|
@@ -0,0 +1,409 @@
|
|
|
|
+package math_cmplx
|
|
|
|
+
|
|
|
|
+import "core:math"
|
|
|
|
+import "core:math/bits"
|
|
|
|
+
|
|
|
|
+// The original C code, the long comment, and the constants
|
|
|
|
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
|
|
|
|
+// The go code is a simplified version of the original C.
|
|
|
|
+//
|
|
|
|
+// Cephes Math Library Release 2.8: June, 2000
|
|
|
|
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
|
|
+//
|
|
|
|
+// The readme file at http://netlib.sandia.gov/cephes/ says:
|
|
|
|
+// Some software in this archive may be from the book _Methods and
|
|
|
|
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
|
|
|
+// International, 1989) or from the Cephes Mathematical Library, a
|
|
|
|
+// commercial product. In either event, it is copyrighted by the author.
|
|
|
|
+// What you see here may be used freely but it comes with no support or
|
|
|
|
+// guarantee.
|
|
|
|
+//
|
|
|
|
+// The two known misprints in the book are repaired here in the
|
|
|
|
+// source listings for the gamma function and the incomplete beta
|
|
|
|
+// integral.
|
|
|
|
+//
|
|
|
|
+// Stephen L. Moshier
|
|
|
|
+// [email protected]
|
|
|
|
+
|
|
|
|
+sin_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ // Complex circular sine
|
|
|
|
+ //
|
|
|
|
+ // DESCRIPTION:
|
|
|
|
+ //
|
|
|
|
+ // If
|
|
|
|
+ // z = x + iy,
|
|
|
|
+ //
|
|
|
|
+ // then
|
|
|
|
+ //
|
|
|
|
+ // w = sin x cosh y + i cos x sinh y.
|
|
|
|
+ //
|
|
|
|
+ // csin(z) = -i csinh(iz).
|
|
|
|
+ //
|
|
|
|
+ // ACCURACY:
|
|
|
|
+ //
|
|
|
|
+ // Relative error:
|
|
|
|
+ // arithmetic domain # trials peak rms
|
|
|
|
+ // DEC -10,+10 8400 5.3e-17 1.3e-17
|
|
|
|
+ // IEEE -10,+10 30000 3.8e-16 1.0e-16
|
|
|
|
+ // Also tested by csin(casin(z)) = z.
|
|
|
|
+
|
|
|
|
+ switch re, im := real(x), imag(x); {
|
|
|
|
+ case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
|
|
|
|
+ return complex(math.nan_f64(), im)
|
|
|
|
+ case math.is_inf(im, 0):
|
|
|
|
+ switch {
|
|
|
|
+ case re == 0:
|
|
|
|
+ return x
|
|
|
|
+ case math.is_inf(re, 0) || math.is_nan(re):
|
|
|
|
+ return complex(math.nan_f64(), im)
|
|
|
|
+ }
|
|
|
|
+ case re == 0 && math.is_nan(im):
|
|
|
|
+ return x
|
|
|
|
+ }
|
|
|
|
+ s, c := math.sincos(real(x))
|
|
|
|
+ sh, ch := _sinhcosh_f64(imag(x))
|
|
|
|
+ return complex(s*ch, c*sh)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+cos_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ // Complex circular cosine
|
|
|
|
+ //
|
|
|
|
+ // DESCRIPTION:
|
|
|
|
+ //
|
|
|
|
+ // If
|
|
|
|
+ // z = x + iy,
|
|
|
|
+ //
|
|
|
|
+ // then
|
|
|
|
+ //
|
|
|
|
+ // w = cos x cosh y - i sin x sinh y.
