1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027 |
- package math
- import "intrinsics"
- _ :: intrinsics;
- Float_Class :: enum {
- Normal, // an ordinary nonzero floating point value
- Subnormal, // a subnormal floating point value
- Zero, // zero
- Neg_Zero, // the negative zero
- NaN, // Not-A-Number (NaN)
- Inf, // positive infinity
- Neg_Inf, // negative infinity
- };
- TAU :: 6.28318530717958647692528676655900576;
- PI :: 3.14159265358979323846264338327950288;
- E :: 2.71828182845904523536;
- τ :: TAU;
- π :: PI;
- e :: E;
- SQRT_TWO :: 1.41421356237309504880168872420969808;
- SQRT_THREE :: 1.73205080756887729352744634150587236;
- SQRT_FIVE :: 2.23606797749978969640917366873127623;
- LN2 :: 0.693147180559945309417232121458176568;
- LN10 :: 2.30258509299404568401799145468436421;
- MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64'
- MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32'
- MAX_F16_PRECISION :: 4; // Maximum number of meaningful digits after the decimal point for 'f16'
- RAD_PER_DEG :: TAU/360.0;
- DEG_PER_RAD :: 360.0/TAU;
- @(default_calling_convention="none")
- foreign _ {
- @(link_name="llvm.sqrt.f16")
- sqrt_f16 :: proc(x: f16) -> f16 ---;
- @(link_name="llvm.sqrt.f32")
- sqrt_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.sqrt.f64")
- sqrt_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.sin.f16")
- sin_f16 :: proc(θ: f16) -> f16 ---;
- @(link_name="llvm.sin.f32")
- sin_f32 :: proc(θ: f32) -> f32 ---;
- @(link_name="llvm.sin.f64")
- sin_f64 :: proc(θ: f64) -> f64 ---;
- @(link_name="llvm.cos.f16")
- cos_f16 :: proc(θ: f16) -> f16 ---;
- @(link_name="llvm.cos.f32")
- cos_f32 :: proc(θ: f32) -> f32 ---;
- @(link_name="llvm.cos.f64")
- cos_f64 :: proc(θ: f64) -> f64 ---;
- @(link_name="llvm.pow.f16")
- pow_f16 :: proc(x, power: f16) -> f16 ---;
- @(link_name="llvm.pow.f32")
- pow_f32 :: proc(x, power: f32) -> f32 ---;
- @(link_name="llvm.pow.f64")
- pow_f64 :: proc(x, power: f64) -> f64 ---;
- @(link_name="llvm.fmuladd.f16")
- fmuladd_f16 :: proc(a, b, c: f16) -> f16 ---;
- @(link_name="llvm.fmuladd.f32")
- fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
- @(link_name="llvm.fmuladd.f64")
- fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
- @(link_name="llvm.log.f16")
- ln_f16 :: proc(x: f16) -> f16 ---;
- @(link_name="llvm.log.f32")
- ln_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.log.f64")
- ln_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.exp.f16")
- exp_f16 :: proc(x: f16) -> f16 ---;
- @(link_name="llvm.exp.f32")
- exp_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.exp.f64")
- exp_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.ldexp.f16")
- ldexp_f16 :: proc(val: f16, exp: i32) -> f16 ---;
- @(link_name="llvm.ldexp.f32")
- ldexp_f32 :: proc(val: f32, exp: i32) -> f32 ---;
- @(link_name="llvm.ldexp.f64")
- ldexp_f64 :: proc(val: f64, exp: i32) -> f64 ---;
- }
- sqrt :: proc{sqrt_f16, sqrt_f32, sqrt_f64};
- sin :: proc{sin_f16, sin_f32, sin_f64};
- cos :: proc{cos_f16, cos_f32, cos_f64};
- pow :: proc{pow_f16, pow_f32, pow_f64};
- fmuladd :: proc{fmuladd_f16, fmuladd_f32, fmuladd_f64};
- ln :: proc{ln_f16, ln_f32, ln_f64};
- exp :: proc{exp_f16, exp_f32, exp_f64};
