123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- package math_cmplx
- import "core:math"
- import "core:math/bits"
- // The original C code, the long comment, and the constants
- // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
- // The go code is a simplified version of the original C.
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // [email protected]
- sin_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- // Complex circular sine
- //
- // DESCRIPTION:
- //
- // If
- // z = x + iy,
- //
- // then
- //
- // w = sin x cosh y + i cos x sinh y.
- //
- // csin(z) = -i csinh(iz).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 8400 5.3e-17 1.3e-17
- // IEEE -10,+10 30000 3.8e-16 1.0e-16
- // Also tested by csin(casin(z)) = z.
- switch re, im := real(x), imag(x); {
- case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
- return complex(math.nan_f64(), im)
- case math.is_inf(im, 0):
- switch {
- case re == 0:
- return x
- case math.is_inf(re, 0) || math.is_nan(re):
- return complex(math.nan_f64(), im)
- }
- case re == 0 && math.is_nan(im):
- return x
- }
- s, c := math.sincos(real(x))
- sh, ch := _sinhcosh_f64(imag(x))
- return complex(s*ch, c*sh)
- }
- cos_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- // Complex circular cosine
- //
- // DESCRIPTION:
- //
- // If
- // z = x + iy,
- //
- // then
- //
- // w = cos x cosh y - i sin x sinh y.
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 8400 4.5e-17 1.3e-17
- // IEEE -10,+10 30000 3.8e-16 1.0e-16
- switch re, im := real(x), imag(x); {
- case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
- return complex(math.nan_f64(), -im*math.copy_sign(0, re))
- case math.is_inf(im, 0):
- switch {
- case re == 0:
- return complex(math.inf_f64(1), -re*math.copy_sign(0, im))
- case math.is_inf(re, 0) || math.is_nan(re):
- return complex(math.inf_f64(1), math.nan_f64())
- }
- case re == 0 && math.is_nan(im):
- return complex(math.nan_f64(), 0)
- }
- s, c := math.sincos(real(x))
- sh, ch := _sinhcosh_f64(imag(x))
- return complex(c*ch, -s*sh)
- }
- sinh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- // Complex hyperbolic sine
- //
- // DESCRIPTION:
- //
- // csinh z = (cexp(z) - cexp(-z))/2
- // = sinh x * cos y + i cosh x * sin y .
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -10,+10 30000 3.1e-16 8.2e-17
- switch re, im := real(x), imag(x); {
- case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
- return complex(re, math.nan_f64())
- case math.is_inf(re, 0):
- switch {
- case im == 0:
- return complex(re, im)
- case math.is_inf(im, 0) || math.is_nan(im):
- return complex(re, math.nan_f64())
- }
- case im == 0 && math.is_nan(re):
- return complex(math.nan_f64(), im)
- }
- s, c := math.sincos(imag(x))
- sh, ch := _sinhcosh_f64(real(x))
- return complex(c*sh, s*ch)
- }
- cosh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- // Complex hyperbolic cosine
- //
- // DESCRIPTION:
- //
- // ccosh(z) = cosh x cos y + i sinh x sin y .
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -10,+10 30000 2.9e-16 8.1e-17
- switch re, im := real(x), imag(x); {
- case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
- return complex(math.nan_f64(), re*math.copy_sign(0, im))
- case math.is_inf(re, 0):
- switch {
- case im == 0:
- return complex(math.inf_f64(1), im*math.copy_sign(0, re))
- case math.is_inf(im, 0) || math.is_nan(im):
- return complex(math.inf_f64(1), math.nan_f64())
- }
- case im == 0 && math.is_nan(re):
- return complex(math.nan_f64(), im)
- }
- s, c := math.sincos(imag(x))
- sh, ch := _sinhcosh_f64(real(x))
- return complex(c*ch, s*sh)
- }
- tan_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- // Complex circular tangent
- //
- // DESCRIPTION:
- //
- // If
- // z = x + iy,
- //
- // then
- //
- // sin 2x + i sinh 2y
- // w = --------------------.
- // cos 2x + cosh 2y
- //
- // On the real axis the denominator is zero at odd multiples
- // of PI/2. The denominator is evaluated by its Taylor
- // series near these points.
