Browse Source

Begin work on `core:math/cmplx`

`complex*` types only at the moment, `quaternion*` types coming later
gingerBill 2 years ago
parent
commit
1ecb4aa9aa
3 changed files with 1195 additions and 0 deletions
  1. 513 0
      core/math/cmplx/cmplx.odin
  2. 273 0
      core/math/cmplx/cmplx_invtrig.odin
  3. 409 0
      core/math/cmplx/cmplx_trig.odin

+ 513 - 0
core/math/cmplx/cmplx.odin

@@ -0,0 +1,513 @@
+package math_cmplx
+
+import "core:builtin"
+import "core:math"
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+// The go code is a simplified version of the original C.
+//
+// Cephes Math Library Release 2.8:  June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+//    Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+//   The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+//   Stephen L. Moshier
+//   [email protected]
+
+abs  :: builtin.abs
+conj :: builtin.conj
+real :: builtin.real
+imag :: builtin.imag
+jmag :: builtin.jmag
+kmag :: builtin.kmag
+
+
+sin :: proc{
+	sin_complex128,
+}
+cos :: proc{
+	cos_complex128,
+}
+tan :: proc{
+	tan_complex128,
+}
+cot :: proc{
+	cot_complex128,
+}
+
+
+sinh :: proc{
+	sinh_complex128,
+}
+cosh :: proc{
+	cosh_complex128,
+}
+tanh :: proc{
+	tanh_complex128,
+}
+
+
+
+// sqrt returns the square root of x.
+// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
+sqrt :: proc{
+	sqrt_complex32,
+	sqrt_complex64,
+	sqrt_complex128,
+}
+ln :: proc{
+	ln_complex32,
+	ln_complex64,
+	ln_complex128,
+}
+log10 :: proc{
+	log10_complex32,
+	log10_complex64,
+	log10_complex128,
+}
+
+exp :: proc{
+	exp_complex32,
+	exp_complex64,
+	exp_complex128,
+}
+
+pow :: proc{
+	pow_complex32,
+	pow_complex64,
+	pow_complex128,
+}
+
+phase :: proc{
+	phase_complex32,
+	phase_complex64,
+	phase_complex128,
+}
+
+polar :: proc{
+	polar_complex32,
+	polar_complex64,
+	polar_complex128,
+}
+
+is_inf :: proc{
+	is_inf_complex32,
+	is_inf_complex64,
+	is_inf_complex128,
+}
+
+is_nan :: proc{
+	is_nan_complex32,
+	is_nan_complex64,
+	is_nan_complex128,
+}
+
+
+
+// sqrt_complex32 returns the square root of x.
+// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
+sqrt_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	return complex32(sqrt_complex128(complex128(x)))
+}
+
+// sqrt_complex64 returns the square root of x.
+// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
+sqrt_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	return complex64(sqrt_complex128(complex128(x)))
+}
+
+
+// sqrt_complex128 returns the square root of x.
+// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
+sqrt_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// The original C code, the long comment, and the constants
+	// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+	// The go code is a simplified version of the original C.
+	//
+	// Cephes Math Library Release 2.8:  June, 2000
+	// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+	//
+	// The readme file at http://netlib.sandia.gov/cephes/ says:
+	//    Some software in this archive may be from the book _Methods and
+	// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+	// International, 1989) or from the Cephes Mathematical Library, a
+	// commercial product. In either event, it is copyrighted by the author.
+	// What you see here may be used freely but it comes with no support or
+	// guarantee.
+	//
+	//   The two known misprints in the book are repaired here in the
+	// source listings for the gamma function and the incomplete beta
+	// integral.
+	//
+	//   Stephen L. Moshier
+	//   [email protected]
+
+	// Complex square root
+	//
+	// DESCRIPTION:
+	//
+	// If z = x + iy,  r = |z|, then
+	//
+	//                       1/2
+	// Re w  =  [ (r + x)/2 ]   ,
+	//
+	//                       1/2
+	// Im w  =  [ (r - x)/2 ]   .
+	//
+	// Cancellation error in r-x or r+x is avoided by using the
+	// identity  2 Re w Im w  =  y.
+	//
+	// Note that -w is also a square root of z. The root chosen
+	// is always in the right half plane and Im w has the same sign as y.
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    DEC       -10,+10     25000       3.2e-17     9.6e-18
+	//    IEEE      -10,+10   1,000,000     2.9e-16     6.1e-17
+
+	if imag(x) == 0 {
+		// Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero.