|
|
|
|
+ //
|
|
|
|
+ // ACCURACY:
|
|
|
|
+ //
|
|
|
|
+ // Relative error:
|
|
|
|
+ // arithmetic domain # trials peak rms
|
|
|
|
+ // DEC -10,+10 8400 4.5e-17 1.3e-17
|
|
|
|
+ // IEEE -10,+10 30000 3.8e-16 1.0e-16
|
|
|
|
+
|
|
|
|
+ switch re, im := real(x), imag(x); {
|
|
|
|
+ case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
|
|
|
|
+ return complex(math.nan_f64(), -im*math.copy_sign(0, re))
|
|
|
|
+ case math.is_inf(im, 0):
|
|
|
|
+ switch {
|
|
|
|
+ case re == 0:
|
|
|
|
+ return complex(math.inf_f64(1), -re*math.copy_sign(0, im))
|
|
|
|
+ case math.is_inf(re, 0) || math.is_nan(re):
|
|
|
|
+ return complex(math.inf_f64(1), math.nan_f64())
|
|
|
|
+ }
|
|
|
|
+ case re == 0 && math.is_nan(im):
|
|
|
|
+ return complex(math.nan_f64(), 0)
|
|
|
|
+ }
|
|
|
|
+ s, c := math.sincos(real(x))
|
|
|
|
+ sh, ch := _sinhcosh_f64(imag(x))
|
|
|
|
+ return complex(c*ch, -s*sh)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+sinh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ // Complex hyperbolic sine
|
|
|
|
+ //
|
|
|
|
+ // DESCRIPTION:
|
|
|
|
+ //
|
|
|
|
+ // csinh z = (cexp(z) - cexp(-z))/2
|
|
|
|
+ // = sinh x * cos y + i cosh x * sin y .
|
|
|
|
+ //
|
|
|
|
+ // ACCURACY:
|
|
|
|
+ //
|
|
|
|
+ // Relative error:
|
|
|
|
+ // arithmetic domain # trials peak rms
|
|
|
|
+ // IEEE -10,+10 30000 3.1e-16 8.2e-17
|
|
|
|
+
|
|
|
|
+ switch re, im := real(x), imag(x); {
|
|
|
|
+ case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
|
|
|
|
+ return complex(re, math.nan_f64())
|
|
|
|
+ case math.is_inf(re, 0):
|
|
|
|
+ switch {
|
|
|
|
+ case im == 0:
|
|
|
|
+ return complex(re, im)
|
|
|
|
+ case math.is_inf(im, 0) || math.is_nan(im):
|
|
|
|
+ return complex(re, math.nan_f64())
|
|
|
|
+ }
|
|
|
|
+ case im == 0 && math.is_nan(re):
|
|
|
|
+ return complex(math.nan_f64(), im)
|
|
|
|
+ }
|
|
|
|
+ s, c := math.sincos(imag(x))
|
|
|
|
+ sh, ch := _sinhcosh_f64(real(x))
|
|
|
|
+ return complex(c*sh, s*ch)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+cosh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ // Complex hyperbolic cosine
|
|
|
|
+ //
|
|
|
|
+ // DESCRIPTION:
|
|
|
|
+ //
|
|
|
|
+ // ccosh(z) = cosh x cos y + i sinh x sin y .
|
|
|
|
+ //
|
|
|
|
+ // ACCURACY:
|
|
|
|
+ //
|
|
|
|
+ // Relative error:
|
|
|
|
+ // arithmetic domain # trials peak rms
|
|
|
|
+ // IEEE -10,+10 30000 2.9e-16 8.1e-17
|
|
|
|
+
|
|
|
|
+ switch re, im := real(x), imag(x); {
|
|
|
|
+ case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
|
|
|
|
+ return complex(math.nan_f64(), re*math.copy_sign(0, im))
|
|
|
|
+ case math.is_inf(re, 0):
|
|
|
|
+ switch {
|
|
|
|
+ case im == 0:
|
|
|
|
+ return complex(math.inf_f64(1), im*math.copy_sign(0, re))
|
|
|
|
+ case math.is_inf(im, 0) || math.is_nan(im):
|
|
|
|
+ return complex(math.inf_f64(1), math.nan_f64())
|
|
|
|
+ }
|
|
|
|
+ case im == 0 && math.is_nan(re):
|
|
|
|
+ return complex(math.nan_f64(), im)
|
|
|
|
+ }
|
|
|
|
+ s, c := math.sincos(imag(x))
|
|
|
|
+ sh, ch := _sinhcosh_f64(real(x))
|
|
|
|
+ return complex(c*ch, s*sh)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+tan_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ // Complex circular tangent
|
|
|
|
+ //
|
|
|
|
+ // DESCRIPTION:
|
|
|
|
+ //
|
|
|
|
+ // If
|
|
|
|
+ // z = x + iy,
|
|
|
|
+ //
|
|
|
|
+ // then
|
|
|
|
+ //
|
|
|
|
+ // sin 2x + i sinh 2y
|
|
|
|
+ // w = --------------------.
