|
@@ -3,51 +3,54 @@ package linalg
|
|
|
import "core:math"
|
|
|
|
|
|
Euler_Angle_Order :: enum {
|
|
|
+ // Tait-Bryan
|
|
|
XYZ,
|
|
|
+ XZY,
|
|
|
YXZ,
|
|
|
- XZX,
|
|
|
+ YZX,
|
|
|
+ ZXY,
|
|
|
+ ZYX,
|
|
|
+
|
|
|
+ // Proper Euler
|
|
|
XYX,
|
|
|
+ XZX,
|
|
|
YXY,
|
|
|
YZY,
|
|
|
- ZYZ,
|
|
|
ZXZ,
|
|
|
- XZY,
|
|
|
- YZX,
|
|
|
- ZYX,
|
|
|
- ZXY,
|
|
|
+ ZYZ,
|
|
|
}
|
|
|
|
|
|
euler_angles_from_matrix4 :: proc(m: Matrix4, order: Euler_Angle_Order) -> (t1, t2, t3: Float) {
|
|
|
switch order {
|
|
|
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m);
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4(m);
|
|
|
case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix4(m);
|
|
|
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4(m);
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4(m);
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4(m);
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4(m);
|
|
|
case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix4(m);
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4(m);
|
|
|
case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix4(m);
|
|
|
case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix4(m);
|
|
|
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4(m);
|
|
|
case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix4(m);
|
|
|
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4(m);
|
|
|
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4(m);
|
|
|
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4(m);
|
|
|
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4(m);
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4(m);
|
|
|
}
|
|
|
return;
|
|
|
}
|
|
|
euler_angles_from_quaternion :: proc(m: Quaternion, order: Euler_Angle_Order) -> (t1, t2, t3: Float) {
|
|
|
switch order {
|
|
|
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m);
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion(m);
|
|
|
case .YXZ: t1, t2, t3 = euler_angles_yxz_from_quaternion(m);
|
|
|
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion(m);
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion(m);
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion(m);
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion(m);
|
|
|
case .XYX: t1, t2, t3 = euler_angles_xyx_from_quaternion(m);
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion(m);
|
|
|
case .YXY: t1, t2, t3 = euler_angles_yxy_from_quaternion(m);
|
|
|
case .YZY: t1, t2, t3 = euler_angles_yzy_from_quaternion(m);
|
|
|
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion(m);
|
|
|
case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_quaternion(m);
|
|
|
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion(m);
|
|
|
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion(m);
|
|
|
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion(m);
|
|
|
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion(m);
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion(m);
|
|
|
}
|
|
|
return;
|
|
|
}
|
|
@@ -61,17 +64,17 @@ matrix4_from_euler_angles :: proc(t1, t2, t3: Float, order: Euler_Angle_Order) -
|
|
|
|
|
|
switch order {
|
|
|
case .XYZ: m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
+ case .XZY: m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
case .YXZ: m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
- case .XZX: m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
+ case .YZX: m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
+ case .ZXY: m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
+ case .ZYX: m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
case .XYX: m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
+ case .XZX: m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
case .YXY: m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
case .YZY: m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
- case .ZYZ: m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
case .ZXZ: m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
- case .XZY: m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
- case .YZX: m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
- case .ZYX: m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
- case .ZXY: m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
+ case .ZYZ: m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
}
|
|
|
|
|
|
return mul(m1, mul(m2, m3));
|
|
@@ -82,24 +85,24 @@ quaternion_from_euler_angles :: proc(t1, t2, t3: Float, order: Euler_Angle_Order
|
|
|
Y :: quaternion_from_euler_angle_y;
|
|
|
Z :: quaternion_from_euler_angle_z;
|
|
|
|
|
|
- m1, m2, m3: Quaternion;
|
|
|
+ q1, q2, q3: Quaternion;
|
|
|
|
|
|
switch order {
|
|
|
- case .XYZ: m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
- case .YXZ: m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
- case .XZX: m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
- case .XYX: m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
- case .YXY: m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
- case .YZY: m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
- case .ZYZ: m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
- case .ZXZ: m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
- case .XZY: m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
- case .YZX: m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
- case .ZYX: m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
- case .ZXY: m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
+ case .XYZ: q1, q2, q3 = X(t1), Y(t2), Z(t3);
|
|
|
+ case .XZY: q1, q2, q3 = X(t1), Z(t2), Y(t3);
|
|
|
+ case .YXZ: q1, q2, q3 = Y(t1), X(t2), Z(t3);
|
|
|
+ case .YZX: q1, q2, q3 = Y(t1), Z(t2), X(t3);
|
|
|
+ case .ZXY: q1, q2, q3 = Z(t1), X(t2), Y(t3);
|
|
|
+ case .ZYX: q1, q2, q3 = Z(t1), Y(t2), X(t3);
|
|
|
+ case .XYX: q1, q2, q3 = X(t1), Y(t2), X(t3);
|
|
|
+ case .XZX: q1, q2, q3 = X(t1), Z(t2), X(t3);
|
|
|
+ case .YXY: q1, q2, q3 = Y(t1), X(t2), Y(t3);
|
|
|
+ case .YZY: q1, q2, q3 = Y(t1), Z(t2), Y(t3);
|
|
|
+ case .ZXZ: q1, q2, q3 = Z(t1), X(t2), Z(t3);
|
|
|
+ case .ZYZ: q1, q2, q3 = Z(t1), Y(t2), Z(t3);
|
|
|
}
|
|
|
|
|
|
- return m1 * (m2 * m3);
|
|
|
+ return q1 * (q2 * q3);
|
|
|
}
|
|
|
|
|
|
|