123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- //+build !js
- package math
- import "base:intrinsics"
- @(default_calling_convention="none", private="file")
- foreign _ {
- @(link_name="llvm.sin.f16", require_results)
- _sin_f16 :: proc(θ: f16) -> f16 ---
- @(link_name="llvm.sin.f32", require_results)
- _sin_f32 :: proc(θ: f32) -> f32 ---
- @(link_name="llvm.sin.f64", require_results)
- _sin_f64 :: proc(θ: f64) -> f64 ---
- @(link_name="llvm.cos.f16", require_results)
- _cos_f16 :: proc(θ: f16) -> f16 ---
- @(link_name="llvm.cos.f32", require_results)
- _cos_f32 :: proc(θ: f32) -> f32 ---
- @(link_name="llvm.cos.f64", require_results)
- _cos_f64 :: proc(θ: f64) -> f64 ---
- @(link_name="llvm.pow.f16", require_results)
- _pow_f16 :: proc(x, power: f16) -> f16 ---
- @(link_name="llvm.pow.f32", require_results)
- _pow_f32 :: proc(x, power: f32) -> f32 ---
- @(link_name="llvm.pow.f64", require_results)
- _pow_f64 :: proc(x, power: f64) -> f64 ---
- @(link_name="llvm.fmuladd.f16", require_results)
- _fmuladd_f16 :: proc(a, b, c: f16) -> f16 ---
- @(link_name="llvm.fmuladd.f32", require_results)
- _fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---
- @(link_name="llvm.fmuladd.f64", require_results)
- _fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---
- @(link_name="llvm.exp.f16", require_results)
- _exp_f16 :: proc(x: f16) -> f16 ---
- @(link_name="llvm.exp.f32", require_results)
- _exp_f32 :: proc(x: f32) -> f32 ---
- @(link_name="llvm.exp.f64", require_results)
- _exp_f64 :: proc(x: f64) -> f64 ---
- }
- @(require_results)
- sin_f16 :: proc "contextless" (θ: f16) -> f16 {
- return _sin_f16(θ)
- }
- @(require_results)
- sin_f32 :: proc "contextless" (θ: f32) -> f32 {
- return _sin_f32(θ)
- }
- @(require_results)
- sin_f64 :: proc "contextless" (θ: f64) -> f64 {
- return _sin_f64(θ)
- }
- @(require_results)
- cos_f16 :: proc "contextless" (θ: f16) -> f16 {
- return _cos_f16(θ)
- }
- @(require_results)
- cos_f32 :: proc "contextless" (θ: f32) -> f32 {
- return _cos_f32(θ)
- }
- @(require_results)
- cos_f64 :: proc "contextless" (θ: f64) -> f64 {
- return _cos_f64(θ)
- }
- @(require_results)
- pow_f16 :: proc "contextless" (x, power: f16) -> f16 {
- return _pow_f16(x, power)
- }
- @(require_results)
- pow_f32 :: proc "contextless" (x, power: f32) -> f32 {
- return _pow_f32(x, power)
- }
- @(require_results)
- pow_f64 :: proc "contextless" (x, power: f64) -> f64 {
- return _pow_f64(x, power)
- }
- @(require_results)
- fmuladd_f16 :: proc "contextless" (a, b, c: f16) -> f16 {
- return _fmuladd_f16(a, b, c)
- }
- @(require_results)
- fmuladd_f32 :: proc "contextless" (a, b, c: f32) -> f32 {
- return _fmuladd_f32(a, b, c)
- }
- @(require_results)
- fmuladd_f64 :: proc "contextless" (a, b, c: f64) -> f64 {
- return _fmuladd_f64(a, b, c)
- }
- @(require_results)
- exp_f16 :: proc "contextless" (x: f16) -> f16 {
- return _exp_f16(x)
- }
- @(require_results)
- exp_f32 :: proc "contextless" (x: f32) -> f32 {
- return _exp_f32(x)
- }
- @(require_results)
- exp_f64 :: proc "contextless" (x: f64) -> f64 {
- return _exp_f64(x)
- }
- @(require_results)
- sqrt_f16 :: proc "contextless" (x: f16) -> f16 {
- return intrinsics.sqrt(x)
- }
- @(require_results)
- sqrt_f32 :: proc "contextless" (x: f32) -> f32 {
- return intrinsics.sqrt(x)
- }
- @(require_results)
- sqrt_f64 :: proc "contextless" (x: f64) -> f64 {
- return intrinsics.sqrt(x)
- }
- @(require_results)
- ln_f64 :: proc "contextless" (x: f64) -> f64 {
- // The original C code, the long comment, and the constants
- // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
- // and came with this notice.
