomposer.isConcave(previousIndex, vertexCount, vertices, indices);
|
|
|
+ isConcave[nextIndex] = ConvexDecomposer.isConcave(nextIndex, vertexCount, vertices, indices);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (vertexCount == 3) {
|
|
|
+ triangles.push(indices[2]);
|
|
|
+ triangles.push(indices[0]);
|
|
|
+ triangles.push(indices[1]);
|
|
|
+ }
|
|
|
+
|
|
|
+ let convexPolygons = this.convexPolygons;
|
|
|
+ this.polygonPool.freeAll(convexPolygons);
|
|
|
+ convexPolygons.length = 0;
|
|
|
+
|
|
|
+ let convexPolygonsIndices = this.convexPolygonsIndices;
|
|
|
+ this.polygonIndicesPool.freeAll(convexPolygonsIndices);
|
|
|
+ convexPolygonsIndices.length = 0;
|
|
|
+
|
|
|
+ let polygonIndices = this.polygonIndicesPool.obtain();
|
|
|
+ polygonIndices.length = 0;
|
|
|
+
|
|
|
+ let polygon = this.polygonPool.obtain();
|
|
|
+ polygon.length = 0;
|
|
|
+
|
|
|
+ // Merge subsequent triangles if they form a triangle fan.
|
|
|
+ let fanBaseIndex = -1, lastWinding = 0;
|
|
|
+ for (let i = 0, n = triangles.length; i < n; i += 3) {
|
|
|
+ let t1 = triangles[i] << 1, t2 = triangles[i + 1] << 1, t3 = triangles[i + 2] << 1;
|
|
|
+ let x1 = vertices[t1], y1 = vertices[t1 + 1];
|
|
|
+ let x2 = vertices[t2], y2 = vertices[t2 + 1];
|
|
|
+ let x3 = vertices[t3], y3 = vertices[t3 + 1];
|
|
|
+
|
|
|
+ // If the base of the last triangle is the same as this triangle, check if they form a convex polygon (triangle fan).
|
|
|
+ let merged = false;
|
|
|
+ if (fanBaseIndex == t1) {
|
|
|
+ let o = polygon.length - 4;
|
|
|
+ let winding1 = ConvexDecomposer.winding(polygon[o], polygon[o + 1], polygon[o + 2], polygon[o + 3], x3, y3);
|
|
|
+ let winding2 = ConvexDecomposer.winding(x3, y3, polygon[0], polygon[1], polygon[2], polygon[3]);
|
|
|
+ if (winding1 == lastWinding && winding2 == lastWinding) {
|
|
|
+ polygon.push(x3);
|
|
|
+ polygon.push(y3);
|
|
|
+ polygonIndices.push(t3);
|
|
|
+ merged = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Otherwise make this triangle the new base.
|
|
|
+ if (!merged) {
|
|
|
+ if (polygon.length > 0) {
|
|
|
+ convexPolygons.push(polygon);
|
|
|
+ convexPolygonsIndices.push(polygonIndices);
|
|
|
+ }
|
|
|
+ polygon = this.polygonPool.obtain();
|
|
|
+ polygon.length = 0;
|
|
|
+ polygon.push(x1);
|
|
|
+ polygon.push(y1);
|
|
|
+ polygon.push(x2);
|
|
|
+ polygon.push(y2);
|
|
|
+ polygon.push(x3);
|
|
|
+ polygon.push(y3);
|
|
|
+ polygonIndices = this.polygonIndicesPool.obtain();
|
|
|
+ polygonIndices.length = 0;
|
|
|
+ polygonIndices.push(t1);
|
|
|
+ polygonIndices.push(t2);
|
|
|
+ polygonIndices.push(t3);
|
|
|
+ lastWinding = ConvexDecomposer.winding(x1, y1, x2, y2, x3, y3);
|
|
|
+ fanBaseIndex = t1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (polygon.length > 0) {
|
|
|
+ convexPolygons.push(polygon);
|
|
|
+ convexPolygonsIndices.push(polygonIndices);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Go through the list of polygons and try to merge the remaining triangles with the found triangle fans.
