tinyphysicsengine.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. #ifndef TINYPHYSICSENGINE_H
  2. #define TINYPHYSICSENGINE_H
  3. /*
  4. author: Miloslav Ciz
  5. license: CC0 1.0 (public domain)
  6. found at https://creativecommons.org/publicdomain/zero/1.0/
  7. + additional waiver of all IP
  8. version: 0.1d
  9. CONVENTIONS:
  10. - No floating point is used, we instead use integers (effectively a fixed
  11. point). TPE_FRACTIONS_PER_UNIT is an equivalent to 1.0 in floating point and
  12. all numbers are normalized by this constant.
  13. - Units: for any measure only an abstract mathematical unit is used. This unit
  14. always has TPE_FRACTIONS_PER_UNIT parts. You can see assign any
  15. correcpondence with real life units to these units. E.g. 1 spatial unit
  16. (which you can see as e.g. 1 meter) is equal to TPE_FRACTIONS_PER_UNIT.
  17. Same with temporatl (e.g. 1 second) and mass (e.g. 1 kilogram) units, and
  18. also any derived units, e.g. a unit of velocity (e.g. 1 m/s) is also equal
  19. to 1 TPE_FRACTIONS_PER_UNIT. A full angle is also split into
  20. TPE_FRACTIONS_PER_UNIT parts (instead of 2 * PI or degrees).
  21. */
  22. #include <stdint.h>
  23. typedef int32_t TPE_Unit;
  24. /** How many fractions a unit is split into. This is NOT SUPPOSED TO BE
  25. REDEFINED, so rather don't do it (otherwise things may overflow etc.). */
  26. #define TPE_FRACTIONS_PER_UNIT 512
  27. #define TPE_INFINITY 2147483647
  28. #define TPE_SHAPE_POINT 0 ///< single point in space
  29. #define TPE_SHAPE_SPHERE 1 ///< sphere, params.: radius
  30. #define TPE_SHAPE_CUBOID 2 ///< cuboid, params.: width, height, depth
  31. #define TPE_SHAPE_PLANE 3 ///< plane, params.: width, depth
  32. #define TPE_SHAPE_CYLINDER 4 ///< cylinder, params.: radius, height
  33. #define TPE_SHAPE_TRIMESH 5 /**< triangle mesh, params.:
  34. vertex count,
  35. triangle count
  36. vertices (int32_t pointer),
  37. indices (uint16_t pointer) */
  38. #define TPE_MAX_SHAPE_PARAMS 3
  39. #define TPE_MAX_SHAPE_PARAMPOINTERS 2
  40. #define TPE_BODY_FLAG_DISABLED 0x00 ///< won't take part in simul. at all
  41. #define TPE_BODY_FLAG_NONCOLLIDING 0x01 ///< simulated but won't collide
  42. typedef struct
  43. {
  44. TPE_Unit x;
  45. TPE_Unit y;
  46. TPE_Unit z;
  47. TPE_Unit w;
  48. } TPE_Vec4;
  49. typedef struct
  50. {
  51. uint8_t shape;
  52. TPE_Unit shapeParams[TPE_MAX_SHAPE_PARAMS]; ///< parameters of the body type
  53. void *shapeParamPointers[TPE_MAX_SHAPE_PARAMPOINTERS]; ///< pointer parameters
  54. uint8_t flags;
  55. TPE_Unit mass; /**< body mass, setting this to TPE_INFINITY will
  56. make the object static (not moving at all)
  57. which may help performance */
  58. TPE_Vec4 position; ///< position of the body's center of mass
  59. TPE_Vec4 orientation; ///< orientation as a quaternion
  60. TPE_Vec4 velocity; ///< linear velocity vector
  61. TPE_Vec4 rotation; /**< current rotational state: X, Y and Z are the
  62. normalized axis of rotation (we only allow
  63. one), W is a non-negative angular speed around
  64. this axis (one angle unit per temporal unit) in
  65. the direction given by right hand rule
  66. (mathematically we could have just X, Y and Z
  67. with the size of vector being angular speed,
  68. but for computational/performance it's better
  69. this way), DO NOT SET THIS MANUALLY (use a
  70. function) */
  71. } TPE_Body;
  72. #define TPE_PRINTF_VEC4(v) printf("[%d %d %d %d]\n",v.x,v.y,v.z,v.w);
  73. typedef struct
  74. {
  75. uint16_t bodyCount;
  76. TPE_Body *bodies;
  77. } TPE_PhysicsWorld;
  78. //------------------------------------------------------------------------------
  79. void TPE_initVec4(TPE_Vec4 *v)
  80. {
  81. v->x = 0;
