socket_darwin.odin 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. #+build darwin
  2. package net
  3. /*
  4. Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
  5. For other protocols and their features, see subdirectories of this package.
  6. */
  7. /*
  8. Copyright 2022 Tetralux <[email protected]>
  9. Copyright 2022 Colin Davidson <[email protected]>
  10. Copyright 2022 Jeroen van Rijn <[email protected]>.
  11. Copyright 2024 Feoramund <[email protected]>.
  12. Made available under Odin's BSD-3 license.
  13. List of contributors:
  14. Tetralux: Initial implementation
  15. Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
  16. Jeroen van Rijn: Cross platform unification, code style, documentation
  17. Feoramund: FreeBSD platform code
  18. */
  19. import "core:c"
  20. import "core:sys/posix"
  21. import "core:time"
  22. Socket_Option :: enum c.int {
  23. Broadcast = c.int(posix.Sock_Option.BROADCAST),
  24. Reuse_Address = c.int(posix.Sock_Option.REUSEADDR),
  25. Keep_Alive = c.int(posix.Sock_Option.KEEPALIVE),
  26. Out_Of_Bounds_Data_Inline = c.int(posix.Sock_Option.OOBINLINE),
  27. TCP_Nodelay = c.int(posix.TCP_NODELAY),
  28. Linger = c.int(posix.Sock_Option.LINGER),
  29. Receive_Buffer_Size = c.int(posix.Sock_Option.RCVBUF),
  30. Send_Buffer_Size = c.int(posix.Sock_Option.SNDBUF),
  31. Receive_Timeout = c.int(posix.Sock_Option.RCVTIMEO),
  32. Send_Timeout = c.int(posix.Sock_Option.SNDTIMEO),
  33. }
  34. Shutdown_Manner :: enum c.int {
  35. Receive = c.int(posix.SHUT_RD),
  36. Send = c.int(posix.SHUT_WR),
  37. Both = c.int(posix.SHUT_RDWR),
  38. }
  39. @(private)
  40. _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) {
  41. c_type: posix.Sock
  42. c_protocol: posix.Protocol
  43. c_family: posix.AF
  44. switch family {
  45. case .IP4: c_family = .INET
  46. case .IP6: c_family = .INET6
  47. case:
  48. unreachable()
  49. }
  50. switch protocol {
  51. case .TCP: c_type = .STREAM; c_protocol = .TCP
  52. case .UDP: c_type = .DGRAM; c_protocol = .UDP
  53. case:
  54. unreachable()
  55. }
  56. sock := posix.socket(c_family, c_type, c_protocol)
  57. if sock < 0 {
  58. err = _create_socket_error()
  59. return
  60. }
  61. switch protocol {
  62. case .TCP: return TCP_Socket(sock), nil
  63. case .UDP: return UDP_Socket(sock), nil
  64. case:
  65. unreachable()
  66. }
  67. }
  68. @(private)
  69. _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (skt: TCP_Socket, err: Network_Error) {
  70. if endpoint.port == 0 {
  71. return 0, .Port_Required
  72. }
  73. family := family_from_endpoint(endpoint)
  74. sock := create_socket(family, .TCP) or_return
  75. skt = sock.(TCP_Socket)
  76. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  77. // bypass the cooldown period, and allow the next run of the program to
  78. // use the same address immediately.
  79. _ = set_option(skt, .Reuse_Address, true)
  80. sockaddr := _endpoint_to_sockaddr(endpoint)
  81. if posix.connect(posix.FD(skt), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK {
  82. err = _dial_error()
  83. close(skt)
  84. }
  85. return
  86. }
  87. @(private)
  88. _bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Bind_Error) {
  89. sockaddr := _endpoint_to_sockaddr(ep)
  90. s := any_socket_to_socket(skt)
  91. if posix.bind(posix.FD(s), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK {
  92. err = _bind_error()
  93. }
  94. return
  95. }
  96. @(private)
  97. _listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
  98. assert(backlog > 0 && i32(backlog) < max(i32))
  99. family := family_from_endpoint(interface_endpoint)
  100. sock := create_socket(family, .TCP) or_return
  101. skt = sock.(TCP_Socket)
  102. defer if err != nil { close(skt) }
  103. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  104. // bypass the cooldown period, and allow the next run of the program to
  105. // use the same address immediately.