+		if real(x) == 0 {
+			return complex(0, imag(x))
+		}
+		if real(x) < 0 {
+			return complex(0, math.copy_sign(math.sqrt(-real(x)), imag(x)))
+		}
+		return complex(math.sqrt(real(x)), imag(x))
+	} else if math.is_inf(imag(x), 0) {
+		return complex(math.inf_f64(1.0), imag(x))
+	}
+	if real(x) == 0 {
+		if imag(x) < 0 {
+			r := math.sqrt(-0.5 * imag(x))
+			return complex(r, -r)
+		}
+		r := math.sqrt(0.5 * imag(x))
+		return complex(r, r)
+	}
+	a := real(x)
+	b := imag(x)
+	scale: f64
+	// Rescale to avoid internal overflow or underflow.
+	if abs(a) > 4 || abs(b) > 4 {
+		a *= 0.25
+		b *= 0.25
+		scale = 2
+	} else {
+		a *= 1.8014398509481984e16 // 2**54
+		b *= 1.8014398509481984e16
+		scale = 7.450580596923828125e-9 // 2**-27
+	}
+	r := math.hypot(a, b)
+	t: f64
+	if a > 0 {
+		t = math.sqrt(0.5*r + 0.5*a)
+		r = scale * abs((0.5*b)/t)
+		t *= scale
+	} else {
+		r = math.sqrt(0.5*r - 0.5*a)
+		t = scale * abs((0.5*b)/r)
+		r *= scale
+	}
+	if b < 0 {
+		return complex(t, -r)
+	}
+	return complex(t, r)
+}
+
+ln_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	return complex(math.ln(abs(x)), phase(x))
+}
+ln_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	return complex(math.ln(abs(x)), phase(x))
+}
+ln_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	return complex(math.ln(abs(x)), phase(x))
+}
+
+
+exp_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	switch re, im := real(x), imag(x); {
+	case math.is_inf(re, 0):
+		switch {
+		case re > 0 && im == 0:
+			return x
+		case math.is_inf(im, 0) || math.is_nan(im):
+			if re < 0 {
+				return complex(0, math.copy_sign(0, im))
+			} else {
+				return complex(math.inf_f64(1.0), math.nan_f64())
+			}
+		}
+	case math.is_nan(re):
+		if im == 0 {
+			return complex(math.nan_f16(), im)
+		}
+	}
+	r := math.exp(real(x))
+	s, c := math.sincos(imag(x))
+	return complex(r*c, r*s)
+}
+exp_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	switch re, im := real(x), imag(x); {
+	case math.is_inf(re, 0):
+		switch {
+		case re > 0 && im == 0:
+			return x
+		case math.is_inf(im, 0) || math.is_nan(im):
+			if re < 0 {
+				return complex(0, math.copy_sign(0, im))
+			} else {
+				return complex(math.inf_f64(1.0), math.nan_f64())
+			}
+		}
+	case math.is_nan(re):
+		if im == 0 {
+			return complex(math.nan_f32(), im)
+		}
+	}
+	r := math.exp(real(x))
+	s, c := math.sincos(imag(x))
+	return complex(r*c, r*s)
+}
+exp_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	switch re, im := real(x), imag(x); {
+	case math.is_inf(re, 0):
+		switch {
+		case re > 0 && im == 0:
+			return x
+		case math.is_inf(im, 0) || math.is_nan(im):
+			if re < 0 {
+				return complex(0, math.copy_sign(0, im))
+			} else {
+				return complex(math.inf_f64(1.0), math.nan_f64())
+			}
+		}
+	case math.is_nan(re):
+		if im == 0 {
+			return complex(math.nan_f64(), im)
+		}
+	}
+	r := math.exp(real(x))
+	s, c := math.sincos(imag(x))
+	return complex(r*c, r*s)
+}
+
+
+pow_complex32 :: proc "contextless" (x, y: complex32) -> complex32 {
+	if x == 0 { // Guaranteed also true for x == -0.
+		if is_nan(y) {
+			return nan_complex32()
+		}
+		r, i := real(y), imag(y)
+		switch {
+		case r == 0:
+			return 1
+		case r < 0:
+			if i == 0 {
+				return complex(math.inf_f16(1), 0)
+			}
+			return inf_complex32()
+		case r > 0:
+			return 0
+		}
+		unreachable()
+	}
+	modulus := abs(x)
+	if modulus == 0 {
+		return complex(0, 0)
+	}
+	r := math.pow(modulus, real(y))
+	arg := phase(x)
+	theta := real(y) * arg
+	if imag(y) != 0 {
+		r *= math.exp(-imag(y) * arg)
+		theta += imag(y) * math.ln(modulus)
+	}
+	s, c := math.sincos(theta)
+	return complex(r*c, r*s)
+}
+pow_complex64 :: proc "contextless" (x, y: complex64) -> complex64 {
+	if x == 0 { // Guaranteed also true for x == -0.