  82. v->y = 0;
  83. v->z = 0;
  84. v->w = 0;
  85. }
  86. void TPE_setVec4(TPE_Vec4 *v, TPE_Unit x, TPE_Unit y, TPE_Unit z, TPE_Unit w)
  87. {
  88. v->x = x;
  89. v->y = y;
  90. v->z = z;
  91. v->w = w;
  92. }
  93. TPE_Unit TPE_wrap(TPE_Unit value, TPE_Unit mod)
  94. {
  95. return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
  96. }
  97. TPE_Unit TPE_clamp(TPE_Unit v, TPE_Unit v1, TPE_Unit v2)
  98. {
  99. return v >= v1 ? (v <= v2 ? v : v2) : v1;
  100. }
  101. TPE_Unit TPE_nonZero(TPE_Unit x)
  102. {
  103. return x + (x == 0);
  104. }
  105. #define TPE_SIN_TABLE_LENGTH 128
  106. static const TPE_Unit TPE_sinTable[TPE_SIN_TABLE_LENGTH] =
  107. {
  108. /* 511 was chosen here as a highest number that doesn't overflow during
  109. compilation for TPE_FRACTIONS_PER_UNIT == 1024 */
  110. (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
  111. (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
  112. (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
  113. (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
  114. (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
  115. (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
  116. (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
  117. (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
  118. (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
  119. (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
  120. (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
  121. (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
  122. (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
  123. (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
  124. (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
  125. (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
  126. (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
  127. (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
  128. (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
  129. (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
  130. (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
  131. (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
  132. (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
  133. (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
  134. (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
  135. (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
  136. (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
  137. (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
  138. (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
  139. (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
  140. (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
  141. (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
  142. (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
  143. (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
  144. (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
  145. (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
  146. (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
  147. (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
  148. (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
  149. (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
  150. (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
  151. (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
  152. (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
  153. (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
  154. (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
  155. (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
  156. (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
  157. (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