|
|
|
|
+ // cos 2x + cosh 2y
|
|
|
|
+ //
|
|
|
|
+ // On the real axis the denominator is zero at odd multiples
|
|
|
|
+ // of PI/2. The denominator is evaluated by its Taylor
|
|
|
|
+ // series near these points.
|
|
|
|
+ //
|
|
|
|
+ // ctan(z) = -i ctanh(iz).
|
|
|
|
+ //
|
|
|
|
+ // ACCURACY:
|
|
|
|
+ //
|
|
|
|
+ // Relative error:
|
|
|
|
+ // arithmetic domain # trials peak rms
|
|
|
|
+ // DEC -10,+10 5200 7.1e-17 1.6e-17
|
|
|
|
+ // IEEE -10,+10 30000 7.2e-16 1.2e-16
|
|
|
|
+ // Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
|
|
|
|
+
|
|
|
|
+ switch re, im := real(x), imag(x); {
|
|
|
|
+ case math.is_inf(im, 0):
|
|
|
|
+ switch {
|
|
|
|
+ case math.is_inf(re, 0) || math.is_nan(re):
|
|
|
|
+ return complex(math.copy_sign(0, re), math.copy_sign(1, im))
|
|
|
|
+ }
|
|
|
|
+ return complex(math.copy_sign(0, math.sin(2*re)), math.copy_sign(1, im))
|
|
|
|
+ case re == 0 && math.is_nan(im):
|
|
|
|
+ return x
|
|
|
|
+ }
|
|
|
|
+ d := math.cos(2*real(x)) + math.cosh(2*imag(x))
|
|
|
|
+ if abs(d) < 0.25 {
|
|
|
|
+ d = _tan_series_f64(x)
|
|
|
|
+ }
|
|
|
|
+ if d == 0 {
|
|
|
|
+ return inf_complex128()
|
|
|
|
+ }
|
|
|
|
+ return complex(math.sin(2*real(x))/d, math.sinh(2*imag(x))/d)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+tanh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ switch re, im := real(x), imag(x); {
|
|
|
|
+ case math.is_inf(re, 0):
|
|
|
|
+ switch {
|
|
|
|
+ case math.is_inf(im, 0) || math.is_nan(im):
|
|
|
|
+ return complex(math.copy_sign(1, re), math.copy_sign(0, im))
|
|
|
|
+ }
|
|
|
|
+ return complex(math.copy_sign(1, re), math.copy_sign(0, math.sin(2*im)))
|
|
|
|
+ case im == 0 && math.is_nan(re):
|
|
|
|
+ return x
|
|
|
|
+ }
|
|
|
|
+ d := math.cosh(2*real(x)) + math.cos(2*imag(x))
|
|
|
|
+ if d == 0 {
|
|
|
|
+ return inf_complex128()
|
|
|
|
+ }
|
|
|
|
+ return complex(math.sinh(2*real(x))/d, math.sin(2*imag(x))/d)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+cot_complex128 :: proc "contextless" (x: complex128) -> complex128 {
|
|
|
|
+ d := math.cosh(2*imag(x)) - math.cos(2*real(x))
|
|
|
|
+ if abs(d) < 0.25 {
|
|
|
|
+ d = _tan_series_f64(x)
|
|
|
|
+ }
|
|
|
|
+ if d == 0 {
|
|
|
|
+ return inf_complex128()
|
|
|
|
+ }
|
|
|
|
+ return complex(math.sin(2*real(x))/d, -math.sinh(2*imag(x))/d)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+@(private="file")
|
|
|
|
+_sinhcosh_f64 :: proc "contextless" (x: f64) -> (sh, ch: f64) {
|
|
|
|
+ if abs(x) <= 0.5 {
|
|
|
|
+ return math.sinh(x), math.cosh(x)
|
|
|
|
+ }
|
|
|
|
+ e := math.exp(x)
|
|
|
|
+ ei := 0.5 / e
|
|
|
|
+ e *= 0.5
|
|
|
|
+ return e - ei, e + ei
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// taylor series of cosh(2y) - cos(2x)
|
|
|
|
+@(private)
|
|
|
|
+_tan_series_f64 :: proc "contextless" (z: complex128) -> f64 {
|
|
|
|
+ MACH_EPSILON :: 1.0 / (1 << 53)
|
|
|
|
+
|
|
|
|
+ x := abs(2 * real(z))
|
|
|
|
+ y := abs(2 * imag(z))
|
|
|
|
+ x = _reduce_pi_f64(x)
|
|
|
|
+ x, y = x * x, y * y
|
|
|
|
+ x2, y2 := 1.0, 1.0
|
|
|
|
+ f, rn, d := 1.0, 0.0, 0.0
