| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731 |
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the MIT license.
- // See the LICENSE file in the project root for more information.
- using System.Diagnostics;
- using System.Numerics;
- using System.Runtime.CompilerServices;
- using System.Runtime.Intrinsics;
- using System.Runtime.Intrinsics.X86;
- using Internal.Runtime.CompilerServices;
- #if BIT64
- using nint = System.Int64;
- using nuint = System.UInt64;
- #else // BIT64
- using nint = System.Int32;
- using nuint = System.UInt32;
- #endif // BIT64
- namespace System.Text
- {
- internal static partial class ASCIIUtility
- {
- #if DEBUG
- static ASCIIUtility()
- {
- Debug.Assert(sizeof(nint) == IntPtr.Size && nint.MinValue < 0, "nint is defined incorrectly.");
- Debug.Assert(sizeof(nuint) == IntPtr.Size && nuint.MinValue == 0, "nuint is defined incorrectly.");
- }
- #endif // DEBUG
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static bool AllBytesInUInt64AreAscii(ulong value)
- {
- // If the high bit of any byte is set, that byte is non-ASCII.
- return ((value & UInt64HighBitsOnlyMask) == 0);
- }
- /// <summary>
- /// Returns <see langword="true"/> iff all chars in <paramref name="value"/> are ASCII.
- /// </summary>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static bool AllCharsInUInt32AreAscii(uint value)
- {
- return ((value & ~0x007F007Fu) == 0);
- }
- /// <summary>
- /// Returns <see langword="true"/> iff all chars in <paramref name="value"/> are ASCII.
- /// </summary>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static bool AllCharsInUInt64AreAscii(ulong value)
- {
- return ((value & ~0x007F007F_007F007Ful) == 0);
- }
- /// <summary>
- /// Given a DWORD which represents two packed chars in machine-endian order,
- /// <see langword="true"/> iff the first char (in machine-endian order) is ASCII.
- /// </summary>
- /// <param name="value"></param>
- /// <returns></returns>
- private static bool FirstCharInUInt32IsAscii(uint value)
- {
- return (BitConverter.IsLittleEndian && (value & 0xFF80u) == 0)
- || (!BitConverter.IsLittleEndian && (value & 0xFF800000u) == 0);
- }
- /// <summary>
- /// Returns the index in <paramref name="pBuffer"/> where the first non-ASCII byte is found.
- /// Returns <paramref name="bufferLength"/> if the buffer is empty or all-ASCII.
- /// </summary>
- /// <returns>An ASCII byte is defined as 0x00 - 0x7F, inclusive.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static unsafe nuint GetIndexOfFirstNonAsciiByte(byte* pBuffer, nuint bufferLength)
- {
- // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
- // code below. This has two benefits: (a) we can take advantage of specific instructions like
- // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
- // this method is running.
- return (Sse2.IsSupported)
- ? GetIndexOfFirstNonAsciiByte_Sse2(pBuffer, bufferLength)
- : GetIndexOfFirstNonAsciiByte_Default(pBuffer, bufferLength);
- }
- private static unsafe nuint GetIndexOfFirstNonAsciiByte_Default(byte* pBuffer, nuint bufferLength)
- {
- // Squirrel away the original buffer reference. This method works by determining the exact
- // byte reference where non-ASCII data begins, so we need this base value to perform the
- // final subtraction at the end of the method to get the index into the original buffer.
- byte* pOriginalBuffer = pBuffer;
- // Before we drain off byte-by-byte, try a generic vectorized loop.
- // Only run the loop if we have at least two vectors we can pull out.
- // Note use of SBYTE instead of BYTE below; we're using the two's-complement
- // representation of negative integers to act as a surrogate for "is ASCII?".
- if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector<sbyte>.Count)
- {
- uint SizeOfVectorInBytes = (uint)Vector<sbyte>.Count; // JIT will make this a const
- if (Vector.GreaterThanOrEqualAll(Unsafe.ReadUnaligned<Vector<sbyte>>(pBuffer), Vector<sbyte>.Zero))
- {
- // The first several elements of the input buffer were ASCII. Bump up the pointer to the
- // next aligned boundary, then perform aligned reads from here on out until we find non-ASCII
- // data or we approach the end of the buffer. It's possible we'll reread data; this is ok.
- byte* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInBytes;
- pBuffer = (byte*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1));
- #if DEBUG
- long numBytesRead = pBuffer - pOriginalBuffer;
- Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVectorInBytes, "We should've made forward progress of at least one byte.");
- Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
- #endif
- Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector.");
- do
- {
- Debug.Assert((nuint)pBuffer % SizeOfVectorInBytes == 0, "Vector read should be aligned.");
- if (Vector.LessThanAny(Unsafe.Read<Vector<sbyte>>(pBuffer), Vector<sbyte>.Zero))
- {
- break; // found non-ASCII data
- }
- pBuffer += SizeOfVectorInBytes;
- } while (pBuffer <= pFinalVectorReadPos);
- // Adjust the remaining buffer length for the number of elements we just consumed.
- bufferLength -= (nuint)pBuffer;
- bufferLength += (nuint)pOriginalBuffer;
- }
- }
- // At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform
- // a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code
- // path to drain any remaining ASCII bytes.
- //
- // We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads.
- // This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII bytes.
- uint currentUInt32;
- // Try reading 64 bits at a time in a loop.
- for (; bufferLength >= 8; bufferLength -= 8)
- {
- currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
- uint nextUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer + 4);
- if (!AllBytesInUInt32AreAscii(currentUInt32 | nextUInt32))
- {
- // One of these two values contains non-ASCII bytes.
- // Figure out which one it is, then put it in 'current' so that we can drain the ASCII bytes.
- if (AllBytesInUInt32AreAscii(currentUInt32))
- {
- currentUInt32 = nextUInt32;
- pBuffer += 4;
- }
- goto FoundNonAsciiData;
- }
- pBuffer += 8; // consumed 8 ASCII bytes
- }
- // From this point forward we don't need to update bufferLength.
- // Try reading 32 bits.
- if ((bufferLength & 4) != 0)
- {
- currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
- if (!AllBytesInUInt32AreAscii(currentUInt32))
- {
- goto FoundNonAsciiData;
- }
- pBuffer += 4;
- }
- // Try reading 16 bits.
- if ((bufferLength & 2) != 0)
- {
- currentUInt32 = Unsafe.ReadUnaligned<ushort>(pBuffer);
- if (!AllBytesInUInt32AreAscii(currentUInt32))
- {
- goto FoundNonAsciiData;
- }
- pBuffer += 2;
- }
- // Try reading 8 bits
- if ((bufferLength & 1) != 0)
- {
- // If the buffer contains non-ASCII data, the comparison below will fail, and
- // we'll end up not incrementing the buffer reference.