+		if is_nan(y) {
+			return nan_complex64()
+		}
+		r, i := real(y), imag(y)
+		switch {
+		case r == 0:
+			return 1
+		case r < 0:
+			if i == 0 {
+				return complex(math.inf_f32(1), 0)
+			}
+			return inf_complex64()
+		case r > 0:
+			return 0
+		}
+		unreachable()
+	}
+	modulus := abs(x)
+	if modulus == 0 {
+		return complex(0, 0)
+	}
+	r := math.pow(modulus, real(y))
+	arg := phase(x)
+	theta := real(y) * arg
+	if imag(y) != 0 {
+		r *= math.exp(-imag(y) * arg)
+		theta += imag(y) * math.ln(modulus)
+	}
+	s, c := math.sincos(theta)
+	return complex(r*c, r*s)
+}
+pow_complex128 :: proc "contextless" (x, y: complex128) -> complex128 {
+	if x == 0 { // Guaranteed also true for x == -0.
+		if is_nan(y) {
+			return nan_complex128()
+		}
+		r, i := real(y), imag(y)
+		switch {
+		case r == 0:
+			return 1
+		case r < 0:
+			if i == 0 {
+				return complex(math.inf_f64(1), 0)
+			}
+			return inf_complex128()
+		case r > 0:
+			return 0
+		}
+		unreachable()
+	}
+	modulus := abs(x)
+	if modulus == 0 {
+		return complex(0, 0)
+	}
+	r := math.pow(modulus, real(y))
+	arg := phase(x)
+	theta := real(y) * arg
+	if imag(y) != 0 {
+		r *= math.exp(-imag(y) * arg)
+		theta += imag(y) * math.ln(modulus)
+	}
+	s, c := math.sincos(theta)
+	return complex(r*c, r*s)
+}
+
+
+
+log10_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	return math.LN10*ln(x)
+}
+log10_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	return math.LN10*ln(x)
+}
+log10_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	return math.LN10*ln(x)
+}
+
+
+phase_complex32 :: proc "contextless" (x:  complex32) -> f16 {
+	return math.atan2(imag(x), real(x))
+}
+phase_complex64 :: proc "contextless" (x:  complex64) -> f32 {
+	return math.atan2(imag(x), real(x))
+}
+phase_complex128 :: proc "contextless" (x:  complex128) -> f64 {
+	return math.atan2(imag(x), real(x))
+}
+
+
+rect_complex32 :: proc "contextless" (r, θ: f16) -> complex32 {
+	s, c := math.sincos(θ)
+	return complex(r*c, r*s)
+}
+rect_complex64 :: proc "contextless" (r, θ: f32) -> complex64 {
+	s, c := math.sincos(θ)
+	return complex(r*c, r*s)
+}
+rect_complex128 :: proc "contextless" (r, θ: f64) -> complex128 {
+	s, c := math.sincos(θ)
+	return complex(r*c, r*s)
+}
+
+polar_complex32 :: proc "contextless" (x: complex32) -> (r, θ: f16) {
+	return abs(x), phase(x)
+}
+polar_complex64 :: proc "contextless" (x: complex64) -> (r, θ: f32) {
+	return abs(x), phase(x)
+}
+polar_complex128 :: proc "contextless" (x: complex128) -> (r, θ: f64) {
+	return abs(x), phase(x)
+}
+
+
+
+
+nan_complex32 :: proc "contextless" () -> complex32 {
+	return complex(math.nan_f16(), math.nan_f16())
+}
+nan_complex64 :: proc "contextless" () -> complex64 {
+	return complex(math.nan_f32(), math.nan_f32())
+}
+nan_complex128 :: proc "contextless" () -> complex128 {
+	return complex(math.nan_f64(), math.nan_f64())
+}
+
+
+inf_complex32 :: proc "contextless" () -> complex32 {
+	inf := math.inf_f16(1)
+	return complex(inf, inf)
+}
+inf_complex64 :: proc "contextless" () -> complex64 {
+	inf := math.inf_f32(1)
+	return complex(inf, inf)
+}
+inf_complex128 :: proc "contextless" () -> complex128 {
+	inf := math.inf_f64(1)
+	return complex(inf, inf)
+}
+
+
+is_inf_complex32 :: proc "contextless" (x: complex32) -> bool {
+	return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
+}
+is_inf_complex64 :: proc "contextless" (x: complex64) -> bool {
+	return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
+}
+is_inf_complex128 :: proc "contextless" (x: complex128) -> bool {
+	return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
+}
+
+
+is_nan_complex32 :: proc "contextless" (x: complex32) -> bool {
+	if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
+		return false
+	}
+	return math.is_nan(real(x)) || math.is_nan(imag(x))
+}
+is_nan_complex64 :: proc "contextless" (x: complex64) -> bool {
+	if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
+		return false
+	}
+	return math.is_nan(real(x)) || math.is_nan(imag(x))
+}
+is_nan_complex128 :: proc "contextless" (x: complex128) -> bool {
+	if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
+		return false
+	}
+	return math.is_nan(real(x)) || math.is_nan(imag(x))
+}

+ 273 - 0
core/math/cmplx/cmplx_invtrig.odin

@@ -0,0 +1,273 @@
+package math_cmplx
+
+import "core:builtin"
+import "core:math"
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+// The go code is a simplified version of the original C.