- ldexp :: proc{ldexp_f16, ldexp_f32, ldexp_f64};
- log_f16 :: proc(x, base: f16) -> f16 { return ln(x) / ln(base); }
- log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base); }
- log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base); }
- log :: proc{log_f16, log_f32, log_f64};
- log2_f16 :: proc(x: f16) -> f16 { return ln(x)/LN2; }
- log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2; }
- log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2; }
- log2 :: proc{log2_f16, log2_f32, log2_f64};
- log10_f16 :: proc(x: f16) -> f16 { return ln(x)/LN10; }
- log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10; }
- log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10; }
- log10 :: proc{log10_f16, log10_f32, log10_f64};
- tan_f16 :: proc(θ: f16) -> f16 { return sin(θ)/cos(θ); }
- tan_f32 :: proc(θ: f32) -> f32 { return sin(θ)/cos(θ); }
- tan_f64 :: proc(θ: f64) -> f64 { return sin(θ)/cos(θ); }
- tan :: proc{tan_f16, tan_f32, tan_f64};
- lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
- saturate :: proc(a: $T) -> (x: T) { return clamp(a, 0, 1); };
- unlerp_f16 :: proc(a, b, x: f16) -> (t: f16) { return (x-a)/(b-a); }
- unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
- unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
- unlerp :: proc{unlerp_f16, unlerp_f32, unlerp_f64};
- wrap :: proc(x, y: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- tmp := mod(x, y);
- return y + tmp if tmp < 0 else tmp;
- }
- angle_diff :: proc(a, b: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- dist := wrap(b - a, TAU);
- return wrap(dist*2, TAU) - dist;
- }
- angle_lerp :: proc(a, b, t: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- return a + angle_diff(a, b) * t;
- }
- step :: proc(edge, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- return 0 if x < edge else 1;
- }
- smoothstep :: proc(edge0, edge1, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- t := clamp((x - edge0) / (edge1 - edge0), 0, 1);
- return t * t * (3 - 2*t);
- }
- bias :: proc(t, b: $T) -> T where intrinsics.type_is_numeric(T) {
- return t / (((1/b) - 2) * (1 - t) + 1);
- }
- gain :: proc(t, g: $T) -> T where intrinsics.type_is_numeric(T) {
- if t < 0.5 {
- return bias(t*2, g)*0.5;
- }
- return bias(t*2 - 1, 1 - g)*0.5 + 0.5;
- }
- sign_f16 :: proc(x: f16) -> f16 { return f16(int(0 < x) - int(x < 0)); }
- sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)); }
- sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)); }
- sign :: proc{sign_f16, sign_f32, sign_f64};
- sign_bit_f16 :: proc(x: f16) -> bool {
- return (transmute(u16)x) & (1<<15) != 0;
- }
- sign_bit_f32 :: proc(x: f32) -> bool {
- return (transmute(u32)x) & (1<<31) != 0;
- }
- sign_bit_f64 :: proc(x: f64) -> bool {
- return (transmute(u64)x) & (1<<63) != 0;
- }
- sign_bit :: proc{sign_bit_f16, sign_bit_f32, sign_bit_f64};
- copy_sign_f16 :: proc(x, y: f16) -> f16 {
- ix := transmute(u16)x;
- iy := transmute(u16)y;
- ix &= 0x7fff;
- ix |= iy & 0x8000;
- return transmute(f16)ix;
- }
- copy_sign_f32 :: proc(x, y: f32) -> f32 {
- ix := transmute(u32)x;
- iy := transmute(u32)y;
- ix &= 0x7fff_ffff;
- ix |= iy & 0x8000_0000;
- return transmute(f32)ix;