- if (*(sbyte*)pBuffer >= 0)
- {
- pBuffer++;
- }
- }
- Finish:
- nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer;
- return totalNumBytesRead;
- FoundNonAsciiData:
- Debug.Assert(!AllBytesInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input.");
- // The method being called doesn't bother looking at whether the high byte is ASCII. There are only
- // two scenarios: (a) either one of the earlier bytes is not ASCII and the search terminates before
- // we get to the high byte; or (b) all of the earlier bytes are ASCII, so the high byte must be
- // non-ASCII. In both cases we only care about the low 24 bits.
- pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentUInt32);
- goto Finish;
- }
- private static unsafe nuint GetIndexOfFirstNonAsciiByte_Sse2(byte* pBuffer, nuint bufferLength)
- {
- // JIT turns the below into constants
- uint SizeOfVector128 = (uint)Unsafe.SizeOf<Vector128<byte>>();
- nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);
- Debug.Assert(Sse2.IsSupported, "Should've been checked by caller.");
- Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian.");
- uint currentMask, secondMask;
- byte* pOriginalBuffer = pBuffer;
- // This method is written such that control generally flows top-to-bottom, avoiding
- // jumps as much as possible in the optimistic case of a large enough buffer and
- // "all ASCII". If we see non-ASCII data, we jump out of the hot paths to targets
- // after all the main logic.
- if (bufferLength < SizeOfVector128)
- {
- goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead
- }
- // Read the first vector unaligned.
- currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- // If we have less than 32 bytes to process, just go straight to the final unaligned
- // read. There's no need to mess with the loop logic in the middle of this method.
- if (bufferLength < 2 * SizeOfVector128)
- {
- goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead;
- }
- // Now adjust the read pointer so that future reads are aligned.
- pBuffer = (byte*)(((nuint)pBuffer + SizeOfVector128) & ~(nuint)MaskOfAllBitsInVector128);
- #if DEBUG
- long numBytesRead = pBuffer - pOriginalBuffer;
- Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVector128, "We should've made forward progress of at least one byte.");
- Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
- #endif
- // Adjust the remaining length to account for what we just read.
- bufferLength += (nuint)pOriginalBuffer;
- bufferLength -= (nuint)pBuffer;
- // The buffer is now properly aligned.
- // Read 2 vectors at a time if possible.
- if (bufferLength >= 2 * SizeOfVector128)
- {
- byte* pFinalVectorReadPos = (byte*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128);
- // After this point, we no longer need to update the bufferLength value.
- do
- {
- Vector128<byte> firstVector = Sse2.LoadAlignedVector128(pBuffer);
- Vector128<byte> secondVector = Sse2.LoadAlignedVector128(pBuffer + SizeOfVector128);
- currentMask = (uint)Sse2.MoveMask(firstVector);
- secondMask = (uint)Sse2.MoveMask(secondVector);
- if ((currentMask | secondMask) != 0)
- {
- goto FoundNonAsciiDataInInnerLoop;
- }
- pBuffer += 2 * SizeOfVector128;
- } while (pBuffer <= pFinalVectorReadPos);
- }
- // We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from.
- // Since the above loop doesn't update bufferLength, we can't rely on its absolute value.
- // But we _can_ rely on it to tell us how much remaining data must be drained by looking
- // at what bits of it are set. This works because had we updated it within the loop above,
- // we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about
- // bits which are less significant than those that the addition would've acted on.
- // If there is fewer than one vector length remaining, skip the next aligned read.
- if ((bufferLength & SizeOfVector128) == 0)
- {
- goto DoFinalUnalignedVectorRead;
- }
- // At least one full vector's worth of data remains, so we can safely read it.
- // Remember, at this point pBuffer is still aligned.
- currentMask = (uint)Sse2.MoveMask(Sse2.LoadAlignedVector128(pBuffer));
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- IncrementCurrentOffsetBeforeFinalUnalignedVectorRead:
- pBuffer += SizeOfVector128;
- DoFinalUnalignedVectorRead:
- if (((byte)bufferLength & MaskOfAllBitsInVector128) != 0)
- {
- // Perform an unaligned read of the last vector.
- // We need to adjust the pointer because we're re-reading data.
- pBuffer += (bufferLength & MaskOfAllBitsInVector128) - SizeOfVector128;
- currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- pBuffer += SizeOfVector128;
- }
- Finish:
- return (nuint)pBuffer - (nuint)pOriginalBuffer; // and we're done!
- FoundNonAsciiDataInInnerLoop:
- // If the current (first) mask isn't the mask that contains non-ASCII data, then it must
- // instead be the second mask. If so, skip the entire first mask and drain ASCII bytes
- // from the second mask.
- if (currentMask == 0)
- {
- pBuffer += SizeOfVector128;
- currentMask = secondMask;
- }
- FoundNonAsciiDataInCurrentMask:
- // The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte.
- // Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't
- // available, we'll fall back to a normal loop.
- Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data.");
- pBuffer += (uint)BitOperations.TrailingZeroCount(currentMask);
- goto Finish;
- FoundNonAsciiDataInCurrentDWord:
- uint currentDWord;
- Debug.Assert(!AllBytesInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data.");
- pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentDWord);
- goto Finish;
- InputBufferLessThanOneVectorInLength:
- // These code paths get hit if the original input length was less than one vector in size.
- // We can't perform vectorized reads at this point, so we'll fall back to reading primitives
- // directly. Note that all of these reads are unaligned.
- Debug.Assert(bufferLength < SizeOfVector128);
- // QWORD drain
- if ((bufferLength & 8) != 0)
- {
- if (Bmi1.X64.IsSupported)
- {
- // If we can use 64-bit tzcnt to count the number of leading ASCII bytes, prefer it.
- ulong candidateUInt64 = Unsafe.ReadUnaligned<ulong>(pBuffer);
- if (!AllBytesInUInt64AreAscii(candidateUInt64))
- {
- // Clear everything but the high bit of each byte, then tzcnt.
- // Remember the / 8 at the end to convert bit count to byte count.
- candidateUInt64 &= UInt64HighBitsOnlyMask;
- pBuffer += (nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8);
- goto Finish;
- }
- }
- else
- {
- // If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead.
- currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);
- uint nextDWord = Unsafe.ReadUnaligned<uint>(pBuffer + 4);
- if (!AllBytesInUInt32AreAscii(currentDWord | nextDWord))
- {
- // At least one of the values wasn't all-ASCII.