|
|
|
+ for (let i = 0, n = convexPolygons.length; i < n; i++) {
|
|
|
+ polygonIndices = convexPolygonsIndices[i];
|
|
|
+ if (polygonIndices.length == 0) continue;
|
|
|
+ let firstIndex = polygonIndices[0];
|
|
|
+ let lastIndex = polygonIndices[polygonIndices.length - 1];
|
|
|
+
|
|
|
+ polygon = convexPolygons[i];
|
|
|
+ let o = polygon.length - 4;
|
|
|
+ let prevPrevX = polygon[o], prevPrevY = polygon[o + 1];
|
|
|
+ let prevX = polygon[o + 2], prevY = polygon[o + 3];
|
|
|
+ let firstX = polygon[0], firstY = polygon[1];
|
|
|
+ let secondX = polygon[2], secondY = polygon[3];
|
|
|
+ let winding = ConvexDecomposer.winding(prevPrevX, prevPrevY, prevX, prevY, firstX, firstY);
|
|
|
+
|
|
|
+ for (let ii = 0; ii < n; ii++) {
|
|
|
+ if (ii == i) continue;
|
|
|
+ let otherIndices = convexPolygonsIndices[ii];
|
|
|
+ if (otherIndices.length != 3) continue;
|
|
|
+ let otherFirstIndex = otherIndices[0];
|
|
|
+ let otherSecondIndex = otherIndices[1];
|
|
|
+ let otherLastIndex = otherIndices[2];
|
|
|
+
|
|
|
+ let otherPoly = convexPolygons[ii];
|
|
|
+ let x3 = otherPoly[otherPoly.length - 2], y3 = otherPoly[otherPoly.length - 1];
|
|
|
+
|
|
|
+ if (otherFirstIndex != firstIndex || otherSecondIndex != lastIndex) continue;
|
|
|
+ let winding1 = ConvexDecomposer.winding(prevPrevX, prevPrevY, prevX, prevY, x3, y3);
|
|
|
+ let winding2 = ConvexDecomposer.winding(x3, y3, firstX, firstY, secondX, secondY);
|
|
|
+ if (winding1 == winding && winding2 == winding) {
|
|
|
+ otherPoly.length = 0;
|
|
|
+ otherIndices.length = 0;
|
|
|
+ polygon.push(x3);
|
|
|
+ polygon.push(y3);
|
|
|
+ polygonIndices.push(otherLastIndex);
|
|
|
+ prevPrevX = prevX;
|
|
|
+ prevPrevY = prevY;
|
|
|
+ prevX = x3;
|
|
|
+ prevY = y3;
|
|
|
+ ii = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Remove empty polygons that resulted from the merge step above.
|
|
|
+ for (let i = convexPolygons.length - 1; i >= 0; i--) {
|
|
|
+ polygon = convexPolygons[i];
|
|
|
+ if (polygon.length == 0) {
|
|
|
+ convexPolygons.splice(i, 1);
|
|
|
+ this.polygonPool.free(polygon);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return convexPolygons;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static isConcave (index: number, vertexCount: number, vertices: ArrayLike<number>, indices: ArrayLike<number>): boolean {
|
|
|
+ let previous = indices[(vertexCount + index - 1) % vertexCount] << 1;
|
|
|
+ let current = indices[index] << 1;
|
|
|
+ let next = indices[(index + 1) % vertexCount] << 1;
|
|
|
+ return !this.positiveArea(vertices[previous], vertices[previous + 1], vertices[current], vertices[current + 1], vertices[next],
|
|
|
+ vertices[next + 1]);
|
|
|
+ }
|
|
|
+
|
|
|
+ private static positiveArea (p1x: number, p1y: number, p2x: number, p2y: number, p3x: number, p3y: number): boolean {
|
|
|
+ return p1x * (p3y - p2y) + p2x * (p1y - p3y) + p3x * (p2y - p1y) >= 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static winding (p1x: number, p1y: number, p2x: number, p2y: number, p3x: number, p3y: number): number {
|
|
|
+ let px = p2x - p1x, py = p2y - p1y;
|
|
|
+ return p3x * py - p3y * px + px * p1y - p1x * py >= 0 ? 1 : -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|