|
|
|
|
+
|
|
|
|
+ for {
|
|
|
|
+ rn += 1
|
|
|
|
+ f *= rn
|
|
|
|
+ rn += 1
|
|
|
|
+ f *= rn
|
|
|
|
+ x2 *= x
|
|
|
|
+ y2 *= y
|
|
|
|
+ t := y2 + x2
|
|
|
|
+ t /= f
|
|
|
|
+ d += t
|
|
|
|
+
|
|
|
|
+ rn += 1
|
|
|
|
+ f *= rn
|
|
|
|
+ rn += 1
|
|
|
|
+ f *= rn
|
|
|
|
+ x2 *= x
|
|
|
|
+ y2 *= y
|
|
|
|
+ t = y2 - x2
|
|
|
|
+ t /= f
|
|
|
|
+ d += t
|
|
|
|
+ if !(abs(t/d) > MACH_EPSILON) { // don't use <=, because of floating point nonsense and NaN
|
|
|
|
+ break
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return d
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// _reduce_pi_f64 reduces the input argument x to the range (-PI/2, PI/2].
|
|
|
|
+// x must be greater than or equal to 0. For small arguments it
|
|
|
|
+// uses Cody-Waite reduction in 3 f64 parts based on:
|
|
|
|
+// "Elementary Function Evaluation: Algorithms and Implementation"
|
|
|
|
+// Jean-Michel Muller, 1997.
|
|
|
|
+// For very large arguments it uses Payne-Hanek range reduction based on:
|
|
|
|
+// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
|
|
|
|
+@(private)
|
|
|
|
+_reduce_pi_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check {
|
|
|
|
+ x := x
|
|
|
|
+
|
|
|
|
+ // REDUCE_THRESHOLD is the maximum value of x where the reduction using
|
|
|
|
+ // Cody-Waite reduction still gives accurate results. This threshold
|
|
|
|
+ // is set by t*PIn being representable as a f64 without error
|
|
|
|
+ // where t is given by t = floor(x * (1 / PI)) and PIn are the leading partial
|
|
|
|
+ // terms of PI. Since the leading terms, PI1 and PI2 below, have 30 and 32
|
|
|
|
+ // trailing zero bits respectively, t should have less than 30 significant bits.
|
|
|
|
+ // t < 1<<30 -> floor(x*(1/PI)+0.5) < 1<<30 -> x < (1<<30-1) * PI - 0.5
|
|
|
|
+ // So, conservatively we can take x < 1<<30.
|
|
|
|
+ REDUCE_THRESHOLD :: f64(1 << 30)
|
|
|
|
+
|
|
|
|
+ if abs(x) < REDUCE_THRESHOLD {
|
|
|
|
+ // Use Cody-Waite reduction in three parts.
|
|
|
|
+ // PI1, PI2 and PI3 comprise an extended precision value of PI
|
|
|
|
+ // such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
|
|
|
|
+ // that PI1 and PI2 have an approximately equal number of trailing
|
|
|
|
+ // zero bits. This ensures that t*PI1 and t*PI2 are exact for
|
|
|
|
+ // large integer values of t. The full precision PI3 ensures the
|
|
|
|
+ // approximation of PI is accurate to 102 bits to handle cancellation
|
|
|
|
+ // during subtraction.
|
|
|
|
+ PI1 :: 0h400921fb40000000 // 3.141592502593994
|
|
|
|
+ PI2 :: 0h3e84442d00000000 // 1.5099578831723193e-07
|
|
|
|
+ PI3 :: 0h3d08469898cc5170 // 1.0780605716316238e-14
|
|
|
|
+
|
|
|
|
+ t := x / math.PI
|
|
|
|
+ t += 0.5
|
|
|
|
+ t = f64(i64(t)) // i64(t) = the multiple
|
|
|
|
+ return ((x - t*PI1) - t*PI2) - t*PI3
|
|
|
|
+ }
|
|
|
|
+ // Must apply Payne-Hanek range reduction
|
|
|
|
+ MASK :: 0x7FF
|
|
|
|
+ SHIFT :: 64 - 11 - 1
|
|
|
|
+ BIAS :: 1023
|
|
|
|
+ FRAC_MASK :: 1<<SHIFT - 1
|
|
|
|
+
|
|
|
|
+ // Extract out the integer and exponent such that,
|
|
|
|
+ // x = ix * 2 ** exp.