  158. (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
  159. (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
  160. (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
  161. (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
  162. (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
  163. (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
  164. (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
  165. (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
  166. (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
  167. (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
  168. (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
  169. (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
  170. (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
  171. (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  172. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
  173. (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
  174. };
  175. #define TPE_SIN_TABLE_UNIT_STEP\
  176. (TPE_FRACTIONS_PER_UNIT / (TPE_SIN_TABLE_LENGTH * 4))
  177. TPE_Unit TPE_sqrt(TPE_Unit value)
  178. {
  179. int8_t sign = 1;
  180. if (value < 0)
  181. {
  182. sign = -1;
  183. value *= -1;
  184. }
  185. uint32_t result = 0;
  186. uint32_t a = value;
  187. uint32_t b = 1u << 30;
  188. while (b > a)
  189. b >>= 2;
  190. while (b != 0)
  191. {
  192. if (a >= result + b)
  193. {
  194. a -= result + b;
  195. result = result + 2 * b;
  196. }
  197. b >>= 2;
  198. result >>= 1;
  199. }
  200. return result * sign;
  201. }
  202. TPE_Unit TPE_sin(TPE_Unit x)
  203. {
  204. x = TPE_wrap(x / TPE_SIN_TABLE_UNIT_STEP,TPE_SIN_TABLE_LENGTH * 4);
  205. int8_t positive = 1;
  206. if (x < TPE_SIN_TABLE_LENGTH)
  207. {
  208. }
  209. else if (x < TPE_SIN_TABLE_LENGTH * 2)
  210. {
  211. x = TPE_SIN_TABLE_LENGTH * 2 - x - 1;
  212. }
  213. else if (x < TPE_SIN_TABLE_LENGTH * 3)
  214. {
  215. x = x - TPE_SIN_TABLE_LENGTH * 2;
  216. positive = 0;
  217. }
  218. else
  219. {
  220. x = TPE_SIN_TABLE_LENGTH - (x - TPE_SIN_TABLE_LENGTH * 3) - 1;
  221. positive = 0;
  222. }
  223. return positive ? TPE_sinTable[x] : -1 * TPE_sinTable[x];
  224. }
  225. TPE_Unit TPE_cos(TPE_Unit x)
  226. {
  227. return TPE_sin(x + TPE_FRACTIONS_PER_UNIT / 4);
  228. }
  229. TPE_Unit TPE_asin(TPE_Unit x)
  230. {
  231. x = TPE_clamp(x,-S3L_FRACTIONS_PER_UNIT,S3L_FRACTIONS_PER_UNIT);
  232. int8_t sign = 1;
  233. if (x < 0)
  234. {
  235. sign = -1;
  236. x *= -1;
  237. }
  238. int16_t low = 0;
  239. int16_t high = S3L_SIN_TABLE_LENGTH -1;
  240. int16_t middle;
  241. while (low <= high) // binary search
  242. {
  243. middle = (low + high) / 2;
  244. S3L_Unit v = S3L_sinTable[middle];
  245. if (v > x)
  246. high = middle - 1;
  247. else if (v < x)
  248. low = middle + 1;
  249. else
  250. break;
  251. }
  252. middle *= TPE_SIN_TABLE_UNIT_STEP;
  253. return sign * middle;
  254. }
  255. TPE_Unit TPE_acos(TPE_Unit x)
  256. {
  257. return TPE_asin(-1 * x) + TPE_FRACTIONS_PER_UNIT / 4;
  258. }
  259. void TPE_initBody(TPE_Body *body)
  260. {
  261. // TODO
  262. // init orientation to identity unit quaternion (1,0,0,0):
  263. body->orientation.x = TPE_FRACTIONS_PER_UNIT;
  264. body->orientation.y = 0;
  265. body->orientation.z = 0;
  266. body->orientation.w = 0;
  267. }
  268. void TPE_quaternionMultiply(TPE_Vec4 a, TPE_Vec4 b, TPE_Vec4 *result)
  269. {
  270. result->x =
  271. (a.x * b.x -
  272. a.y * b.y -
  273. a.z * b.z -
  274. a.w * b.w) / TPE_FRACTIONS_PER_UNIT;
  275. result->y =
  276. (a.y * b.x +
  277. a.x * b.y +
  278. a.z * b.w -
  279. a.w * b.z) / TPE_FRACTIONS_PER_UNIT;
  280. result->z =
