math.odin 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. TAU :: 6.28318530717958647692528676655900576
  2. PI :: 3.14159265358979323846264338327950288
  3. ONE_OVER_TAU :: 0.636619772367581343075535053490057448
  4. ONE_OVER_PI :: 0.159154943091895335768883763372514362
  5. E :: 2.71828182845904523536
  6. SQRT_TWO :: 1.41421356237309504880168872420969808
  7. SQRT_THREE :: 1.73205080756887729352744634150587236
  8. SQRT_FIVE :: 2.23606797749978969640917366873127623
  9. LOG_TWO :: 0.693147180559945309417232121458176568
  10. LOG_TEN :: 2.30258509299404568401799145468436421
  11. EPSILON :: 1.19209290e-7
  12. τ :: TAU
  13. π :: PI
  14. Vec2 :: type [vector 2]f32
  15. Vec3 :: type [vector 3]f32
  16. Vec4 :: type [vector 4]f32
  17. Mat2 :: type [2]Vec2
  18. Mat3 :: type [3]Vec3
  19. Mat4 :: type [4]Vec4
  20. sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32"
  21. sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64"
  22. sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32"
  23. sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64"
  24. cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32"
  25. cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64"
  26. tan32 :: proc(x: f32) -> f32 #inline { return sin32(x)/cos32(x); }
  27. tan64 :: proc(x: f64) -> f64 #inline { return sin64(x)/cos64(x); }
  28. lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t; }
  29. lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t; }
  30. sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1; } return -1; }
  31. sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1; } return -1; }
  32. copy_sign32 :: proc(x, y: f32) -> f32 {
  33. ix := x transmute u32
  34. iy := y transmute u32
  35. ix &= 0x7fffffff
  36. ix |= iy & 0x80000000
  37. return ix transmute f32
  38. }
  39. round32 :: proc(x: f32) -> f32 {
  40. if x >= 0 {
  41. return floor32(x + 0.5)
  42. }
  43. return ceil32(x - 0.5)
  44. }
  45. floor32 :: proc(x: f32) -> f32 {
  46. if x >= 0 {
  47. return x as int as f32
  48. }
  49. return (x-0.5) as int as f32
  50. }
  51. ceil32 :: proc(x: f32) -> f32 {
  52. if x < 0 {
  53. return x as int as f32
  54. }
  55. return ((x as int)+1) as f32
  56. }
  57. remainder32 :: proc(x, y: f32) -> f32 {
  58. return x - round32(x/y) * y
  59. }
  60. fmod32 :: proc(x, y: f32) -> f32 {
  61. y = abs(y)
  62. result := remainder32(abs(x), y)
  63. if sign32(result) < 0 {
  64. result += y
  65. }
  66. return copy_sign32(result, x)
  67. }
  68. to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
  69. to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
  70. dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y; }
  71. dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; }
  72. dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; }
  73. cross3 :: proc(x, y: Vec3) -> Vec3 {
  74. a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1)
  75. b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0)
  76. return a - b
  77. }
  78. vec2_mag :: proc(v: Vec2) -> f32 { return sqrt32(dot2(v, v)); }
  79. vec3_mag :: proc(v: Vec3) -> f32 { return sqrt32(dot3(v, v)); }
  80. vec4_mag :: proc(v: Vec4) -> f32 { return sqrt32(dot4(v, v)); }
  81. vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; }
  82. vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; }
  83. vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; }
  84. vec2_norm0 :: proc(v: Vec2) -> Vec2 {
  85. m := vec2_mag(v)
  86. if m == 0 {
  87. return Vec2{0}
  88. }
  89. return v / Vec2{m}
  90. }
  91. vec3_norm0 :: proc(v: Vec3) -> Vec3 {
  92. m := vec3_mag(v)
  93. if m == 0 {
  94. return Vec3{0}
  95. }
  96. return v / Vec3{m}
  97. }
  98. vec4_norm0 :: proc(v: Vec4) -> Vec4 {
  99. m := vec4_mag(v)
  100. if m == 0 {
  101. return Vec4{0}
  102. }
  103. return v / Vec4{m}
  104. }
  105. mat4_identity :: proc() -> Mat4 {
  106. return Mat4{
  107. {1, 0, 0, 0},
  108. {0, 1, 0, 0},
  109. {0, 0, 1, 0},
  110. {0, 0, 0, 1},
  111. }
  112. }
  113. mat4_transpose :: proc(m: Mat4) -> Mat4 {
  114. for j := 0; j < 4; j++ {
  115. for i := 0; i < 4; i++ {
  116. m[i][j], m[j][i] = m[j][i], m[i][j]
  117. }
  118. }
  119. return m
  120. }
  121. mat4_mul :: proc(a, b: Mat4) -> Mat4 {
  122. c: Mat4
  123. for j := 0; j < 4; j++ {
  124. for i := 0; i < 4; i++ {
  125. c[j][i] = a[0][i]*b[j][0]
  126. + a[1][i]*b[j][1]
  127. + a[2][i]*b[j][2]
  128. + a[3][i]*b[j][3]
  129. }
  130. }
  131. return c
  132. }
  133. mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
  134. return Vec4{
  135. m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
  136. m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
  137. m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
  138. m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
  139. }
  140. }
  141. mat4_inverse :: proc(m: Mat4) -> Mat4 {
  142. o: Mat4
  143. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]
  144. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3]
  145. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2]
  146. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3]
  147. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2]
  148. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1]
  149. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3]