- }
- copy_sign_f64 :: proc(x, y: f64) -> f64 {
- ix := transmute(u64)x;
- iy := transmute(u64)y;
- ix &= 0x7fff_ffff_ffff_ffff;
- ix |= iy & 0x8000_0000_0000_0000;
- return transmute(f64)ix;
- }
- copy_sign :: proc{copy_sign_f16, copy_sign_f32, copy_sign_f64};
- to_radians_f16 :: proc(degrees: f16) -> f16 { return degrees * RAD_PER_DEG; }
- to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG; }
- to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG; }
- to_degrees_f16 :: proc(radians: f16) -> f16 { return radians * DEG_PER_RAD; }
- to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD; }
- to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD; }
- to_radians :: proc{to_radians_f16, to_radians_f32, to_radians_f64};
- to_degrees :: proc{to_degrees_f16, to_degrees_f32, to_degrees_f64};
- trunc_f16 :: proc(x: f16) -> f16 {
- trunc_internal :: proc(f: f16) -> f16 {
- mask :: 0x1f;
- shift :: 16 - 6;
- bias :: 0xf;
- if f < 1 {
- switch {
- case f < 0: return -trunc_internal(-f);
- case f == 0: return f;
- case: return 0;
- }
- }
- x := transmute(u16)f;
- e := (x >> shift) & mask - bias;
- if e < shift {
- x &= ~(1 << (shift-e)) - 1;
- }
- return transmute(f16)x;
- }
- switch classify(x) {
- case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
- return x;
- case .Normal, .Subnormal: // carry on
- }
- return trunc_internal(x);
- }
- trunc_f32 :: proc(x: f32) -> f32 {
- trunc_internal :: proc(f: f32) -> f32 {
- mask :: 0xff;
- shift :: 32 - 9;
- bias :: 0x7f;
- if f < 1 {
- switch {
- case f < 0: return -trunc_internal(-f);
- case f == 0: return f;
- case: return 0;
- }
- }
- x := transmute(u32)f;
- e := (x >> shift) & mask - bias;
- if e < shift {
- x &= ~(1 << (shift-e)) - 1;
- }
- return transmute(f32)x;
- }
- switch classify(x) {
- case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
- return x;
- case .Normal, .Subnormal: // carry on
- }
- return trunc_internal(x);
- }
- trunc_f64 :: proc(x: f64) -> f64 {
- trunc_internal :: proc(f: f64) -> f64 {
- mask :: 0x7ff;
- shift :: 64 - 12;
- bias :: 0x3ff;
- if f < 1 {
- switch {
- case f < 0: return -trunc_internal(-f);
- case f == 0: return f;
- case: return 0;
- }
- }
- x := transmute(u64)f;
- e := (x >> shift) & mask - bias;
- if e < shift {
- x &= ~(1 << (shift-e)) - 1;
- }
- return transmute(f64)x;
- }
- switch classify(x) {
- case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
- return x;
- case .Normal, .Subnormal: // carry on
- }
- return trunc_internal(x);
- }
- trunc :: proc{trunc_f16, trunc_f32, trunc_f64};
- round_f16 :: proc(x: f16) -> f16 {
- return ceil(x - 0.5) if x < 0 else floor(x + 0.5);
- }
- round_f32 :: proc(x: f32) -> f32 {
- return ceil(x - 0.5) if x < 0 else floor(x + 0.5);
- }
- round_f64 :: proc(x: f64) -> f64 {
- return ceil(x - 0.5) if x < 0 else floor(x + 0.5);
- }
- round :: proc{round_f16, round_f32, round_f64};
- ceil_f16 :: proc(x: f16) -> f16 { return -floor(-x); }
- ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x); }
- ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x); }
- ceil :: proc{ceil_f16, ceil_f32, ceil_f64};
- floor_f16 :: proc(x: f16) -> f16 {
- if x == 0 || is_nan(x) || is_inf(x) {
- return x;
- }
- if x < 0 {