|
|
|
|
+ ix := transmute(u64)(x)
|
|
|
|
+ exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT
|
|
|
|
+ ix &= FRAC_MASK
|
|
|
|
+ ix |= 1 << SHIFT
|
|
|
|
+
|
|
|
|
+ // bdpi is the binary digits of 1/PI as a u64 array,
|
|
|
|
+ // that is, 1/PI = SUM bdpi[i]*2^(-64*i).
|
|
|
|
+ // 19 64-bit digits give 1216 bits of precision
|
|
|
|
+ // to handle the largest possible f64 exponent.
|
|
|
|
+ @static bdpi := [?]u64{
|
|
|
|
+ 0x0000000000000000,
|
|
|
|
+ 0x517cc1b727220a94,
|
|
|
|
+ 0xfe13abe8fa9a6ee0,
|
|
|
|
+ 0x6db14acc9e21c820,
|
|
|
|
+ 0xff28b1d5ef5de2b0,
|
|
|
|
+ 0xdb92371d2126e970,
|
|
|
|
+ 0x0324977504e8c90e,
|
|
|
|
+ 0x7f0ef58e5894d39f,
|
|
|
|
+ 0x74411afa975da242,
|
|
|
|
+ 0x74ce38135a2fbf20,
|
|
|
|
+ 0x9cc8eb1cc1a99cfa,
|
|
|
|
+ 0x4e422fc5defc941d,
|
|
|
|
+ 0x8ffc4bffef02cc07,
|
|
|
|
+ 0xf79788c5ad05368f,
|
|
|
|
+ 0xb69b3f6793e584db,
|
|
|
|
+ 0xa7a31fb34f2ff516,
|
|
|
|
+ 0xba93dd63f5f2f8bd,
|
|
|
|
+ 0x9e839cfbc5294975,
|
|
|
|
+ 0x35fdafd88fc6ae84,
|
|
|
|
+ 0x2b0198237e3db5d5,
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Use the exponent to extract the 3 appropriate u64 digits from bdpi,
|
|
|
|
+ // B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
|
|
|
|
+ // Note, exp >= 50 since x >= REDUCE_THRESHOLD and exp < 971 for maximum f64.
|
|
|
|
+ digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
|
|
|
|
+ z0 := (bdpi[digit] << bitshift) | (bdpi[digit+1] >> (64 - bitshift))
|
|
|
|
+ z1 := (bdpi[digit+1] << bitshift) | (bdpi[digit+2] >> (64 - bitshift))
|
|
|
|
+ z2 := (bdpi[digit+2] << bitshift) | (bdpi[digit+3] >> (64 - bitshift))
|
|
|
|
+
|
|
|
|
+ // Multiply mantissa by the digits and extract the upper two digits (hi, lo).
|
|
|
|
+ z2hi, _ := bits.mul(z2, ix)
|
|
|
|
+ z1hi, z1lo := bits.mul(z1, ix)
|
|
|
|
+ z0lo := z0 * ix
|
|
|
|
+ lo, c := bits.add(z1lo, z2hi, 0)
|
|
|
|
+ hi, _ := bits.add(z0lo, z1hi, c)
|
|
|
|
+
|
|
|
|
+ // Find the magnitude of the fraction.
|
|
|
|
+ lz := uint(bits.leading_zeros(hi))
|
|
|
|
+ e := u64(BIAS - (lz + 1))
|
|
|
|
+
|
|
|
|
+ // Clear implicit mantissa bit and shift into place.
|
|
|
|
+ hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
|
|
|
|
+ hi >>= 64 - SHIFT
|
|
|
|
+
|
|
|
|
+ // Include the exponent and convert to a float.
|
|
|
|
+ hi |= e << SHIFT
|
|
|
|
+ x = transmute(f64)(hi)
|
|
|
|
+
|
|
|
|
+ // map to (-PI/2, PI/2]
|
|
|
|
+ if x > 0.5 {
|
|
|
|
+ x -= 1
|
|
|
|
+ }
|
|
|
|
+ return math.PI * x
|
|
|
|
+}
|
|
|
|
+
|