- // We need to figure out which one it was and stick it in the currentMask local.
- if (AllBytesInUInt32AreAscii(currentDWord))
- {
- currentDWord = nextDWord; // this one is the culprit
- pBuffer += 4;
- }
- goto FoundNonAsciiDataInCurrentDWord;
- }
- }
- pBuffer += 8; // successfully consumed 8 ASCII bytes
- }
- // DWORD drain
- if ((bufferLength & 4) != 0)
- {
- currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);
- if (!AllBytesInUInt32AreAscii(currentDWord))
- {
- goto FoundNonAsciiDataInCurrentDWord;
- }
- pBuffer += 4; // successfully consumed 4 ASCII bytes
- }
- // WORD drain
- // (We movzx to a DWORD for ease of manipulation.)
- if ((bufferLength & 2) != 0)
- {
- currentDWord = Unsafe.ReadUnaligned<ushort>(pBuffer);
- if (!AllBytesInUInt32AreAscii(currentDWord))
- {
- // We only care about the 0x0080 bit of the value. If it's not set, then we
- // increment currentOffset by 1. If it's set, we don't increment it at all.
- pBuffer += (nuint)((nint)(sbyte)currentDWord >> 7) + 1;
- goto Finish;
- }
- pBuffer += 2; // successfully consumed 2 ASCII bytes
- }
- // BYTE drain
- if ((bufferLength & 1) != 0)
- {
- // sbyte has non-negative value if byte is ASCII.
- if (*(sbyte*)(pBuffer) >= 0)
- {
- pBuffer++; // successfully consumed a single byte
- }
- }
- goto Finish;
- }
- /// <summary>
- /// Returns the index in <paramref name="pBuffer"/> where the first non-ASCII char is found.
- /// Returns <paramref name="bufferLength"/> if the buffer is empty or all-ASCII.
- /// </summary>
- /// <returns>An ASCII char is defined as 0x0000 - 0x007F, inclusive.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static unsafe nuint GetIndexOfFirstNonAsciiChar(char* pBuffer, nuint bufferLength /* in chars */)
- {
- // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
- // code below. This has two benefits: (a) we can take advantage of specific instructions like
- // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
- // this method is running.
- return (Sse2.IsSupported)
- ? GetIndexOfFirstNonAsciiChar_Sse2(pBuffer, bufferLength)
- : GetIndexOfFirstNonAsciiChar_Default(pBuffer, bufferLength);
- }
- private static unsafe nuint GetIndexOfFirstNonAsciiChar_Default(char* pBuffer, nuint bufferLength /* in chars */)
- {
- // Squirrel away the original buffer reference.This method works by determining the exact
- // char reference where non-ASCII data begins, so we need this base value to perform the
- // final subtraction at the end of the method to get the index into the original buffer.
- char* pOriginalBuffer = pBuffer;
- Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char));
- // Before we drain off char-by-char, try a generic vectorized loop.
- // Only run the loop if we have at least two vectors we can pull out.
- if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector<ushort>.Count)
- {
- uint SizeOfVectorInChars = (uint)Vector<ushort>.Count; // JIT will make this a const
- uint SizeOfVectorInBytes = (uint)Vector<byte>.Count; // JIT will make this a const
- Vector<ushort> maxAscii = new Vector<ushort>(0x007F);
- if (Vector.LessThanOrEqualAll(Unsafe.ReadUnaligned<Vector<ushort>>(pBuffer), maxAscii))
- {
- // The first several elements of the input buffer were ASCII. Bump up the pointer to the
- // next aligned boundary, then perform aligned reads from here on out until we find non-ASCII
- // data or we approach the end of the buffer. It's possible we'll reread data; this is ok.
- char* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInChars;
- pBuffer = (char*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1));
- #if DEBUG
- long numCharsRead = pBuffer - pOriginalBuffer;
- Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVectorInChars, "We should've made forward progress of at least one char.");
- Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
- #endif
- Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector.");
- do
- {
- Debug.Assert((nuint)pBuffer % SizeOfVectorInChars == 0, "Vector read should be aligned.");
- if (Vector.GreaterThanAny(Unsafe.Read<Vector<ushort>>(pBuffer), maxAscii))
- {
- break; // found non-ASCII data
- }
- pBuffer += SizeOfVectorInChars;
- } while (pBuffer <= pFinalVectorReadPos);
- // Adjust the remaining buffer length for the number of elements we just consumed.
- bufferLength -= ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char);
- }
- }
- // At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform
- // a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code
- // path to drain any remaining ASCII chars.
- //
- // We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads.
- // This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII chars.
- uint currentUInt32;
- // Try reading 64 bits at a time in a loop.
- for (; bufferLength >= 4; bufferLength -= 4) // 64 bits = 4 * 16-bit chars
- {
- currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
- uint nextUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer + 4 / sizeof(char));
- if (!AllCharsInUInt32AreAscii(currentUInt32 | nextUInt32))
- {
- // One of these two values contains non-ASCII chars.
- // Figure out which one it is, then put it in 'current' so that we can drain the ASCII chars.
- if (AllCharsInUInt32AreAscii(currentUInt32))
- {
- currentUInt32 = nextUInt32;
- pBuffer += 2;
- }
- goto FoundNonAsciiData;
- }
- pBuffer += 4; // consumed 4 ASCII chars
- }
- // From this point forward we don't need to keep track of the remaining buffer length.
- // Try reading 32 bits.
- if ((bufferLength & 2) != 0) // 32 bits = 2 * 16-bit chars
- {
- currentUInt32 = Unsafe.ReadUnaligned<uint>(pBuffer);
- if (!AllCharsInUInt32AreAscii(currentUInt32))
- {
- goto FoundNonAsciiData;
- }
- pBuffer += 2;
- }
- // Try reading 16 bits.
- // No need to try an 8-bit read after this since we're working with chars.
- if ((bufferLength & 1) != 0)
- {
- // If the buffer contains non-ASCII data, the comparison below will fail, and
- // we'll end up not incrementing the buffer reference.
- if (*pBuffer <= 0x007F)
- {
- pBuffer++;
- }
- }
- Finish:
- nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer;
- Debug.Assert(totalNumBytesRead % sizeof(char) == 0, "Total number of bytes read should be even since we're working with chars.");
- return totalNumBytesRead / sizeof(char); // convert byte count -> char count before returning
- FoundNonAsciiData:
- Debug.Assert(!AllCharsInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input.");
- // We don't bother looking at the second char - only the first char.