  281. (a.x * b.z -
  282. a.y * b.w +
  283. a.z * b.x +
  284. a.w * b.y) / TPE_FRACTIONS_PER_UNIT;
  285. result->w =
  286. (a.x * b.w +
  287. a.y * b.z -
  288. a.z * b.y +
  289. a.w * b.x) / TPE_FRACTIONS_PER_UNIT;
  290. }
  291. void TPE_rotationToQuaternion(TPE_Vec4 axis, TPE_Unit angle, TPE_Vec4 *quaternion)
  292. {
  293. TPE_vec3Normalize(&axis);
  294. angle /= 2;
  295. quaternion->x = TPE_cos(angle);
  296. TPE_Unit s = TPE_sin(angle);
  297. quaternion->y = (s * axis.x) / TPE_FRACTIONS_PER_UNIT;
  298. quaternion->z = (s * axis.y) / TPE_FRACTIONS_PER_UNIT;
  299. quaternion->w = (s * axis.z) / TPE_FRACTIONS_PER_UNIT;
  300. }
  301. void TPE_quaternionToRotation(TPE_Vec4 quaternion, TPE_Vec4 *axis, TPE_Unit *angle)
  302. {
  303. *angle = 2 * TPE_acos(quaternion.x);
  304. TPE_Unit tmp =
  305. TPE_nonZero(TPE_sqrt(
  306. (TPE_FRACTIONS_PER_UNIT -
  307. (quaternion.x * quaternion.x) / TPE_FRACTIONS_PER_UNIT
  308. ) * TPE_FRACTIONS_PER_UNIT));
  309. axis->x = (quaternion.x * TPE_FRACTIONS_PER_UNIT) / tmp;
  310. axis->y = (quaternion.y * TPE_FRACTIONS_PER_UNIT) / tmp;
  311. axis->z = (quaternion.z * TPE_FRACTIONS_PER_UNIT) / tmp;
  312. }
  313. void TPE_vec3Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  314. {
  315. result->x = a.x + b.x;
  316. result->y = a.y + b.y;
  317. result->z = a.z + b.z;
  318. }
  319. void TPE_vec4Add(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  320. {
  321. result->x = a.x + b.x;
  322. result->y = a.y + b.y;
  323. result->z = a.z + b.z;
  324. result->w = a.w + b.w;
  325. }
  326. void TPE_vec3Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  327. {
  328. result->x = a.x - b.x;
  329. result->y = a.y - b.y;
  330. result->z = a.z - b.z;
  331. }
  332. void TPE_vec4Substract(const TPE_Vec4 a, const TPE_Vec4 b, TPE_Vec4 *result)
  333. {
  334. result->x = a.x - b.x;
  335. result->y = a.y - b.y;
  336. result->z = a.z - b.z;
  337. result->w = a.w - b.w;
  338. }
  339. void TPE_vec3Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  340. {
  341. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  342. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  343. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  344. }
  345. void TPE_vec4Multiplay(const TPE_Vec4 v, TPE_Unit f, TPE_Vec4 *result)
  346. {
  347. result->x = (v.x * f) / TPE_FRACTIONS_PER_UNIT;
  348. result->y = (v.y * f) / TPE_FRACTIONS_PER_UNIT;
  349. result->z = (v.z * f) / TPE_FRACTIONS_PER_UNIT;
  350. result->w = (v.w * f) / TPE_FRACTIONS_PER_UNIT;
  351. }
  352. TPE_Unit TPE_vec3Len(TPE_Vec4 v)
  353. {
  354. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
  355. }
  356. TPE_Unit TPE_vec4Len(TPE_Vec4 v)
  357. {
  358. return TPE_sqrt(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
  359. }
  360. static inline TPE_Unit TPE_vec3DotProduct(const TPE_Vec4 v1, const TPE_Vec4 v2)
  361. {
  362. return
  363. (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) / TPE_FRACTIONS_PER_UNIT;
  364. }
  365. void TPE_vec3Normalize(TPE_Vec4 v)
  366. {
  367. TPE_Unit l = TPE_vec3Len(v);
  368. if (l == 0)
  369. {
  370. v.x = TPE_FRACTIONS_PER_UNIT;
  371. return;
  372. }
  373. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  374. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  375. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  376. }
  377. void TPE_vec4Normalize(TPE_Vec4 v)
  378. {
  379. TPE_Unit l = TPE_vec4Len(v);
  380. if (l == 0)
  381. {
  382. v.x = TPE_FRACTIONS_PER_UNIT;
  383. return;
  384. }
  385. v.x = (v.x * TPE_FRACTIONS_PER_UNIT) / l;
  386. v.y = (v.y * TPE_FRACTIONS_PER_UNIT) / l;
  387. v.z = (v.z * TPE_FRACTIONS_PER_UNIT) / l;
  388. v.w = (v.w * TPE_FRACTIONS_PER_UNIT) / l;
  389. }