- d, fract := modf(-x);
- if fract != 0.0 {
- d = d + 1;
- }
- return -d;
- }
- d, _ := modf(x);
- return d;
- }
- floor_f32 :: proc(x: f32) -> f32 {
- if x == 0 || is_nan(x) || is_inf(x) {
- return x;
- }
- if x < 0 {
- d, fract := modf(-x);
- if fract != 0.0 {
- d = d + 1;
- }
- return -d;
- }
- d, _ := modf(x);
- return d;
- }
- floor_f64 :: proc(x: f64) -> f64 {
- if x == 0 || is_nan(x) || is_inf(x) {
- return x;
- }
- if x < 0 {
- d, fract := modf(-x);
- if fract != 0.0 {
- d = d + 1;
- }
- return -d;
- }
- d, _ := modf(x);
- return d;
- }
- floor :: proc{floor_f16, floor_f32, floor_f64};
- floor_div :: proc(x, y: $T) -> T
- where intrinsics.type_is_integer(T) {
- a := x / y;
- r := x % y;
- if (r > 0 && y < 0) || (r < 0 && y > 0) {
- a -= 1;
- }
- return a;
- }
- floor_mod :: proc(x, y: $T) -> T
- where intrinsics.type_is_integer(T) {
- r := x % y;
- if (r > 0 && y < 0) || (r < 0 && y > 0) {
- r += y;
- }
- return r;
- }
- modf_f16 :: proc(x: f16) -> (int: f16, frac: f16) {
- shift :: 16 - 5 - 1;
- mask :: 0x1f;
- bias :: 15;
- if x < 1 {
- switch {
- case x < 0:
- int, frac = modf(-x);
- return -int, -frac;
- case x == 0:
- return x, x;
- }
- return 0, x;
- }
- i := transmute(u16)x;
- e := uint(i>>shift)&mask - bias;
- if e < shift {
- i &~= 1<<(shift-e) - 1;
- }
- int = transmute(f16)i;
- frac = x - int;
- return;
- }
- modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
- shift :: 32 - 8 - 1;
- mask :: 0xff;
- bias :: 127;
- if x < 1 {
- switch {
- case x < 0:
- int, frac = modf(-x);
- return -int, -frac;
- case x == 0:
- return x, x;
- }
- return 0, x;
- }
- i := transmute(u32)x;
- e := uint(i>>shift)&mask - bias;
- if e < shift {
- i &~= 1<<(shift-e) - 1;
- }
- int = transmute(f32)i;
- frac = x - int;
- return;
- }
- modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) {
- shift :: 64 - 11 - 1;
- mask :: 0x7ff;
- bias :: 1023;
- if x < 1 {
- switch {
- case x < 0:
- int, frac = modf(-x);
- return -int, -frac;
- case x == 0:
- return x, x;
- }
- return 0, x;
- }
- i := transmute(u64)x;
- e := uint(i>>shift)&mask - bias;
- if e < shift {
- i &~= 1<<(shift-e) - 1;
- }
- int = transmute(f64)i;
- frac = x - int;
- return;
- }
- modf :: proc{modf_f16, modf_f32, modf_f64};
- split_decimal :: modf;
- mod_f16 :: proc(x, y: f16) -> (n: f16) {
- z := abs(y);
- n = remainder(abs(x), z);
- if sign(n) < 0 {
- n += z;
- }
- return copy_sign(n, x);
- }
- mod_f32 :: proc(x, y: f32) -> (n: f32) {
- z := abs(y);
- n = remainder(abs(x), z);
- if sign(n) < 0 {
- n += z;
- }
- return copy_sign(n, x);
- }
- mod_f64 :: proc(x, y: f64) -> (n: f64) {
- z := abs(y);
- n = remainder(abs(x), z);
- if sign(n) < 0 {
- n += z;
- }
- return copy_sign(n, x);
- }
- mod :: proc{mod_f16, mod_f32, mod_f64};
- remainder_f16 :: proc(x, y: f16) -> f16 { return x - round(x/y) * y; }
- remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
- remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
- remainder :: proc{remainder_f16, remainder_f32, remainder_f64};
- gcd :: proc(x, y: $T) -> T
- where intrinsics.type_is_ordered_numeric(T) {
- x, y := x, y;
- for y != 0 {
- x %= y;
- x, y = y, x;
- }
- return abs(x);
- }
- lcm :: proc(x, y: $T) -> T