  150. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3]
  151. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2]
  152. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3]
  153. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2]
  154. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3]
  155. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1]
  156. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3]
  157. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3]
  158. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2]
  159. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3]
  160. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2]
  161. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1]
  162. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02)
  163. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04)
  164. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05)
  165. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05)
  166. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02)
  167. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04)
  168. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05)
  169. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05)
  170. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08)
  171. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10)
  172. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12)
  173. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12)
  174. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15)
  175. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17)
  176. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18)
  177. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18)
  178. ood := 1.0 / (m[0][0] * o[0][0] +
  179. m[0][1] * o[0][1] +
  180. m[0][2] * o[0][2] +
  181. m[0][3] * o[0][3])
  182. o[0][0] *= ood
  183. o[0][1] *= ood
  184. o[0][2] *= ood
  185. o[0][3] *= ood
  186. o[1][0] *= ood
  187. o[1][1] *= ood
  188. o[1][2] *= ood
  189. o[1][3] *= ood
  190. o[2][0] *= ood
  191. o[2][1] *= ood
  192. o[2][2] *= ood
  193. o[2][3] *= ood
  194. o[3][0] *= ood
  195. o[3][1] *= ood
  196. o[3][2] *= ood
  197. o[3][3] *= ood
  198. return o
  199. }
  200. mat4_translate :: proc(v: Vec3) -> Mat4 {
  201. m := mat4_identity()
  202. m[3][0] = v.x
  203. m[3][1] = v.y
  204. m[3][2] = v.z
  205. m[3][3] = 1
  206. return m
  207. }
  208. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  209. c := cos32(angle_radians)
  210. s := sin32(angle_radians)
  211. a := vec3_norm(v)
  212. t := a * Vec3{1-c}
  213. rot := mat4_identity()
  214. rot[0][0] = c + t.x*a.x
  215. rot[0][1] = 0 + t.x*a.y + s*a.z
  216. rot[0][2] = 0 + t.x*a.z - s*a.y
  217. rot[0][3] = 0
  218. rot[1][0] = 0 + t.y*a.x - s*a.z
  219. rot[1][1] = c + t.y*a.y
  220. rot[1][2] = 0 + t.y*a.z + s*a.x
  221. rot[1][3] = 0
  222. rot[2][0] = 0 + t.z*a.x + s*a.y
  223. rot[2][1] = 0 + t.z*a.y - s*a.x
  224. rot[2][2] = c + t.z*a.z
  225. rot[2][3] = 0
  226. return rot
  227. }
  228. mat4_scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
  229. m[0][0] = v.x
  230. m[1][1] = v.y
  231. m[2][2] = v.z
  232. return m
  233. }
  234. mat4_scalef :: proc(m: Mat4, s: f32) -> Mat4 {
  235. m[0][0] = s
  236. m[1][1] = s
  237. m[2][2] = s
  238. return m
  239. }
  240. mat4_look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  241. f := vec3_norm(centre - eye)
  242. s := vec3_norm(cross3(f, up))
  243. u := cross3(s, f)
  244. m: Mat4
  245. m[0] = Vec4{+s.x, +s.y, +s.z, 0}
  246. m[1] = Vec4{+u.x, +u.y, +u.z, 0}
  247. m[2] = Vec4{-f.x, -f.y, -f.z, 0}
  248. m[3] = Vec4{dot3(s, eye), dot3(u, eye), dot3(f, eye), 1}
  249. return m
  250. }
  251. mat4_perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  252. m: Mat4
  253. tan_half_fovy := tan32(0.5 * fovy)
  254. m[0][0] = 1.0 / (aspect*tan_half_fovy)
  255. m[1][1] = 1.0 / (tan_half_fovy)
  256. m[2][2] = -(far + near) / (far - near)
  257. m[2][3] = -1.0
  258. m[3][2] = -2.0*far*near / (far - near)
  259. return m
  260. }
  261. mat4_ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  262. m := mat4_identity()
  263. m[0][0] = +2.0 / (right - left)
  264. m[1][1] = +2.0 / (top - bottom)
  265. m[2][2] = -2.0 / (far - near)
  266. m[3][0] = -(right + left) / (right - left)
  267. m[3][1] = -(top + bottom) / (top - bottom)
  268. m[3][2] = -(far + near) / (far - near)
  269. return m
  270. }
  271. F32_DIG :: 6
  272. F32_EPSILON :: 1.192092896e-07
  273. F32_GUARD :: 0
  274. F32_MANT_DIG :: 24
  275. F32_MAX :: 3.402823466e+38
  276. F32_MAX_10_EXP :: 38
  277. F32_MAX_EXP :: 128
  278. F32_MIN :: 1.175494351e-38
  279. F32_MIN_10_EXP :: -37
  280. F32_MIN_EXP :: -125
  281. F32_NORMALIZE :: 0
  282. F32_RADIX :: 2
  283. F32_ROUNDS :: 1
  284. F64_DIG :: 15 // # of decimal digits of precision
  285. F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0
  286. F64_MANT_DIG :: 53 // # of bits in mantissa
  287. F64_MAX :: 1.7976931348623158e+308 // max value
  288. F64_MAX_10_EXP :: 308 // max decimal exponent
  289. F64_MAX_EXP :: 1024 // max binary exponent
  290. F64_MIN :: 2.2250738585072014e-308 // min positive value
  291. F64_MIN_10_EXP :: -307 // min decimal exponent
  292. F64_MIN_EXP :: -1021 // min binary exponent
  293. F64_RADIX :: 2 // exponent radix
  294. F64_ROUNDS :: 1 // addition rounding: near