+//
+// Cephes Math Library Release 2.8:  June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+//    Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+//   The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+//   Stephen L. Moshier
+//   [email protected]
+
+acos :: proc{
+	acos_complex32,
+	acos_complex64,
+	acos_complex128,
+}
+acosh :: proc{
+	acosh_complex32,
+	acosh_complex64,
+	acosh_complex128,
+}
+
+asin :: proc{
+	asin_complex32,
+	asin_complex64,
+	asin_complex128,
+}
+asinh :: proc{
+	asinh_complex32,
+	asinh_complex64,
+	asinh_complex128,
+}
+
+atan :: proc{
+	atan_complex32,
+	atan_complex64,
+	atan_complex128,
+}
+
+atanh :: proc{
+	atanh_complex32,
+	atanh_complex64,
+	atanh_complex128,
+}
+
+
+acos_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	w := asin(x)
+	return complex(math.PI/2 - real(w), -imag(w))
+}
+acos_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	w := asin(x)
+	return complex(math.PI/2 - real(w), -imag(w))
+}
+acos_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	w := asin(x)
+	return complex(math.PI/2 - real(w), -imag(w))
+}
+
+
+acosh_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	if x == 0 {
+		return complex(0, math.copy_sign(math.PI/2, imag(x)))
+	}
+	w := acos(x)
+	if imag(w) <= 0 {
+		return complex(-imag(w), real(w))
+	}
+	return complex(imag(w), -real(w))
+}
+acosh_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	if x == 0 {
+		return complex(0, math.copy_sign(math.PI/2, imag(x)))
+	}
+	w := acos(x)
+	if imag(w) <= 0 {
+		return complex(-imag(w), real(w))
+	}
+	return complex(imag(w), -real(w))
+}
+acosh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	if x == 0 {
+		return complex(0, math.copy_sign(math.PI/2, imag(x)))
+	}
+	w := acos(x)
+	if imag(w) <= 0 {
+		return complex(-imag(w), real(w))
+	}
+	return complex(imag(w), -real(w))
+}
+
+asin_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	return complex32(asin_complex128(complex128(x)))
+}
+asin_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	return complex64(asin_complex128(complex128(x)))
+}
+asin_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	switch re, im := real(x), imag(x); {
+	case im == 0 && abs(re) <= 1:
+		return complex(math.asin(re), im)
+	case re == 0 && abs(im) <= 1:
+		return complex(re, math.asinh(im))
+	case math.is_nan(im):
+		switch {
+		case re == 0:
+			return complex(re, math.nan_f64())
+		case math.is_inf(re, 0):
+			return complex(math.nan_f64(), re)
+		case:
+			return nan_complex128()
+		}
+	case math.is_inf(im, 0):
+		switch {
+		case math.is_nan(re):
+			return x
+		case math.is_inf(re, 0):
+			return complex(math.copy_sign(math.PI/4, re), im)
+		case:
+			return complex(math.copy_sign(0, re), im)
+		}
+	case math.is_inf(re, 0):
+		return complex(math.copy_sign(math.PI/2, re), math.copy_sign(re, im))
+	}
+	ct := complex(-imag(x), real(x)) // i * x
+	xx := x * x
+	x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
+	x2 := sqrt(x1)                       // x2 = sqrt(1 - x*x)
+	w  := ln(ct + x2)
+	return complex(imag(w), -real(w)) // -i * w
+}
+
+asinh_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	return complex32(asinh_complex128(complex128(x)))
+}
+asinh_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	return complex64(asinh_complex128(complex128(x)))
+}
+asinh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	switch re, im := real(x), imag(x); {