- if (FirstCharInUInt32IsAscii(currentUInt32))
- {
- pBuffer++;
- }
- goto Finish;
- }
- private static unsafe nuint GetIndexOfFirstNonAsciiChar_Sse2(char* pBuffer, nuint bufferLength /* in chars */)
- {
- // This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method
- // will be elided by JIT once we determine which specific ISAs we support.
- // Quick check for empty inputs.
- if (bufferLength == 0)
- {
- return 0;
- }
- // JIT turns the below into constants
- uint SizeOfVector128InBytes = (uint)Unsafe.SizeOf<Vector128<byte>>();
- uint SizeOfVector128InChars = SizeOfVector128InBytes / sizeof(char);
- Debug.Assert(Sse2.IsSupported, "Should've been checked by caller.");
- Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian.");
- Vector128<short> firstVector, secondVector;
- uint currentMask;
- char* pOriginalBuffer = pBuffer;
- if (bufferLength < SizeOfVector128InChars)
- {
- goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead
- }
- // This method is written such that control generally flows top-to-bottom, avoiding
- // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
- // data, we jump out of the hot paths to targets at the end of the method.
- Vector128<short> asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware
- Vector128<ushort> asciiMaskForPMINUW = Vector128.Create((ushort)0x0080); // used for PMINUW on supported hardware
- Vector128<short> asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR
- Vector128<short> asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW
- Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char));
- // Read the first vector unaligned.
- firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load
- if (Sse41.IsSupported)
- {
- // The SSE41-optimized code path works by forcing the 0x0080 bit in each WORD of the vector to be
- // set iff the WORD element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector
- // in order to extract the mask.
- currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte());
- }
- else
- {
- // The SSE2-optimized code path works by forcing each WORD of the vector to be 0xFFFF iff the WORD
- // element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector in order to extract
- // the mask.
- currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
- }
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- // If we have less than 32 bytes to process, just go straight to the final unaligned
- // read. There's no need to mess with the loop logic in the middle of this method.
- // Adjust the remaining length to account for what we just read.
- // For the remainder of this code path, bufferLength will be in bytes, not chars.
- bufferLength <<= 1; // chars to bytes
- if (bufferLength < 2 * SizeOfVector128InBytes)
- {
- goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead;
- }
- // Now adjust the read pointer so that future reads are aligned.
- pBuffer = (char*)(((nuint)pBuffer + SizeOfVector128InBytes) & ~(nuint)(SizeOfVector128InBytes - 1));
- #if DEBUG
- long numCharsRead = pBuffer - pOriginalBuffer;
- Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVector128InChars, "We should've made forward progress of at least one char.");
- Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
- #endif
- // Adjust remaining buffer length.
- bufferLength += (nuint)pOriginalBuffer;
- bufferLength -= (nuint)pBuffer;
- // The buffer is now properly aligned.
- // Read 2 vectors at a time if possible.
- if (bufferLength >= 2 * SizeOfVector128InBytes)
- {
- char* pFinalVectorReadPos = (char*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128InBytes);
- // After this point, we no longer need to update the bufferLength value.
- do
- {
- firstVector = Sse2.LoadAlignedVector128((short*)pBuffer);
- secondVector = Sse2.LoadAlignedVector128((short*)pBuffer + SizeOfVector128InChars);
- Vector128<short> combinedVector = Sse2.Or(firstVector, secondVector);
- if (Sse41.IsSupported)
- {
- // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
- // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
- if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST))
- {
- goto FoundNonAsciiDataInFirstOrSecondVector;
- }
- }
- else
- {
- // See comment earlier in the method for an explanation of how the below logic works.
- if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
- {
- goto FoundNonAsciiDataInFirstOrSecondVector;
- }
- }
- pBuffer += 2 * SizeOfVector128InChars;
- } while (pBuffer <= pFinalVectorReadPos);
- }
- // We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from.
- // Since the above loop doesn't update bufferLength, we can't rely on its absolute value.
- // But we _can_ rely on it to tell us how much remaining data must be drained by looking
- // at what bits of it are set. This works because had we updated it within the loop above,
- // we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about
- // bits which are less significant than those that the addition would've acted on.
- // If there is fewer than one vector length remaining, skip the next aligned read.
- // Remember, at this point bufferLength is measured in bytes, not chars.
- if ((bufferLength & SizeOfVector128InBytes) == 0)
- {
- goto DoFinalUnalignedVectorRead;
- }
- // At least one full vector's worth of data remains, so we can safely read it.
- // Remember, at this point pBuffer is still aligned.
- firstVector = Sse2.LoadAlignedVector128((short*)pBuffer);
- if (Sse41.IsSupported)
- {
- // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
- // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
- if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
- {
- goto FoundNonAsciiDataInFirstVector;
- }
- }
- else
- {
- // See comment earlier in the method for an explanation of how the below logic works.
- currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- }
- IncrementCurrentOffsetBeforeFinalUnalignedVectorRead:
- pBuffer += SizeOfVector128InChars;
- DoFinalUnalignedVectorRead:
- if (((byte)bufferLength & (SizeOfVector128InBytes - 1)) != 0)
- {
- // Perform an unaligned read of the last vector.
- // We need to adjust the pointer because we're re-reading data.
- pBuffer = (char*)((byte*)pBuffer + (bufferLength & (SizeOfVector128InBytes - 1)) - SizeOfVector128InBytes);
- firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load
- if (Sse41.IsSupported)
- {
- // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
- // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
- if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
- {
- goto FoundNonAsciiDataInFirstVector;
- }
- }
- else
- {
- // See comment earlier in the method for an explanation of how the below logic works.
- currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- }
- pBuffer += SizeOfVector128InChars;
- }
- Finish:
- Debug.Assert(((nuint)pBuffer - (nuint)pOriginalBuffer) % 2 == 0, "Shouldn't have incremented any pointer by an odd byte count.");
- return ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char); // and we're done! (remember to adjust for char count)
- FoundNonAsciiDataInFirstOrSecondVector:
- // We don't know if the first or the second vector contains non-ASCII data. Check the first
- // vector, and if that's all-ASCII then the second vector must be the culprit. Either way
- // we'll make sure the first vector local is the one that contains the non-ASCII data.
- // See comment earlier in the method for an explanation of how the below logic works.
- if (Sse41.IsSupported)
- {
- if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
- {
- goto FoundNonAsciiDataInFirstVector;
- }
- }
- else
- {
- currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
- if (currentMask != 0)
- {
- goto FoundNonAsciiDataInCurrentMask;
- }
- }
- // Wasn't the first vector; must be the second.
- pBuffer += SizeOfVector128InChars;
- firstVector = secondVector;
- FoundNonAsciiDataInFirstVector:
- // See comment earlier in the method for an explanation of how the below logic works.