- //
- // ====================================================
- // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- //
- // Developed at SunPro, a Sun Microsystems, Inc. business.
- // Permission to use, copy, modify, and distribute this
- // software is freely granted, provided that this notice
- // is preserved.
- // ====================================================
- //
- // __ieee754_log(x)
- // Return the logarithm of x
- //
- // Method :
- // 1. Argument Reduction: find k and f such that
- // x = 2**k * (1+f),
- // where sqrt(2)/2 < 1+f < sqrt(2) .
- //
- // 2. Approximation of log(1+f).
- // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- // = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- // = 2s + s*R
- // We use a special Reme algorithm on [0,0.1716] to generate
- // a polynomial of degree 14 to approximate R. The maximum error
- // of this polynomial approximation is bounded by 2**-58.45. In
- // other words,
- // 2 4 6 8 10 12 14
- // R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s
- // (the values of L1 to L7 are listed in the program) and
- // | 2 14 | -58.45
- // | L1*s +...+L7*s - R(z) | <= 2
- // | |
- // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- // In order to guarantee error in log below 1ulp, we compute log by
- // log(1+f) = f - s*(f - R) (if f is not too large)
- // log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
- //
- // 3. Finally, log(x) = k*Ln2 + log(1+f).
- // = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
- // Here Ln2 is split into two floating point number:
- // Ln2_hi + Ln2_lo,
- // where n*Ln2_hi is always exact for |n| < 2000.
- //
- // Special cases:
- // log(x) is NaN with signal if x < 0 (including -INF) ;
- // log(+INF) is +INF; log(0) is -INF with signal;
- // log(NaN) is that NaN with no signal.
- //
- // Accuracy:
- // according to an error analysis, the error is always less than
- // 1 ulp (unit in the last place).
- //
- // Constants:
- // The hexadecimal values are the intended ones for the following
- // constants. The decimal values may be used, provided that the
- // compiler will convert from decimal to binary accurately enough
- // to produce the hexadecimal values shown.
-
- LN2_HI :: 0h3fe62e42_fee00000 // 6.93147180369123816490e-01
- LN2_LO :: 0h3dea39ef_35793c76 // 1.90821492927058770002e-10
- L1 :: 0h3fe55555_55555593 // 6.666666666666735130e-01
- L2 :: 0h3fd99999_9997fa04 // 3.999999999940941908e-01
- L3 :: 0h3fd24924_94229359 // 2.857142874366239149e-01
- L4 :: 0h3fcc71c5_1d8e78af // 2.222219843214978396e-01
- L5 :: 0h3fc74664_96cb03de // 1.818357216161805012e-01
- L6 :: 0h3fc39a09_d078c69f // 1.531383769920937332e-01
- L7 :: 0h3fc2f112_df3e5244 // 1.479819860511658591e-01
-
- switch {
- case is_nan(x) || is_inf(x, 1):
- return x
- case x < 0:
- return nan_f64()
- case x == 0:
- return inf_f64(-1)
- }
- // reduce
- f1, ki := frexp(x)
- if f1 < SQRT_TWO/2 {
- f1 *= 2
- ki -= 1
- }
- f := f1 - 1
- k := f64(ki)
- // compute
- s := f / (2 + f)
- s2 := s * s
- s4 := s2 * s2
- t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
- t2 := s4 * (L2 + s4*(L4+s4*L6))
- R := t1 + t2
- hfsq := 0.5 * f * f
- return k*LN2_HI - ((hfsq - (s*(hfsq+R) + k*LN2_LO)) - f)
- }
- @(require_results) ln_f16 :: proc "contextless" (x: f16) -> f16 { return #force_inline f16(ln_f64(f64(x))) }
- @(require_results) ln_f32 :: proc "contextless" (x: f32) -> f32 { return #force_inline f32(ln_f64(f64(x))) }
- @(require_results) ln_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(ln_f64(f64(x))) }
- @(require_results) ln_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(ln_f64(f64(x))) }
- @(require_results) ln_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(ln_f64(f64(x))) }
- @(require_results) ln_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(ln_f64(f64(x))) }
- @(require_results) ln_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(ln_f64(f64(x))) }
- @(require_results) ln_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(ln_f64(f64(x))) }
- ln :: proc{
- ln_f16, ln_f16le, ln_f16be,
- ln_f32, ln_f32le, ln_f32be,
- ln_f64, ln_f64le, ln_f64be,
- }
|