- where intrinsics.type_is_ordered_numeric(T) {
- return x / gcd(x, y) * y;
- }
- frexp_f16 :: proc(x: f16) -> (significand: f16, exponent: int) {
- f, e := frexp_f64(f64(x));
- return f16(f), e;
- }
- frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) {
- f, e := frexp_f64(f64(x));
- return f32(f), e;
- }
- frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) {
- switch {
- case x == 0:
- return 0, 0;
- case x < 0:
- significand, exponent = frexp(-x);
- return -significand, exponent;
- }
- ex := trunc(log2(x));
- exponent = int(ex);
- significand = x / pow(2.0, ex);
- if abs(significand) >= 1 {
- exponent += 1;
- significand /= 2;
- }
- if exponent == 1024 && significand == 0 {
- significand = 0.99999999999999988898;
- }
- return;
- }
- frexp :: proc{frexp_f16, frexp_f32, frexp_f64};
- binomial :: proc(n, k: int) -> int {
- switch {
- case k <= 0: return 1;
- case 2*k > n: return binomial(n, n-k);
- }
- b := n;
- for i in 2..<k {
- b = (b * (n+1-i))/i;
- }
- return b;
- }
- factorial :: proc(n: int) -> int {
- when size_of(int) == size_of(i64) {
- @static table := [21]int{
- 1,
- 1,
- 2,
- 6,
- 24,
- 120,
- 720,
- 5_040,
- 40_320,
- 362_880,
- 3_628_800,
- 39_916_800,
- 479_001_600,
- 6_227_020_800,
- 87_178_291_200,
- 1_307_674_368_000,
- 20_922_789_888_000,
- 355_687_428_096_000,
- 6_402_373_705_728_000,
- 121_645_100_408_832_000,
- 2_432_902_008_176_640_000,
- };
- } else {
- @static table := [13]int{
- 1,
- 1,
- 2,
- 6,
- 24,
- 120,
- 720,
- 5_040,
- 40_320,
- 362_880,
- 3_628_800,
- 39_916_800,
- 479_001_600,
- };
- }
- assert(n >= 0, "parameter must not be negative");
- assert(n < len(table), "parameter is too large to lookup in the table");
- return table[n];
- }
- classify_f16 :: proc(x: f16) -> Float_Class {
- switch {
- case x == 0:
- i := transmute(i16)x;
- if i < 0 {
- return .Neg_Zero;
- }
- return .Zero;
- case x*0.5 == x:
- if x < 0 {
- return .Neg_Inf;
- }
- return .Inf;
- case !(x == x):
- return .NaN;
- }
- u := transmute(u16)x;
- exp := int(u>>10) & (1<<5 - 1);
- if exp == 0 {
- return .Subnormal;
- }
- return .Normal;
- }
- classify_f32 :: proc(x: f32) -> Float_Class {
- switch {
- case x == 0:
- i := transmute(i32)x;
- if i < 0 {
- return .Neg_Zero;
- }
- return .Zero;
- case x*0.5 == x:
- if x < 0 {
- return .Neg_Inf;
- }
- return .Inf;
- case !(x == x):
- return .NaN;
- }
- u := transmute(u32)x;
- exp := int(u>>23) & (1<<8 - 1);
- if exp == 0 {
- return .Subnormal;
- }
- return .Normal;
- }
- classify_f64 :: proc(x: f64) -> Float_Class {
- switch {
- case x == 0:
- i := transmute(i64)x;
- if i < 0 {
- return .Neg_Zero;
- }
- return .Zero;
- case x*0.5 == x:
- if x < 0 {
- return .Neg_Inf;
- }
- return .Inf;
- case !(x == x):
- return .NaN;
- }
- u := transmute(u64)x;
- exp := int(u>>52) & (1<<11 - 1);
- if exp == 0 {
- return .Subnormal;
- }
- return .Normal;
- }
- classify :: proc{classify_f16, classify_f32, classify_f64};
- is_nan_f16 :: proc(x: f16) -> bool { return classify(x) == .NaN; }
- is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN; }
- is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN; }
- is_nan :: proc{is_nan_f16, is_nan_f32, is_nan_f64};
- // is_inf reports whether f is an infinity, according to sign.