- if (Sse41.IsSupported)
- {
- currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte());
- }
- else
- {
- currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
- }
- FoundNonAsciiDataInCurrentMask:
- // The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte.
- // Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't
- // available, we'll fall back to a normal loop. (Even though the original vector used WORD elements,
- // masks work on BYTE elements, and we account for this in the final fixup.)
- Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data.");
- pBuffer = (char*)((byte*)pBuffer + (uint)BitOperations.TrailingZeroCount(currentMask));
- goto Finish;
- FoundNonAsciiDataInCurrentDWord:
- uint currentDWord;
- Debug.Assert(!AllCharsInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data.");
- if (FirstCharInUInt32IsAscii(currentDWord))
- {
- pBuffer++; // skip past the ASCII char
- }
- goto Finish;
- InputBufferLessThanOneVectorInLength:
- // These code paths get hit if the original input length was less than one vector in size.
- // We can't perform vectorized reads at this point, so we'll fall back to reading primitives
- // directly. Note that all of these reads are unaligned.
- // Reminder: If this code path is hit, bufferLength is still a char count, not a byte count.
- // We skipped the code path that multiplied the count by sizeof(char).
- Debug.Assert(bufferLength < SizeOfVector128InChars);
- // QWORD drain
- if ((bufferLength & 4) != 0)
- {
- if (Bmi1.X64.IsSupported)
- {
- // If we can use 64-bit tzcnt to count the number of leading ASCII chars, prefer it.
- ulong candidateUInt64 = Unsafe.ReadUnaligned<ulong>(pBuffer);
- if (!AllCharsInUInt64AreAscii(candidateUInt64))
- {
- // Clear the low 7 bits (the ASCII bits) of each char, then tzcnt.
- // Remember the / 8 at the end to convert bit count to byte count,
- // then the & ~1 at the end to treat a match in the high byte of
- // any char the same as a match in the low byte of that same char.
- candidateUInt64 &= 0xFF80FF80_FF80FF80ul;
- pBuffer = (char*)((byte*)pBuffer + ((nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8) & ~(nuint)1));
- goto Finish;
- }
- }
- else
- {
- // If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead.
- currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);
- uint nextDWord = Unsafe.ReadUnaligned<uint>(pBuffer + 4 / sizeof(char));
- if (!AllCharsInUInt32AreAscii(currentDWord | nextDWord))
- {
- // At least one of the values wasn't all-ASCII.
- // We need to figure out which one it was and stick it in the currentMask local.
- if (AllCharsInUInt32AreAscii(currentDWord))
- {
- currentDWord = nextDWord; // this one is the culprit
- pBuffer += 4 / sizeof(char);
- }
- goto FoundNonAsciiDataInCurrentDWord;
- }
- }
- pBuffer += 4; // successfully consumed 4 ASCII chars
- }
- // DWORD drain
- if ((bufferLength & 2) != 0)
- {
- currentDWord = Unsafe.ReadUnaligned<uint>(pBuffer);
- if (!AllCharsInUInt32AreAscii(currentDWord))
- {
- goto FoundNonAsciiDataInCurrentDWord;
- }
- pBuffer += 2; // successfully consumed 2 ASCII chars
- }
- // WORD drain
- // This is the final drain; there's no need for a BYTE drain since our elemental type is 16-bit char.
- if ((bufferLength & 1) != 0)
- {
- if (*pBuffer <= 0x007F)
- {
- pBuffer++; // successfully consumed a single char
- }
- }
- goto Finish;
- }
- /// <summary>
- /// Given a QWORD which represents a buffer of 4 ASCII chars in machine-endian order,
- /// narrows each WORD to a BYTE, then writes the 4-byte result to the output buffer
- /// also in machine-endian order.
- /// </summary>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static void NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, ulong value)
- {
- Debug.Assert(AllCharsInUInt64AreAscii(value));
- if (Bmi2.X64.IsSupported)
- {
- // BMI2 will work regardless of the processor's endianness.
- Unsafe.WriteUnaligned(ref outputBuffer, (uint)Bmi2.X64.ParallelBitExtract(value, 0x00FF00FF_00FF00FFul));
- }
- else
- {
- if (BitConverter.IsLittleEndian)
- {
- outputBuffer = (byte)value;
- value >>= 16;
- Unsafe.Add(ref outputBuffer, 1) = (byte)value;
- value >>= 16;
- Unsafe.Add(ref outputBuffer, 2) = (byte)value;
- value >>= 16;
- Unsafe.Add(ref outputBuffer, 3) = (byte)value;
- }
- else
- {
- Unsafe.Add(ref outputBuffer, 3) = (byte)value;
- value >>= 16;
- Unsafe.Add(ref outputBuffer, 2) = (byte)value;
- value >>= 16;
- Unsafe.Add(ref outputBuffer, 1) = (byte)value;
- value >>= 16;
- outputBuffer = (byte)value;
- }
- }
- }
- /// <summary>
- /// Given a DWORD which represents a buffer of 2 ASCII chars in machine-endian order,
- /// narrows each WORD to a BYTE, then writes the 2-byte result to the output buffer also in
- /// machine-endian order.
- /// </summary>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static void NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, uint value)
- {
- Debug.Assert(AllCharsInUInt32AreAscii(value));
- if (BitConverter.IsLittleEndian)
- {
- outputBuffer = (byte)value;
- Unsafe.Add(ref outputBuffer, 1) = (byte)(value >> 16);
- }
- else
- {
- Unsafe.Add(ref outputBuffer, 1) = (byte)value;
- outputBuffer = (byte)(value >> 16);
- }
- }
- /// <summary>
- /// Copies as many ASCII characters (U+0000..U+007F) as possible from <paramref name="pUtf16Buffer"/>
- /// to <paramref name="pAsciiBuffer"/>, stopping when the first non-ASCII character is encountered
- /// or once <paramref name="elementCount"/> elements have been converted. Returns the total number
- /// of elements that were able to be converted.
- /// </summary>
- public static unsafe nuint NarrowUtf16ToAscii(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount)
- {
- nuint currentOffset = 0;
- uint utf16Data32BitsHigh = 0, utf16Data32BitsLow = 0;
- ulong utf16Data64Bits = 0;
- // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
- // code below. This has two benefits: (a) we can take advantage of specific instructions like
- // pmovmskb, ptest, vpminuw which we know are optimized, and (b) we can avoid downclocking the
- // processor while this method is running.