  106. //
  107. _ = set_option(sock, .Reuse_Address, true)
  108. bind(sock, interface_endpoint) or_return
  109. if posix.listen(posix.FD(skt), i32(backlog)) != .OK {
  110. err = _listen_error()
  111. }
  112. return
  113. }
  114. @(private)
  115. _bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
  116. addr: posix.sockaddr_storage
  117. addr_len := posix.socklen_t(size_of(addr))
  118. if posix.getsockname(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK {
  119. err = _socket_info_error()
  120. return
  121. }
  122. ep = _sockaddr_to_endpoint(&addr)
  123. return
  124. }
  125. @(private)
  126. _peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
  127. addr: posix.sockaddr_storage
  128. addr_len := posix.socklen_t(size_of(addr))
  129. if posix.getpeername(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK {
  130. err = _socket_info_error()
  131. return
  132. }
  133. ep = _sockaddr_to_endpoint(&addr)
  134. return
  135. }
  136. @(private)
  137. _accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) {
  138. addr: posix.sockaddr_storage
  139. addr_len := posix.socklen_t(size_of(addr))
  140. client_sock := posix.accept(posix.FD(sock), (^posix.sockaddr)(&addr), &addr_len)
  141. if client_sock < 0 {
  142. err = _accept_error()
  143. return
  144. }
  145. client = TCP_Socket(client_sock)
  146. source = _sockaddr_to_endpoint(&addr)
  147. return
  148. }
  149. @(private)
  150. _close :: proc(skt: Any_Socket) {
  151. s := any_socket_to_socket(skt)
  152. posix.close(posix.FD(s))
  153. }
  154. @(private)
  155. _recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) {
  156. if len(buf) <= 0 {
  157. return
  158. }
  159. res := posix.recv(posix.FD(skt), raw_data(buf), len(buf), {})
  160. if res < 0 {
  161. err = _tcp_recv_error()
  162. return
  163. }
  164. return int(res), nil
  165. }
  166. @(private)
  167. _recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) {
  168. if len(buf) <= 0 {
  169. return
  170. }
  171. from: posix.sockaddr_storage
  172. fromsize := posix.socklen_t(size_of(from))
  173. res := posix.recvfrom(posix.FD(skt), raw_data(buf), len(buf), {}, (^posix.sockaddr)(&from), &fromsize)
  174. if res < 0 {
  175. err = _udp_recv_error()
  176. return
  177. }
  178. bytes_read = int(res)
  179. remote_endpoint = _sockaddr_to_endpoint(&from)
  180. return
  181. }
  182. @(private)
  183. _send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) {
  184. for bytes_written < len(buf) {
  185. limit := min(int(max(i32)), len(buf) - bytes_written)
  186. remaining := buf[bytes_written:][:limit]
  187. res := posix.send(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL})
  188. if res < 0 {
  189. err = _tcp_send_error()
  190. return
  191. }
  192. bytes_written += int(res)
  193. }
  194. return
  195. }
  196. @(private)
  197. _send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) {
  198. toaddr := _endpoint_to_sockaddr(to)
  199. for bytes_written < len(buf) {
  200. limit := min(1<<31, len(buf) - bytes_written)
  201. remaining := buf[bytes_written:][:limit]
  202. res := posix.sendto(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL}, (^posix.sockaddr)(&toaddr), posix.socklen_t(toaddr.ss_len))
  203. if res < 0 {
  204. err = _udp_send_error()
  205. return
  206. }
  207. bytes_written += int(res)
  208. }
  209. return
  210. }
  211. @(private)
  212. _shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) {
  213. s := any_socket_to_socket(skt)
  214. if posix.shutdown(posix.FD(s), posix.Shut(manner)) != .OK {
  215. err = _shutdown_error()
  216. }
  217. return
  218. }
  219. @(private)
  220. _set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error {
  221. level := posix.SOL_SOCKET if option != .TCP_Nodelay else posix.IPPROTO_TCP
  222. // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
  223. // it _has_ to be a b32.
  224. // I haven't tested if you can give more than that.
  225. bool_value: b32
  226. int_value: posix.socklen_t
  227. timeval_value: posix.timeval
  228. ptr: rawptr
  229. len: posix.socklen_t
  230. switch option {
  231. case
  232. .Broadcast,
  233. .Reuse_Address,
  234. .Keep_Alive,
  235. .Out_Of_Bounds_Data_Inline,
  236. .TCP_Nodelay:
  237. // TODO: verify whether these are options or not on Linux
  238. // .Broadcast,
  239. // .Conditional_Accept,
  240. // .Dont_Linger:
  241. switch x in value {
  242. case bool, b8:
  243. x2 := x
  244. bool_value = b32((^bool)(&x2)^)
  245. case b16:
  246. bool_value = b32(x)
  247. case b32:
  248. bool_value = b32(x)
  249. case b64:
  250. bool_value = b32(x)
  251. case:
  252. panic("set_option() value must be a boolean here", loc)
  253. }
  254. ptr = &bool_value
  255. len = size_of(bool_value)
  256. case
  257. .Linger,
  258. .Send_Timeout,
  259. .Receive_Timeout:
  260. t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
  261. micros := i64(time.duration_microseconds(t))
  262. timeval_value.tv_usec = posix.suseconds_t(micros % 1e6)
  263. timeval_value.tv_sec = posix.time_t(micros - i64(timeval_value.tv_usec)) / 1e6
  264. ptr = &timeval_value
  265. len = size_of(timeval_value)
  266. case
  267. .Receive_Buffer_Size,
  268. .Send_Buffer_Size:
  269. // TODO: check for out of range values and return .Value_Out_Of_Range?