- // If sign > 0, is_inf reports whether f is positive infinity.
- // If sign < 0, is_inf reports whether f is negative infinity.
- // If sign == 0, is_inf reports whether f is either infinity.
- is_inf_f16 :: proc(x: f16, sign: int = 0) -> bool {
- class := classify(abs(x));
- switch {
- case sign > 0:
- return class == .Inf;
- case sign < 0:
- return class == .Neg_Inf;
- }
- return class == .Inf || class == .Neg_Inf;
- }
- is_inf_f32 :: proc(x: f32, sign: int = 0) -> bool {
- class := classify(abs(x));
- switch {
- case sign > 0:
- return class == .Inf;
- case sign < 0:
- return class == .Neg_Inf;
- }
- return class == .Inf || class == .Neg_Inf;
- }
- is_inf_f64 :: proc(x: f64, sign: int = 0) -> bool {
- class := classify(abs(x));
- switch {
- case sign > 0:
- return class == .Inf;
- case sign < 0:
- return class == .Neg_Inf;
- }
- return class == .Inf || class == .Neg_Inf;
- }
- is_inf :: proc{is_inf_f16, is_inf_f32, is_inf_f64};
- inf_f16 :: proc(sign: int) -> f16 {
- return f16(inf_f16(sign));
- }
- inf_f32 :: proc(sign: int) -> f32 {
- return f32(inf_f64(sign));
- }
- inf_f64 :: proc(sign: int) -> f64 {
- v: u64;
- if sign >= 0 {
- v = 0x7ff00000_00000000;
- } else {
- v = 0xfff00000_00000000;
- }
- return transmute(f64)v;
- }
- nan_f16 :: proc() -> f16 {
- return f16(nan_f64());
- }
- nan_f32 :: proc() -> f32 {
- return f32(nan_f64());
- }
- nan_f64 :: proc() -> f64 {
- v: u64 = 0x7ff80000_00000001;
- return transmute(f64)v;
- }
- is_power_of_two :: proc(x: int) -> bool {
- return x > 0 && (x & (x-1)) == 0;
- }
- next_power_of_two :: proc(x: int) -> int {
- k := x -1;
- when size_of(int) == 8 {
- k = k | (k >> 32);
- }
- k = k | (k >> 16);
- k = k | (k >> 8);
- k = k | (k >> 4);
- k = k | (k >> 2);
- k = k | (k >> 1);
- k += 1 + int(x <= 0);
- return k;
- }
- sum :: proc(x: $T/[]$E) -> (res: E)
- where intrinsics.type_is_numeric(E) {
- for i in x {
- res += i;
- }
- return;
- }
- prod :: proc(x: $T/[]$E) -> (res: E)
- where intrinsics.type_is_numeric(E) {
- for i in x {
- res *= i;
- }
- return;
- }
- cumsum_inplace :: proc(x: $T/[]$E) -> T
- where intrinsics.type_is_numeric(E) {
- for i in 1..<len(x) {
- x[i] = x[i-1] + x[i];
- }
- }
- cumsum :: proc(dst, src: $T/[]$E) -> T
- where intrinsics.type_is_numeric(E) {
- N := min(len(dst), len(src));
- if N > 0 {
- dst[0] = src[0];
- for i in 1..<N {
- dst[i] = dst[i-1] + src[i];
- }
- }
- return dst[:N];
- }
- atan2_f16 :: proc(y, x: f16) -> f16 {
- // TODO(bill): Better atan2_f16
- return f16(atan2_f64(f64(y), f64(x)));
- }
- atan2_f32 :: proc(y, x: f32) -> f32 {
- // TODO(bill): Better atan2_f32
- return f32(atan2_f64(f64(y), f64(x)));
- }
- atan2_f64 :: proc(y, x: f64) -> f64 {
- // TODO(bill): Faster atan2_f64 if possible
- // The original C code:
- // Stephen L. Moshier
- // [email protected]
- NAN :: 0h7fff_ffff_ffff_ffff;
- INF :: 0h7FF0_0000_0000_0000;
- PI :: 0h4009_21fb_5444_2d18;
- atan :: proc(x: f64) -> f64 {
- if x == 0 {
- return x;
- }
- if x > 0 {
- return s_atan(x);
- }
- return -s_atan(-x);
- }
- // s_atan reduces its argument (known to be positive) to the range [0, 0.66] and calls x_atan.