+	case im == 0 && abs(re) <= 1:
+		return complex(math.asinh(re), im)
+	case re == 0 && abs(im) <= 1:
+		return complex(re, math.asin(im))
+	case math.is_inf(re, 0):
+		switch {
+		case math.is_inf(im, 0):
+			return complex(re, math.copy_sign(math.PI/4, im))
+		case math.is_nan(im):
+			return x
+		case:
+			return complex(re, math.copy_sign(0.0, im))
+		}
+	case math.is_nan(re):
+		switch {
+		case im == 0:
+			return x
+		case math.is_inf(im, 0):
+			return complex(im, re)
+		case:
+			return nan_complex128()
+		}
+	case math.is_inf(im, 0):
+		return complex(math.copy_sign(im, re), math.copy_sign(math.PI/2, im))
+	}
+	xx := x * x
+	x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
+	return ln(x + sqrt(x1))            // log(x + sqrt(1 + x*x))
+}
+
+
+atan_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	return complex32(atan_complex128(complex128(x)))
+}
+atan_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	return complex64(atan_complex128(complex128(x)))
+}
+atan_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// Complex circular arc tangent
+	//
+	// DESCRIPTION:
+	//
+	// If
+	//     z = x + iy,
+	//
+	// then
+	//          1       (    2x     )
+	// Re w  =  - arctan(-----------)  +  k PI
+	//          2       (     2    2)
+	//                  (1 - x  - y )
+	//
+	//               ( 2         2)
+	//          1    (x  +  (y+1) )
+	// Im w  =  - log(------------)
+	//          4    ( 2         2)
+	//               (x  +  (y-1) )
+	//
+	// Where k is an arbitrary integer.
+	//
+	// catan(z) = -i catanh(iz).
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    DEC       -10,+10      5900       1.3e-16     7.8e-18
+	//    IEEE      -10,+10     30000       2.3e-15     8.5e-17
+	// The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
+	// had peak relative error 1.5e-16, rms relative error
+	// 2.9e-17.  See also clog().
+
+	switch re, im := real(x), imag(x); {
+	case im == 0:
+		return complex(math.atan(re), im)
+	case re == 0 && abs(im) <= 1:
+		return complex(re, math.atanh(im))
+	case math.is_inf(im, 0) || math.is_inf(re, 0):
+		if math.is_nan(re) {
+			return complex(math.nan_f64(), math.copy_sign(0, im))
+		}
+		return complex(math.copy_sign(math.PI/2, re), math.copy_sign(0, im))
+	case math.is_nan(re) || math.is_nan(im):
+		return nan_complex128()
+	}
+	x2 := real(x) * real(x)
+	a := 1 - x2 - imag(x)*imag(x)
+	if a == 0 {
+		return nan_complex128()
+	}
+	t := 0.5 * math.atan2(2*real(x), a)
+	w := _reduce_pi_f64(t)
+
+	t = imag(x) - 1
+	b := x2 + t*t
+	if b == 0 {
+		return nan_complex128()
+	}
+	t = imag(x) + 1
+	c := (x2 + t*t) / b
+	return complex(w, 0.25*math.ln(c))
+}
+
+atanh_complex32 :: proc "contextless" (x: complex32) -> complex32 {
+	z := complex(-imag(x), real(x)) // z = i * x
+	z = atan(z)
+	return complex(imag(z), -real(z)) // z = -i * z
+}
+atanh_complex64 :: proc "contextless" (x: complex64) -> complex64 {
+	z := complex(-imag(x), real(x)) // z = i * x
+	z = atan(z)
+	return complex(imag(z), -real(z)) // z = -i * z
+}
+atanh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	z := complex(-imag(x), real(x)) // z = i * x
+	z = atan(z)
+	return complex(imag(z), -real(z)) // z = -i * z
+}

+ 409 - 0
core/math/cmplx/cmplx_trig.odin

@@ -0,0 +1,409 @@
+package math_cmplx
+
+import "core:math"
+import "core:math/bits"
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+// The go code is a simplified version of the original C.