- //
- // ctan(z) = -i ctanh(iz).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -10,+10 5200 7.1e-17 1.6e-17
- // IEEE -10,+10 30000 7.2e-16 1.2e-16
- // Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
- switch re, im := real(x), imag(x); {
- case math.is_inf(im, 0):
- switch {
- case math.is_inf(re, 0) || math.is_nan(re):
- return complex(math.copy_sign(0, re), math.copy_sign(1, im))
- }
- return complex(math.copy_sign(0, math.sin(2*re)), math.copy_sign(1, im))
- case re == 0 && math.is_nan(im):
- return x
- }
- d := math.cos(2*real(x)) + math.cosh(2*imag(x))
- if abs(d) < 0.25 {
- d = _tan_series_f64(x)
- }
- if d == 0 {
- return inf_complex128()
- }
- return complex(math.sin(2*real(x))/d, math.sinh(2*imag(x))/d)
- }
- tanh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- switch re, im := real(x), imag(x); {
- case math.is_inf(re, 0):
- switch {
- case math.is_inf(im, 0) || math.is_nan(im):
- return complex(math.copy_sign(1, re), math.copy_sign(0, im))
- }
- return complex(math.copy_sign(1, re), math.copy_sign(0, math.sin(2*im)))
- case im == 0 && math.is_nan(re):
- return x
- }
- d := math.cosh(2*real(x)) + math.cos(2*imag(x))
- if d == 0 {
- return inf_complex128()
- }
- return complex(math.sinh(2*real(x))/d, math.sin(2*imag(x))/d)
- }
- cot_complex128 :: proc "contextless" (x: complex128) -> complex128 {
- d := math.cosh(2*imag(x)) - math.cos(2*real(x))
- if abs(d) < 0.25 {
- d = _tan_series_f64(x)
- }
- if d == 0 {
- return inf_complex128()
- }
- return complex(math.sin(2*real(x))/d, -math.sinh(2*imag(x))/d)
- }
- @(private="file")
- _sinhcosh_f64 :: proc "contextless" (x: f64) -> (sh, ch: f64) {
- if abs(x) <= 0.5 {
- return math.sinh(x), math.cosh(x)
- }
- e := math.exp(x)
- ei := 0.5 / e
- e *= 0.5
- return e - ei, e + ei
- }
- // taylor series of cosh(2y) - cos(2x)
- @(private)
- _tan_series_f64 :: proc "contextless" (z: complex128) -> f64 {
- MACH_EPSILON :: 1.0 / (1 << 53)
- x := abs(2 * real(z))
- y := abs(2 * imag(z))
- x = _reduce_pi_f64(x)
- x, y = x * x, y * y
- x2, y2 := 1.0, 1.0
- f, rn, d := 1.0, 0.0, 0.0
- for {
- rn += 1
- f *= rn
- rn += 1
- f *= rn
- x2 *= x
- y2 *= y
- t := y2 + x2
- t /= f
- d += t
- rn += 1
- f *= rn
- rn += 1
- f *= rn
- x2 *= x
- y2 *= y
- t = y2 - x2
- t /= f
- d += t
- if !(abs(t/d) > MACH_EPSILON) { // don't use <=, because of floating point nonsense and NaN
- break
- }
- }
- return d
- }
- // _reduce_pi_f64 reduces the input argument x to the range (-PI/2, PI/2].
- // x must be greater than or equal to 0. For small arguments it
- // uses Cody-Waite reduction in 3 f64 parts based on:
- // "Elementary Function Evaluation: Algorithms and Implementation"
- // Jean-Michel Muller, 1997.
- // For very large arguments it uses Payne-Hanek range reduction based on:
- // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
- @(private)
- _reduce_pi_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check {
- x := x
- // REDUCE_THRESHOLD is the maximum value of x where the reduction using
- // Cody-Waite reduction still gives accurate results. This threshold
- // is set by t*PIn being representable as a f64 without error
- // where t is given by t = floor(x * (1 / PI)) and PIn are the leading partial
- // terms of PI. Since the leading terms, PI1 and PI2 below, have 30 and 32
- // trailing zero bits respectively, t should have less than 30 significant bits.