- s_atan :: proc(x: f64) -> f64 {
- MORE_BITS :: 6.123233995736765886130e-17; // pi/2 = PIO2 + MORE_BITS
- TAN3PI08 :: 2.41421356237309504880; // tan(3*pi/8)
- if x <= 0.66 {
- return x_atan(x);
- }
- if x > TAN3PI08 {
- return PI/2 - x_atan(1/x) + MORE_BITS;
- }
- return PI/4 + x_atan((x-1)/(x+1)) + 0.5*MORE_BITS;
- }
- // x_atan evaluates a series valid in the range [0, 0.66].
- x_atan :: proc(x: f64) -> f64 {
- P0 :: -8.750608600031904122785e-01;
- P1 :: -1.615753718733365076637e+01;
- P2 :: -7.500855792314704667340e+01;
- P3 :: -1.228866684490136173410e+02;
- P4 :: -6.485021904942025371773e+01;
- Q0 :: +2.485846490142306297962e+01;
- Q1 :: +1.650270098316988542046e+02;
- Q2 :: +4.328810604912902668951e+02;
- Q3 :: +4.853903996359136964868e+02;
- Q4 :: +1.945506571482613964425e+02;
- z := x * x;
- z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4);
- z = x*z + x;
- return z;
- }
- switch {
- case is_nan(y) || is_nan(x):
- return NAN;
- case y == 0:
- if x >= 0 && !sign_bit(x) {
- return copy_sign(0.0, y);
- }
- return copy_sign(PI, y);
- case x == 0:
- return copy_sign(PI*0.5, y);
- case is_inf(x, 0):
- if is_inf(x, 1) {
- if is_inf(y, 0) {
- return copy_sign(PI*0.25, y);
- }
- return copy_sign(0, y);
- }
- if is_inf(y, 0) {
- return copy_sign(PI*0.75, y);
- }
- return copy_sign(PI, y);
- case is_inf(y, 0):
- return copy_sign(PI*0.5, y);
- }
- q := atan(y / x);
- if x < 0 {
- if q <= 0 {
- return q + PI;
- }
- return q - PI;
- }
- return q;
- }
- atan2 :: proc{atan2_f16, atan2_f32, atan2_f64};
- atan_f16 :: proc(x: f16) -> f16 {
- return atan2_f16(x, 1);
- }
- atan_f32 :: proc(x: f32) -> f32 {
- return atan2_f32(x, 1);
- }
- atan_f64 :: proc(x: f64) -> f64 {
- return atan2_f64(x, 1);
- }
- atan :: proc{atan_f16, atan_f32, atan_f64};
- asin_f16 :: proc(x: f16) -> f16 {
- return atan2_f16(x, 1 + sqrt_f16(1 - x*x));
- }
- asin_f32 :: proc(x: f32) -> f32 {
- return atan2_f32(x, 1 + sqrt_f32(1 - x*x));
- }
- asin_f64 :: proc(x: f64) -> f64 {
- return atan2_f64(x, 1 + sqrt_f64(1 - x*x));
- }
- asin :: proc{asin_f16, asin_f32, asin_f64};
- acos_f16 :: proc(x: f16) -> f16 {
- return 2 * atan2_f16(sqrt_f16(1 - x), sqrt_f16(1 + x));
- }