  390. void TPE_vec3Project(const TPE_Vec4 v, const TPE_Vec4 base, TPE_Vec4 *result)
  391. {
  392. TPE_Unit p = TPE_vec3DotProduct(v,base);
  393. result->x = (p * base.x) / TPE_FRACTIONS_PER_UNIT;
  394. result->y = (p * base.y) / TPE_FRACTIONS_PER_UNIT;
  395. result->z = (p * base.z) / TPE_FRACTIONS_PER_UNIT;
  396. }
  397. void TPE_getVelocitiesAfterCollision(
  398. TPE_Unit *v1,
  399. TPE_Unit *v2,
  400. TPE_Unit m1,
  401. TPE_Unit m2,
  402. TPE_Unit elasticity
  403. )
  404. {
  405. /* in the following a lot of TPE_FRACTIONS_PER_UNIT cancel out, feel free to
  406. check if confused */
  407. #define ANTI_OVERFLOW 30000
  408. #define ANTI_OVERFLOW_SCALE 128
  409. uint8_t overflowDanger = m1 > ANTI_OVERFLOW || *v1 > ANTI_OVERFLOW ||
  410. m2 > ANTI_OVERFLOW || *v2 > ANTI_OVERFLOW;
  411. if (overflowDanger)
  412. {
  413. m1 = (m1 != 0) ? TPE_nonZero(m1 / ANTI_OVERFLOW_SCALE) : 0;
  414. m2 = (m2 != 0) ? TPE_nonZero(m2 / ANTI_OVERFLOW_SCALE) : 0;
  415. *v1 = (*v1 != 0) ? TPE_nonZero(*v1 / ANTI_OVERFLOW_SCALE) : 0;
  416. *v2 = (*v2 != 0) ? TPE_nonZero(*v2 / ANTI_OVERFLOW_SCALE) : 0;
  417. }
  418. TPE_Unit m1Pm2 = m1 + m2;
  419. TPE_Unit v2Mv1 = *v2 - *v1;
  420. TPE_Unit m1v1Pm2v2 = ((m1 * *v1) + (m2 * *v2));
  421. *v1 = (((elasticity * m2 / TPE_FRACTIONS_PER_UNIT) * v2Mv1)
  422. + m1v1Pm2v2) / m1Pm2;
  423. *v2 = (((elasticity * m1 / TPE_FRACTIONS_PER_UNIT) * -1 * v2Mv1)
  424. + m1v1Pm2v2) / m1Pm2;
  425. if (overflowDanger)
  426. {
  427. *v1 *= ANTI_OVERFLOW_SCALE;
  428. *v2 *= ANTI_OVERFLOW_SCALE;
  429. }
  430. #undef ANTI_OVERFLOW
  431. #undef ANTI_OVERFLOW_SCALE
  432. }
  433. void TPE_resolvePointCollision(
  434. const TPE_Vec4 collisionPoint,
  435. const TPE_Vec4 collisionNormal,
  436. TPE_Unit elasticity,
  437. TPE_Vec4 linVelocity1,
  438. TPE_Vec4 rotVelocity1,
  439. TPE_Unit m1,
  440. TPE_Vec4 linVelocity2,
  441. TPE_Vec4 rotVelocity2,
  442. TPE_Unit m2)
  443. {
  444. TPE_Vec4 v1, v2, v1New, v2New;
  445. TPE_initVec4(&v1);
  446. TPE_initVec4(&v2);
  447. TPE_initVec4(&v1New);
  448. TPE_initVec4(&v2New);
  449. // add lin. and rot. velocities to get the overall vel. of both points:
  450. TPE_vec4Add(linVelocity1,rotVelocity1,&v1);
  451. TPE_vec4Add(linVelocity2,rotVelocity2,&v2);
  452. /* project both of these velocities to the collision normal as we'll apply
  453. the collision equation only in the direction of this normal: */
  454. TPE_vec3Project(v1,collisionNormal,&v1New);
  455. TPE_vec3Project(v2,collisionNormal,&v2New);
  456. // get the velocities of the components
  457. TPE_Unit
  458. v1NewMag = TPE_vec3Len(v1New),
  459. v2NewMag = TPE_vec3Len(v2New);
  460. /* now also substract this component from the original velocity (so that it
  461. will now be in the collision plane), we'll later add back the updated
  462. velocity to it */
  463. TPE_vec4Substract(v1,v1New,&v1);
  464. TPE_vec4Substract(v2,v2New,&v2);
  465. // apply the 1D collision equation to velocities along the normal:
  466. TPE_getVelocitiesAfterCollision(
  467. &v1NewMag,
  468. &v2NewMag,
  469. m1,
  470. m2,
  471. elasticity);
  472. // add back the updated velocities to get the new overall velocities:
  473. v1New.x += (collisionNormal.x * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  474. v1New.y += (collisionNormal.y * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  475. v1New.z += (collisionNormal.z * v1NewMag) / TPE_FRACTIONS_PER_UNIT;
  476. v2New.x += (collisionNormal.x * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  477. v2New.y += (collisionNormal.y * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  478. v2New.z += (collisionNormal.z * v2NewMag) / TPE_FRACTIONS_PER_UNIT;
  479. // TODO
  480. }
  481. #endif // guard