- if (Sse2.IsSupported)
- {
- Debug.Assert(BitConverter.IsLittleEndian, "Assume little endian if SSE2 is supported.");
- if (elementCount >= 2 * (uint)Unsafe.SizeOf<Vector128<byte>>())
- {
- // Since there's overhead to setting up the vectorized code path, we only want to
- // call into it after a quick probe to ensure the next immediate characters really are ASCII.
- // If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method.
- if (IntPtr.Size >= 8)
- {
- utf16Data64Bits = Unsafe.ReadUnaligned<ulong>(pUtf16Buffer);
- if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
- {
- goto FoundNonAsciiDataIn64BitRead;
- }
- }
- else
- {
- utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer);
- utf16Data32BitsLow = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + 4 / sizeof(char));
- if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
- {
- goto FoundNonAsciiDataIn64BitRead;
- }
- }
- currentOffset = NarrowUtf16ToAscii_Sse2(pUtf16Buffer, pAsciiBuffer, elementCount);
- }
- }
- else if (Vector.IsHardwareAccelerated)
- {
- uint SizeOfVector = (uint)Unsafe.SizeOf<Vector<byte>>(); // JIT will make this a const
- // Only bother vectorizing if we have enough data to do so.
- if (elementCount >= 2 * SizeOfVector)
- {
- // Since there's overhead to setting up the vectorized code path, we only want to
- // call into it after a quick probe to ensure the next immediate characters really are ASCII.
- // If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method.
- if (IntPtr.Size >= 8)
- {
- utf16Data64Bits = Unsafe.ReadUnaligned<ulong>(pUtf16Buffer);
- if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
- {
- goto FoundNonAsciiDataIn64BitRead;
- }
- }
- else
- {
- utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer);
- utf16Data32BitsLow = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + 4 / sizeof(char));
- if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
- {
- goto FoundNonAsciiDataIn64BitRead;
- }
- }
- Vector<ushort> maxAscii = new Vector<ushort>(0x007F);
- nuint finalOffsetWhereCanLoop = elementCount - 2 * SizeOfVector;
- do
- {
- Vector<ushort> utf16VectorHigh = Unsafe.ReadUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset);
- Vector<ushort> utf16VectorLow = Unsafe.ReadUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset + Vector<ushort>.Count);
- if (Vector.GreaterThanAny(Vector.BitwiseOr(utf16VectorHigh, utf16VectorLow), maxAscii))
- {
- break; // found non-ASCII data
- }
- // TODO: Is the below logic also valid for big-endian platforms?
- Vector<byte> asciiVector = Vector.Narrow(utf16VectorHigh, utf16VectorLow);
- Unsafe.WriteUnaligned<Vector<byte>>(pAsciiBuffer + currentOffset, asciiVector);
- currentOffset += SizeOfVector;
- } while (currentOffset <= finalOffsetWhereCanLoop);
- }
- }
- Debug.Assert(currentOffset <= elementCount);
- nuint remainingElementCount = elementCount - currentOffset;
- // Try to narrow 64 bits -> 32 bits at a time.
- // We needn't update remainingElementCount after this point.
- if (remainingElementCount >= 4)
- {
- nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4;
- do
- {
- if (IntPtr.Size >= 8)
- {
- // Only perform QWORD reads on a 64-bit platform.
- utf16Data64Bits = Unsafe.ReadUnaligned<ulong>(pUtf16Buffer + currentOffset);
- if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
- {
- goto FoundNonAsciiDataIn64BitRead;
- }
- NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data64Bits);
- }
- else
- {
- utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + currentOffset);
- utf16Data32BitsLow = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + currentOffset + 4 / sizeof(char));
- if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
- {
- goto FoundNonAsciiDataIn64BitRead;
- }
- NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
- NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset + 2], utf16Data32BitsLow);
- }
- currentOffset += 4;
- } while (currentOffset <= finalOffsetWhereCanLoop);
- }
- // Try to narrow 32 bits -> 16 bits.
- if (((uint)remainingElementCount & 2) != 0)
- {
- utf16Data32BitsHigh = Unsafe.ReadUnaligned<uint>(pUtf16Buffer + currentOffset);
- if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
- {
- goto FoundNonAsciiDataInHigh32Bits;
- }
- NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
- currentOffset += 2;
- }
- // Try to narrow 16 bits -> 8 bits.
- if (((uint)remainingElementCount & 1) != 0)
- {
- utf16Data32BitsHigh = pUtf16Buffer[currentOffset];
- if (utf16Data32BitsHigh <= 0x007Fu)
- {
- pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh;
- currentOffset++;
- }
- }
- Finish:
- return currentOffset;
- FoundNonAsciiDataIn64BitRead:
- if (IntPtr.Size >= 8)
- {
- // Try checking the first 32 bits of the buffer for non-ASCII data.
- // Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local.
- if (BitConverter.IsLittleEndian)
- {
- utf16Data32BitsHigh = (uint)utf16Data64Bits;
- }
- else
- {
- utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32);
- }
- if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
- {
- NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
- if (BitConverter.IsLittleEndian)
- {
- utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32);
- }
- else
- {
- utf16Data32BitsHigh = (uint)utf16Data64Bits;
- }
- currentOffset += 2;
- }
- }
- else
- {
- // Need to determine if the high or the low 32-bit value contained non-ASCII data.
- // Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local.
- if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
- {
- NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
- utf16Data32BitsHigh = utf16Data32BitsLow;
- currentOffset += 2;
- }
- }
- FoundNonAsciiDataInHigh32Bits:
- Debug.Assert(!AllCharsInUInt32AreAscii(utf16Data32BitsHigh), "Shouldn't have reached this point if we have an all-ASCII input.");
- // There's at most one char that needs to be drained.
- if (FirstCharInUInt32IsAscii(utf16Data32BitsHigh))
- {
- if (!BitConverter.IsLittleEndian)
- {
- utf16Data32BitsHigh >>= 16; // move high char down to low char
- }
- pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh;
- currentOffset++;
- }
- goto Finish;
- }
- private static unsafe nuint NarrowUtf16ToAscii_Sse2(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount)
- {
- // This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method
- // will be elided by JIT once we determine which specific ISAs we support.
- // JIT turns the below into constants
- uint SizeOfVector128 = (uint)Unsafe.SizeOf<Vector128<byte>>();
- nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);
- // This method is written such that control generally flows top-to-bottom, avoiding
- // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
- // data, we jump out of the hot paths to targets at the end of the method.
- Debug.Assert(Sse2.IsSupported);
- Debug.Assert(BitConverter.IsLittleEndian);
- Debug.Assert(elementCount >= 2 * SizeOfVector128);
- Vector128<short> asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware
- Vector128<short> asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR
- Vector128<short> asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW
- // First, perform an unaligned read of the first part of the input buffer.