- acos_f32 :: proc(x: f32) -> f32 {
- return 2 * atan2_f32(sqrt_f32(1 - x), sqrt_f32(1 + x));
- }
- acos_f64 :: proc(x: f64) -> f64 {
- return 2 * atan2_f64(sqrt_f64(1 - x), sqrt_f64(1 + x));
- }
- acos :: proc{acos_f16, acos_f32, acos_f64};
- sinh_f16 :: proc(x: f16) -> f16 {
- return (exp(x) - exp(-x))*0.5;
- }
- sinh_f32 :: proc(x: f32) -> f32 {
- return (exp(x) - exp(-x))*0.5;
- }
- sinh_f64 :: proc(x: f64) -> f64 {
- return (exp(x) - exp(-x))*0.5;
- }
- sinh :: proc{sinh_f16, sinh_f32, sinh_f64};
- cosh_f16 :: proc(x: f16) -> f16 {
- return (exp(x) + exp(-x))*0.5;
- }
- cosh_f32 :: proc(x: f32) -> f32 {
- return (exp(x) + exp(-x))*0.5;
- }
- cosh_f64 :: proc(x: f64) -> f64 {
- return (exp(x) + exp(-x))*0.5;
- }
- cosh :: proc{cosh_f16, cosh_f32, cosh_f64};
- tanh_f16 :: proc(x: f16) -> f16 {
- t := exp(2*x);
- return (t - 1) / (t + 1);
- }
- tanh_f32 :: proc(x: f32) -> f32 {
- t := exp(2*x);
- return (t - 1) / (t + 1);
- }
- tanh_f64 :: proc(x: f64) -> f64 {
- t := exp(2*x);
- return (t - 1) / (t + 1);
- }
- tanh :: proc{tanh_f16, tanh_f32, tanh_f64};
- F16_DIG :: 3;
- F16_EPSILON :: 0.00097656;
- F16_GUARD :: 0;
- F16_MANT_DIG :: 11;
- F16_MAX :: 65504.0;
- F16_MAX_10_EXP :: 4;
- F16_MAX_EXP :: 15;
- F16_MIN :: 6.10351562e-5;
- F16_MIN_10_EXP :: -4;
- F16_MIN_EXP :: -14;
- F16_NORMALIZE :: 0;
- F16_RADIX :: 2;
- F16_ROUNDS :: 1;
- F32_DIG :: 6;
- F32_EPSILON :: 1.192092896e-07;
- F32_GUARD :: 0;
- F32_MANT_DIG :: 24;
- F32_MAX :: 3.402823466e+38;
- F32_MAX_10_EXP :: 38;
- F32_MAX_EXP :: 128;
- F32_MIN :: 1.175494351e-38;
- F32_MIN_10_EXP :: -37;
- F32_MIN_EXP :: -125;
- F32_NORMALIZE :: 0;
- F32_RADIX :: 2;
- F32_ROUNDS :: 1;
- F64_DIG :: 15; // # of decimal digits of precision
- F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
- F64_MANT_DIG :: 53; // # of bits in mantissa
- F64_MAX :: 1.7976931348623158e+308; // max value
- F64_MAX_10_EXP :: 308; // max decimal exponent
- F64_MAX_EXP :: 1024; // max binary exponent
- F64_MIN :: 2.2250738585072014e-308; // min positive value
- F64_MIN_10_EXP :: -307; // min decimal exponent
- F64_MIN_EXP :: -1021; // min binary exponent
- F64_RADIX :: 2; // exponent radix
- F64_ROUNDS :: 1; // addition rounding: near
|