+//
+// Cephes Math Library Release 2.8:  June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+//    Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+//   The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+//   Stephen L. Moshier
+//   [email protected]
+
+sin_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// Complex circular sine
+	//
+	// DESCRIPTION:
+	//
+	// If
+	//     z = x + iy,
+	//
+	// then
+	//
+	//     w = sin x  cosh y  +  i cos x sinh y.
+	//
+	// csin(z) = -i csinh(iz).
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    DEC       -10,+10      8400       5.3e-17     1.3e-17
+	//    IEEE      -10,+10     30000       3.8e-16     1.0e-16
+	// Also tested by csin(casin(z)) = z.
+
+	switch re, im := real(x), imag(x); {
+	case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
+		return complex(math.nan_f64(), im)
+	case math.is_inf(im, 0):
+		switch {
+		case re == 0:
+			return x
+		case math.is_inf(re, 0) || math.is_nan(re):
+			return complex(math.nan_f64(), im)
+		}
+	case re == 0 && math.is_nan(im):
+		return x
+	}
+	s, c := math.sincos(real(x))
+	sh, ch := _sinhcosh_f64(imag(x))
+	return complex(s*ch, c*sh)
+}
+
+cos_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// Complex circular cosine
+	//
+	// DESCRIPTION:
+	//
+	// If
+	//     z = x + iy,
+	//
+	// then
+	//
+	//     w = cos x  cosh y  -  i sin x sinh y.
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    DEC       -10,+10      8400       4.5e-17     1.3e-17
+	//    IEEE      -10,+10     30000       3.8e-16     1.0e-16
+
+	switch re, im := real(x), imag(x); {
+	case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
+		return complex(math.nan_f64(), -im*math.copy_sign(0, re))
+	case math.is_inf(im, 0):
+		switch {
+		case re == 0:
+			return complex(math.inf_f64(1), -re*math.copy_sign(0, im))
+		case math.is_inf(re, 0) || math.is_nan(re):
+			return complex(math.inf_f64(1), math.nan_f64())
+		}
+	case re == 0 && math.is_nan(im):
+		return complex(math.nan_f64(), 0)
+	}
+	s, c := math.sincos(real(x))
+	sh, ch := _sinhcosh_f64(imag(x))
+	return complex(c*ch, -s*sh)
+}
+
+sinh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// Complex hyperbolic sine
+	//
+	// DESCRIPTION:
+	//
+	// csinh z = (cexp(z) - cexp(-z))/2
+	//         = sinh x * cos y  +  i cosh x * sin y .
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    IEEE      -10,+10     30000       3.1e-16     8.2e-17
+
+	switch re, im := real(x), imag(x); {
+	case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
+		return complex(re, math.nan_f64())
+	case math.is_inf(re, 0):
+		switch {
+		case im == 0:
+			return complex(re, im)
+		case math.is_inf(im, 0) || math.is_nan(im):
+			return complex(re, math.nan_f64())
+		}
+	case im == 0 && math.is_nan(re):
+		return complex(math.nan_f64(), im)
+	}
+	s, c := math.sincos(imag(x))
+	sh, ch := _sinhcosh_f64(real(x))
+	return complex(c*sh, s*ch)
+}
+
+cosh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// Complex hyperbolic cosine
+	//
+	// DESCRIPTION:
+	//
+	// ccosh(z) = cosh x  cos y + i sinh x sin y .
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    IEEE      -10,+10     30000       2.9e-16     8.1e-17
+
+	switch re, im := real(x), imag(x); {
+	case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
+		return complex(math.nan_f64(), re*math.copy_sign(0, im))
+	case math.is_inf(re, 0):
+		switch {
+		case im == 0:
+			return complex(math.inf_f64(1), im*math.copy_sign(0, re))
+		case math.is_inf(im, 0) || math.is_nan(im):
+			return complex(math.inf_f64(1), math.nan_f64())
+		}
+	case im == 0 && math.is_nan(re):
+		return complex(math.nan_f64(), im)
+	}
+	s, c := math.sincos(imag(x))
+	sh, ch := _sinhcosh_f64(real(x))
+	return complex(c*ch, s*sh)
+}
+
+tan_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	// Complex circular tangent
+	//
+	// DESCRIPTION:
+	//
+	// If
+	//     z = x + iy,
+	//
+	// then
+	//
+	//           sin 2x  +  i sinh 2y
+	//     w  =  --------------------.
+	//            cos 2x  +  cosh 2y
+	//
+	// On the real axis the denominator is zero at odd multiples
+	// of PI/2. The denominator is evaluated by its Taylor
+	// series near these points.