- Vector128<short> utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer); // unaligned load
- // If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do.
- // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
- if (Sse41.IsSupported)
- {
- if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
- {
- return 0;
- }
- }
- else
- {
- if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
- {
- return 0;
- }
- }
- // Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination.
- Vector128<byte> asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
- Sse2.StoreScalar((ulong*)pAsciiBuffer, asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED
- nuint currentOffsetInElements = SizeOfVector128 / 2; // we processed 8 elements so far
- // We're going to get the best performance when we have aligned writes, so we'll take the
- // hit of potentially unaligned reads in order to hit this sweet spot.
- // pAsciiBuffer points to the start of the destination buffer, immediately before where we wrote
- // the 8 bytes previously. If the 0x08 bit is set at the pinned address, then the 8 bytes we wrote
- // previously mean that the 0x08 bit is *not* set at address &pAsciiBuffer[SizeOfVector128 / 2]. In
- // that case we can immediately back up to the previous aligned boundary and start the main loop.
- // If the 0x08 bit is *not* set at the pinned address, then it means the 0x08 bit *is* set at
- // address &pAsciiBuffer[SizeOfVector128 / 2], and we should perform one more 8-byte write to bump
- // just past the next aligned boundary address.
- if (((uint)pAsciiBuffer & (SizeOfVector128 / 2)) == 0)
- {
- // We need to perform one more partial vector write before we can get the alignment we want.
- utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load
- // See comments earlier in this method for information about how this works.
- if (Sse41.IsSupported)
- {
- if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
- {
- goto Finish;
- }
- }
- else
- {
- if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
- {
- goto Finish;
- }
- }
- // Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination.
- asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
- Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED
- }
- // Calculate how many elements we wrote in order to get pAsciiBuffer to its next alignment
- // point, then use that as the base offset going forward.
- currentOffsetInElements = SizeOfVector128 - ((nuint)pAsciiBuffer & MaskOfAllBitsInVector128);
- Debug.Assert(0 < currentOffsetInElements && currentOffsetInElements <= SizeOfVector128, "We wrote at least 1 byte but no more than a whole vector.");
- Debug.Assert(currentOffsetInElements <= elementCount, "Shouldn't have overrun the destination buffer.");
- Debug.Assert(elementCount - currentOffsetInElements >= SizeOfVector128, "We should be able to run at least one whole vector.");
- nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128;
- do
- {
- // In a loop, perform two unaligned reads, narrow to a single vector, then aligned write one vector.
- utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load
- Vector128<short> utf16VectorSecond = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements + SizeOfVector128 / sizeof(short)); // unaligned load
- Vector128<short> combinedVector = Sse2.Or(utf16VectorFirst, utf16VectorSecond);
- // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
- if (Sse41.IsSupported)
- {
- if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST))
- {
- goto FoundNonAsciiDataInLoop;
- }
- }
- else
- {
- if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
- {
- goto FoundNonAsciiDataInLoop;
- }
- }
- // Build up the UTF-8 vector and perform the store.
- asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorSecond);
- Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % SizeOfVector128 == 0, "Write should be aligned.");
- Sse2.StoreAligned(pAsciiBuffer + currentOffsetInElements, asciiVector); // aligned
- currentOffsetInElements += SizeOfVector128;
- } while (currentOffsetInElements <= finalOffsetWhereCanRunLoop);
- Finish:
- // There might be some ASCII data left over. That's fine - we'll let our caller handle the final drain.
- return currentOffsetInElements;
- FoundNonAsciiDataInLoop:
- // Can we at least narrow the high vector?
- // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
- if (Sse41.IsSupported)
- {
- if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
- {
- goto Finish; // found non-ASCII data
- }
- }
- else
- {
- if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
- {
- goto Finish; // found non-ASCII data
- }
- }
- // First part was all ASCII, narrow and aligned write. Note we're only filling in the low half of the vector.
- asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
- Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % sizeof(ulong) == 0, "Destination should be ulong-aligned.");
- Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is aligned
- currentOffsetInElements += SizeOfVector128 / 2;
- goto Finish;
- }
- /// <summary>
- /// Copies as many ASCII bytes (00..7F) as possible from <paramref name="pAsciiBuffer"/>
- /// to <paramref name="pUtf16Buffer"/>, stopping when the first non-ASCII byte is encountered
- /// or once <paramref name="elementCount"/> elements have been converted. Returns the total number
- /// of elements that were able to be converted.
- /// </summary>
- public static unsafe nuint WidenAsciiToUtf16(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount)
- {
- nuint currentOffset = 0;
- // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
- // code below. This has two benefits: (a) we can take advantage of specific instructions like
- // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
- // this method is running.
- if (Sse2.IsSupported)
- {
- if (elementCount >= 2 * (uint)Unsafe.SizeOf<Vector128<byte>>())
- {
- currentOffset = WidenAsciiToUtf16_Sse2(pAsciiBuffer, pUtf16Buffer, elementCount);
- }
- }
- else if (Vector.IsHardwareAccelerated)
- {
- uint SizeOfVector = (uint)Unsafe.SizeOf<Vector<byte>>(); // JIT will make this a const
- // Only bother vectorizing if we have enough data to do so.
- if (elementCount >= SizeOfVector)
- {
- // Note use of SBYTE instead of BYTE below; we're using the two's-complement
- // representation of negative integers to act as a surrogate for "is ASCII?".
- nuint finalOffsetWhereCanLoop = elementCount - SizeOfVector;
- do
- {
- Vector<sbyte> asciiVector = Unsafe.ReadUnaligned<Vector<sbyte>>(pAsciiBuffer + currentOffset);
- if (Vector.LessThanAny(asciiVector, Vector<sbyte>.Zero))
- {
- break; // found non-ASCII data
- }
- Vector.Widen(Vector.AsVectorByte(asciiVector), out Vector<ushort> utf16LowVector, out Vector<ushort> utf16HighVector);
- // TODO: Is the below logic also valid for big-endian platforms?
- Unsafe.WriteUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset, utf16LowVector);
- Unsafe.WriteUnaligned<Vector<ushort>>(pUtf16Buffer + currentOffset + Vector<ushort>.Count, utf16HighVector);
- currentOffset += SizeOfVector;
- } while (currentOffset <= finalOffsetWhereCanLoop);
- }
- }
- Debug.Assert(currentOffset <= elementCount);
- nuint remainingElementCount = elementCount - currentOffset;
- // Try to widen 32 bits -> 64 bits at a time.