  270. switch i in value {
  271. case i8, u8: i2 := i; int_value = posix.socklen_t((^u8)(&i2)^)
  272. case i16, u16: i2 := i; int_value = posix.socklen_t((^u16)(&i2)^)
  273. case i32, u32: i2 := i; int_value = posix.socklen_t((^u32)(&i2)^)
  274. case i64, u64: i2 := i; int_value = posix.socklen_t((^u64)(&i2)^)
  275. case i128, u128: i2 := i; int_value = posix.socklen_t((^u128)(&i2)^)
  276. case int, uint: i2 := i; int_value = posix.socklen_t((^uint)(&i2)^)
  277. case:
  278. panic("set_option() value must be an integer here", loc)
  279. }
  280. ptr = &int_value
  281. len = size_of(int_value)
  282. }
  283. skt := any_socket_to_socket(s)
  284. if posix.setsockopt(posix.FD(skt), i32(level), posix.Sock_Option(option), ptr, len) != .OK {
  285. return _socket_option_error()
  286. }
  287. return nil
  288. }
  289. @(private)
  290. _set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) {
  291. socket := any_socket_to_socket(socket)
  292. flags_ := posix.fcntl(posix.FD(socket), .GETFL, 0)
  293. if flags_ < 0 {
  294. return _set_blocking_error()
  295. }
  296. flags := transmute(posix.O_Flags)flags_
  297. if should_block {
  298. flags -= {.NONBLOCK}
  299. } else {
  300. flags += {.NONBLOCK}
  301. }
  302. if posix.fcntl(posix.FD(socket), .SETFL, flags) < 0 {
  303. return _set_blocking_error()
  304. }
  305. return nil
  306. }
  307. @private
  308. _endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: posix.sockaddr_storage) {
  309. switch a in ep.address {
  310. case IP4_Address:
  311. (^posix.sockaddr_in)(&sockaddr)^ = posix.sockaddr_in {
  312. sin_port = u16be(ep.port),
  313. sin_addr = transmute(posix.in_addr)a,
  314. sin_family = .INET,
  315. sin_len = size_of(posix.sockaddr_in),
  316. }
  317. return
  318. case IP6_Address:
  319. (^posix.sockaddr_in6)(&sockaddr)^ = posix.sockaddr_in6 {
  320. sin6_port = u16be(ep.port),
  321. sin6_addr = transmute(posix.in6_addr)a,
  322. sin6_family = .INET6,
  323. sin6_len = size_of(posix.sockaddr_in6),
  324. }
  325. return
  326. }
  327. unreachable()
  328. }
  329. @private
  330. _sockaddr_to_endpoint :: proc(native_addr: ^posix.sockaddr_storage) -> (ep: Endpoint) {
  331. #partial switch native_addr.ss_family {
  332. case .INET:
  333. addr := cast(^posix.sockaddr_in)native_addr
  334. port := int(addr.sin_port)
  335. ep = Endpoint {
  336. address = IP4_Address(transmute([4]byte)addr.sin_addr),
  337. port = port,
  338. }
  339. case .INET6:
  340. addr := cast(^posix.sockaddr_in6)native_addr
  341. port := int(addr.sin6_port)
  342. ep = Endpoint {
  343. address = IP6_Address(transmute([8]u16be)addr.sin6_addr),
  344. port = port,
  345. }
  346. case:
  347. panic("native_addr is neither IP4 or IP6 address")
  348. }
  349. return
  350. }
  351. @(private)
  352. _sockaddr_basic_to_endpoint :: proc(native_addr: ^posix.sockaddr) -> (ep: Endpoint) {
  353. #partial switch native_addr.sa_family {
  354. case .INET:
  355. addr := cast(^posix.sockaddr_in)native_addr
  356. port := int(addr.sin_port)
  357. ep = Endpoint {
  358. address = IP4_Address(transmute([4]byte)addr.sin_addr),
  359. port = port,
  360. }
  361. case .INET6:
  362. addr := cast(^posix.sockaddr_in6)native_addr
  363. port := int(addr.sin6_port)
  364. ep = Endpoint {
  365. address = IP6_Address(transmute([8]u16be)addr.sin6_addr),
  366. port = port,
  367. }
  368. case:
  369. panic("native_addr is neither IP4 or IP6 address")
  370. }
  371. return
  372. }