+	//
+	// ctan(z) = -i ctanh(iz).
+	//
+	// ACCURACY:
+	//
+	//                      Relative error:
+	// arithmetic   domain     # trials      peak         rms
+	//    DEC       -10,+10      5200       7.1e-17     1.6e-17
+	//    IEEE      -10,+10     30000       7.2e-16     1.2e-16
+	// Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
+
+	switch re, im := real(x), imag(x); {
+	case math.is_inf(im, 0):
+		switch {
+		case math.is_inf(re, 0) || math.is_nan(re):
+			return complex(math.copy_sign(0, re), math.copy_sign(1, im))
+		}
+		return complex(math.copy_sign(0, math.sin(2*re)), math.copy_sign(1, im))
+	case re == 0 && math.is_nan(im):
+		return x
+	}
+	d := math.cos(2*real(x)) + math.cosh(2*imag(x))
+	if abs(d) < 0.25 {
+		d = _tan_series_f64(x)
+	}
+	if d == 0 {
+		return inf_complex128()
+	}
+	return complex(math.sin(2*real(x))/d, math.sinh(2*imag(x))/d)
+}
+
+tanh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	switch re, im := real(x), imag(x); {
+	case math.is_inf(re, 0):
+		switch {
+		case math.is_inf(im, 0) || math.is_nan(im):
+			return complex(math.copy_sign(1, re), math.copy_sign(0, im))
+		}
+		return complex(math.copy_sign(1, re), math.copy_sign(0, math.sin(2*im)))
+	case im == 0 && math.is_nan(re):
+		return x
+	}
+	d := math.cosh(2*real(x)) + math.cos(2*imag(x))
+	if d == 0 {
+		return inf_complex128()
+	}
+	return complex(math.sinh(2*real(x))/d, math.sin(2*imag(x))/d)
+}
+
+cot_complex128 :: proc "contextless" (x: complex128) -> complex128 {
+	d := math.cosh(2*imag(x)) - math.cos(2*real(x))
+	if abs(d) < 0.25 {
+		d = _tan_series_f64(x)
+	}
+	if d == 0 {
+		return inf_complex128()
+	}
+	return complex(math.sin(2*real(x))/d, -math.sinh(2*imag(x))/d)
+}
+
+
+@(private="file")
+_sinhcosh_f64 :: proc "contextless" (x: f64) -> (sh, ch: f64) {
+	if abs(x) <= 0.5 {
+		return math.sinh(x), math.cosh(x)
+	}
+	e := math.exp(x)
+	ei := 0.5 / e
+	e *= 0.5
+	return e - ei, e + ei
+}
+
+
+// taylor series of cosh(2y) - cos(2x)
+@(private)
+_tan_series_f64 :: proc "contextless" (z: complex128) -> f64 {
+	MACH_EPSILON :: 1.0 / (1 << 53)
+
+	x := abs(2 * real(z))
+	y := abs(2 * imag(z))
+	x = _reduce_pi_f64(x)
+	x, y = x * x, y * y
+	x2, y2 := 1.0, 1.0
+	f, rn, d := 1.0, 0.0, 0.0
+
+	for {
+		rn += 1
+		f *= rn
+		rn += 1
+		f *= rn
+		x2 *= x
+		y2 *= y
+		t := y2 + x2
+		t /= f
+		d += t
+
+		rn += 1
+		f *= rn
+		rn += 1
+		f *= rn
+		x2 *= x
+		y2 *= y
+		t = y2 - x2
+		t /= f
+		d += t
+		if !(abs(t/d) > MACH_EPSILON) { // don't use <=, because of floating point nonsense and NaN
+			break
+		}
+	}
+	return d
+}
+
+// _reduce_pi_f64 reduces the input argument x to the range (-PI/2, PI/2].
+// x must be greater than or equal to 0. For small arguments it
+// uses Cody-Waite reduction in 3 f64 parts based on:
+// "Elementary Function Evaluation:  Algorithms and Implementation"
+// Jean-Michel Muller, 1997.
+// For very large arguments it uses Payne-Hanek range reduction based on:
+// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
+@(private)
+_reduce_pi_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check {
+	x := x
+
+	// REDUCE_THRESHOLD is the maximum value of x where the reduction using
+	// Cody-Waite reduction still gives accurate results. This threshold
+	// is set by t*PIn being representable as a f64 without error
+	// where t is given by t = floor(x * (1 / PI)) and PIn are the leading partial
+	// terms of PI. Since the leading terms, PI1 and PI2 below, have 30 and 32
+	// trailing zero bits respectively, t should have less than 30 significant bits.