- // t < 1<<30 -> floor(x*(1/PI)+0.5) < 1<<30 -> x < (1<<30-1) * PI - 0.5
- // So, conservatively we can take x < 1<<30.
- REDUCE_THRESHOLD :: f64(1 << 30)
- if abs(x) < REDUCE_THRESHOLD {
- // Use Cody-Waite reduction in three parts.
- // PI1, PI2 and PI3 comprise an extended precision value of PI
- // such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
- // that PI1 and PI2 have an approximately equal number of trailing
- // zero bits. This ensures that t*PI1 and t*PI2 are exact for
- // large integer values of t. The full precision PI3 ensures the
- // approximation of PI is accurate to 102 bits to handle cancellation
- // during subtraction.
- PI1 :: 0h400921fb40000000 // 3.141592502593994
- PI2 :: 0h3e84442d00000000 // 1.5099578831723193e-07
- PI3 :: 0h3d08469898cc5170 // 1.0780605716316238e-14
- t := x / math.PI
- t += 0.5
- t = f64(i64(t)) // i64(t) = the multiple
- return ((x - t*PI1) - t*PI2) - t*PI3
- }
- // Must apply Payne-Hanek range reduction
- MASK :: 0x7FF
- SHIFT :: 64 - 11 - 1
- BIAS :: 1023
- FRAC_MASK :: 1<<SHIFT - 1
- // Extract out the integer and exponent such that,
- // x = ix * 2 ** exp.
- ix := transmute(u64)(x)
- exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT
- ix &= FRAC_MASK
- ix |= 1 << SHIFT
- // bdpi is the binary digits of 1/PI as a u64 array,
- // that is, 1/PI = SUM bdpi[i]*2^(-64*i).
- // 19 64-bit digits give 1216 bits of precision
- // to handle the largest possible f64 exponent.
- @static bdpi := [?]u64{
- 0x0000000000000000,
- 0x517cc1b727220a94,
- 0xfe13abe8fa9a6ee0,
- 0x6db14acc9e21c820,
- 0xff28b1d5ef5de2b0,
- 0xdb92371d2126e970,
- 0x0324977504e8c90e,
- 0x7f0ef58e5894d39f,
- 0x74411afa975da242,
- 0x74ce38135a2fbf20,
- 0x9cc8eb1cc1a99cfa,
- 0x4e422fc5defc941d,
- 0x8ffc4bffef02cc07,
- 0xf79788c5ad05368f,
- 0xb69b3f6793e584db,
- 0xa7a31fb34f2ff516,
- 0xba93dd63f5f2f8bd,
- 0x9e839cfbc5294975,
- 0x35fdafd88fc6ae84,
- 0x2b0198237e3db5d5,
- }
- // Use the exponent to extract the 3 appropriate u64 digits from bdpi,
- // B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
- // Note, exp >= 50 since x >= REDUCE_THRESHOLD and exp < 971 for maximum f64.
- digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
- z0 := (bdpi[digit] << bitshift) | (bdpi[digit+1] >> (64 - bitshift))
- z1 := (bdpi[digit+1] << bitshift) | (bdpi[digit+2] >> (64 - bitshift))
- z2 := (bdpi[digit+2] << bitshift) | (bdpi[digit+3] >> (64 - bitshift))
- // Multiply mantissa by the digits and extract the upper two digits (hi, lo).
- z2hi, _ := bits.mul(z2, ix)
- z1hi, z1lo := bits.mul(z1, ix)
- z0lo := z0 * ix
- lo, c := bits.add(z1lo, z2hi, 0)
- hi, _ := bits.add(z0lo, z1hi, c)
- // Find the magnitude of the fraction.
- lz := uint(bits.leading_zeros(hi))
- e := u64(BIAS - (lz + 1))
- // Clear implicit mantissa bit and shift into place.
- hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
- hi >>= 64 - SHIFT
- // Include the exponent and convert to a float.
- hi |= e << SHIFT
- x = transmute(f64)(hi)
- // map to (-PI/2, PI/2]
- if x > 0.5 {
- x -= 1
- }
- return math.PI * x
- }
|