- // We needn't update remainingElementCount after this point.
- uint asciiData;
- if (remainingElementCount >= 4)
- {
- nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4;
- do
- {
- asciiData = Unsafe.ReadUnaligned<uint>(pAsciiBuffer + currentOffset);
- if (!AllBytesInUInt32AreAscii(asciiData))
- {
- goto FoundNonAsciiData;
- }
- WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref pUtf16Buffer[currentOffset], asciiData);
- currentOffset += 4;
- } while (currentOffset <= finalOffsetWhereCanLoop);
- }
- // Try to widen 16 bits -> 32 bits.
- if (((uint)remainingElementCount & 2) != 0)
- {
- asciiData = Unsafe.ReadUnaligned<ushort>(pAsciiBuffer + currentOffset);
- if (!AllBytesInUInt32AreAscii(asciiData))
- {
- goto FoundNonAsciiData;
- }
- if (BitConverter.IsLittleEndian)
- {
- pUtf16Buffer[currentOffset] = (char)(byte)asciiData;
- pUtf16Buffer[currentOffset + 1] = (char)(asciiData >> 8);
- }
- else
- {
- pUtf16Buffer[currentOffset + 1] = (char)(byte)asciiData;
- pUtf16Buffer[currentOffset] = (char)(asciiData >> 8);
- }
- currentOffset += 2;
- }
- // Try to widen 8 bits -> 16 bits.
- if (((uint)remainingElementCount & 1) != 0)
- {
- asciiData = pAsciiBuffer[currentOffset];
- if (((byte)asciiData & 0x80) != 0)
- {
- goto Finish;
- }
- pUtf16Buffer[currentOffset] = (char)asciiData;
- currentOffset += 1;
- }
- Finish:
- return currentOffset;
- FoundNonAsciiData:
- Debug.Assert(!AllBytesInUInt32AreAscii(asciiData), "Shouldn't have reached this point if we have an all-ASCII input.");
- // Drain ASCII bytes one at a time.
- while (((byte)asciiData & 0x80) == 0)
- {
- pUtf16Buffer[currentOffset] = (char)(byte)asciiData;
- currentOffset += 1;
- asciiData >>= 8;
- }
- goto Finish;
- }
- private static unsafe nuint WidenAsciiToUtf16_Sse2(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount)
- {
- // JIT turns the below into constants
- uint SizeOfVector128 = (uint)Unsafe.SizeOf<Vector128<byte>>();
- nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);
- // This method is written such that control generally flows top-to-bottom, avoiding
- // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
- // data, we jump out of the hot paths to targets at the end of the method.
- Debug.Assert(Sse2.IsSupported);
- Debug.Assert(BitConverter.IsLittleEndian);
- Debug.Assert(elementCount >= 2 * SizeOfVector128);
- // We're going to get the best performance when we have aligned writes, so we'll take the
- // hit of potentially unaligned reads in order to hit this sweet spot.
- Vector128<byte> asciiVector;
- Vector128<byte> utf16FirstHalfVector;
- uint mask;
- // First, perform an unaligned read of the first part of the input buffer.
- asciiVector = Sse2.LoadVector128(pAsciiBuffer); // unaligned load
- mask = (uint)Sse2.MoveMask(asciiVector);
- // If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do.
- if ((byte)mask != 0)
- {
- return 0;
- }
- // Then perform an unaligned write of the first part of the input buffer.
- Vector128<byte> zeroVector = Vector128<byte>.Zero;
- utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector);
- Sse2.Store((byte*)pUtf16Buffer, utf16FirstHalfVector); // unaligned
- // Calculate how many elements we wrote in order to get pOutputBuffer to its next alignment
- // point, then use that as the base offset going forward. Remember the >> 1 to account for
- // that we wrote chars, not bytes. This means we may re-read data in the next iteration of
- // the loop, but this is ok.
- nuint currentOffset = (SizeOfVector128 >> 1) - (((nuint)pUtf16Buffer >> 1) & (MaskOfAllBitsInVector128 >> 1));
- Debug.Assert(0 < currentOffset && currentOffset <= SizeOfVector128 / sizeof(char));
- nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128;
- do
- {
- // In a loop, perform an unaligned read, widen to two vectors, then aligned write the two vectors.
- asciiVector = Sse2.LoadVector128(pAsciiBuffer + currentOffset); // unaligned load
- mask = (uint)Sse2.MoveMask(asciiVector);
- if (mask != 0)
- {
- // non-ASCII byte somewhere
- goto NonAsciiDataSeenInInnerLoop;
- }
- byte* pStore = (byte*)(pUtf16Buffer + currentOffset);
- Sse2.StoreAligned(pStore, Sse2.UnpackLow(asciiVector, zeroVector));
- pStore += SizeOfVector128;
- Sse2.StoreAligned(pStore, Sse2.UnpackHigh(asciiVector, zeroVector));
- currentOffset += SizeOfVector128;
- } while (currentOffset <= finalOffsetWhereCanRunLoop);
- Finish:
- return currentOffset;
- NonAsciiDataSeenInInnerLoop:
- // Can we at least widen the first part of the vector?
- if ((byte)mask == 0)
- {
- // First part was all ASCII, widen
- utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector);
- Sse2.StoreAligned((byte*)(pUtf16Buffer + currentOffset), utf16FirstHalfVector);
- currentOffset += SizeOfVector128 / 2;
- }
- goto Finish;
- }
- /// <summary>
- /// Given a DWORD which represents a buffer of 4 bytes, widens the buffer into 4 WORDs and
- /// writes them to the output buffer with machine endianness.
- /// </summary>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static void WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref char outputBuffer, uint value)
- {
- Debug.Assert(AllBytesInUInt32AreAscii(value));
- if (Bmi2.X64.IsSupported)
- {
- // BMI2 will work regardless of the processor's endianness.
- Unsafe.WriteUnaligned(ref Unsafe.As<char, byte>(ref outputBuffer), Bmi2.X64.ParallelBitDeposit(value, 0x00FF00FF_00FF00FFul));
- }
- else
- {
- if (BitConverter.IsLittleEndian)
- {
- outputBuffer = (char)(byte)value;
- value >>= 8;
- Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value;
- value >>= 8;
- Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value;
- value >>= 8;
- Unsafe.Add(ref outputBuffer, 3) = (char)value;
- }
- else
- {
- Unsafe.Add(ref outputBuffer, 3) = (char)(byte)value;
- value >>= 8;
- Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value;
- value >>= 8;
- Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value;
- value >>= 8;
- outputBuffer = (char)value;
- }
- }
- }
- }
- }
|