+	//	t < 1<<30  -> floor(x*(1/PI)+0.5) < 1<<30 -> x < (1<<30-1) * PI - 0.5
+	// So, conservatively we can take x < 1<<30.
+	REDUCE_THRESHOLD :: f64(1 << 30)
+
+	if abs(x) < REDUCE_THRESHOLD {
+		// Use Cody-Waite reduction in three parts.
+		// PI1, PI2 and PI3 comprise an extended precision value of PI
+		// such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
+		// that PI1 and PI2 have an approximately equal number of trailing
+		// zero bits. This ensures that t*PI1 and t*PI2 are exact for
+		// large integer values of t. The full precision PI3 ensures the
+		// approximation of PI is accurate to 102 bits to handle cancellation
+		// during subtraction.
+		PI1 :: 0h400921fb40000000 // 3.141592502593994
+		PI2 :: 0h3e84442d00000000 // 1.5099578831723193e-07
+		PI3 :: 0h3d08469898cc5170 // 1.0780605716316238e-14
+
+		t := x / math.PI
+		t += 0.5
+		t = f64(i64(t)) // i64(t) = the multiple
+		return ((x - t*PI1) - t*PI2) - t*PI3
+	}
+	// Must apply Payne-Hanek range reduction
+	MASK      :: 0x7FF
+	SHIFT     :: 64 - 11 - 1
+	BIAS      :: 1023
+	FRAC_MASK :: 1<<SHIFT - 1
+
+	// Extract out the integer and exponent such that,
+	// x = ix * 2 ** exp.
+	ix := transmute(u64)(x)
+	exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT
+	ix &= FRAC_MASK
+	ix |= 1 << SHIFT
+
+	// bdpi is the binary digits of 1/PI as a u64 array,
+	// that is, 1/PI = SUM bdpi[i]*2^(-64*i).
+	// 19 64-bit digits give 1216 bits of precision
+	// to handle the largest possible f64 exponent.
+	@static bdpi := [?]u64{
+		0x0000000000000000,
+		0x517cc1b727220a94,
+		0xfe13abe8fa9a6ee0,
+		0x6db14acc9e21c820,
+		0xff28b1d5ef5de2b0,
+		0xdb92371d2126e970,
+		0x0324977504e8c90e,
+		0x7f0ef58e5894d39f,
+		0x74411afa975da242,
+		0x74ce38135a2fbf20,
+		0x9cc8eb1cc1a99cfa,
+		0x4e422fc5defc941d,
+		0x8ffc4bffef02cc07,
+		0xf79788c5ad05368f,
+		0xb69b3f6793e584db,
+		0xa7a31fb34f2ff516,
+		0xba93dd63f5f2f8bd,
+		0x9e839cfbc5294975,
+		0x35fdafd88fc6ae84,
+		0x2b0198237e3db5d5,
+	}
+
+	// Use the exponent to extract the 3 appropriate u64 digits from bdpi,
+	// B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
+	// Note, exp >= 50 since x >= REDUCE_THRESHOLD and exp < 971 for maximum f64.
+	digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
+	z0 := (bdpi[digit] << bitshift) | (bdpi[digit+1] >> (64 - bitshift))
+	z1 := (bdpi[digit+1] << bitshift) | (bdpi[digit+2] >> (64 - bitshift))
+	z2 := (bdpi[digit+2] << bitshift) | (bdpi[digit+3] >> (64 - bitshift))
+
+	// Multiply mantissa by the digits and extract the upper two digits (hi, lo).
+	z2hi, _    := bits.mul(z2, ix)
+	z1hi, z1lo := bits.mul(z1, ix)
+	z0lo  := z0 * ix
+	lo, c := bits.add(z1lo, z2hi, 0)
+	hi, _ := bits.add(z0lo, z1hi, c)
+
+	// Find the magnitude of the fraction.
+	lz := uint(bits.leading_zeros(hi))
+	e  := u64(BIAS - (lz + 1))
+
+	// Clear implicit mantissa bit and shift into place.
+	hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
+	hi >>= 64 - SHIFT
+
+	// Include the exponent and convert to a float.
+	hi |= e << SHIFT
+	x = transmute(f64)(hi)
+
+	// map to (-PI/2, PI/2]
+	if x > 0.5 {
+		x -= 1
+	}
+	return math.PI * x
+}
+