math.odin 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598
  1. package math
  2. TAU :: 6.28318530717958647692528676655900576;
  3. PI :: 3.14159265358979323846264338327950288;
  4. E :: 2.71828182845904523536;
  5. SQRT_TWO :: 1.41421356237309504880168872420969808;
  6. SQRT_THREE :: 1.73205080756887729352744634150587236;
  7. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  8. LOG_TWO :: 0.693147180559945309417232121458176568;
  9. LOG_TEN :: 2.30258509299404568401799145468436421;
  10. EPSILON :: 1.19209290e-7;
  11. τ :: TAU;
  12. π :: PI;
  13. Vec2 :: distinct [2]f32;
  14. Vec3 :: distinct [3]f32;
  15. Vec4 :: distinct [4]f32;
  16. // Column major
  17. Mat2 :: distinct [2][2]f32;
  18. Mat3 :: distinct [3][3]f32;
  19. Mat4 :: distinct [4][4]f32;
  20. Quat :: struct {x, y, z, w: f32};
  21. QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1};
  22. @(default_calling_convention="c")
  23. foreign _ {
  24. @(link_name="llvm.sqrt.f32")
  25. sqrt_f32 :: proc(x: f32) -> f32 ---;
  26. @(link_name="llvm.sqrt.f64")
  27. sqrt_f64 :: proc(x: f64) -> f64 ---;
  28. @(link_name="llvm.sin.f32")
  29. sin_f32 :: proc(θ: f32) -> f32 ---;
  30. @(link_name="llvm.sin.f64")
  31. sin_f64 :: proc(θ: f64) -> f64 ---;
  32. @(link_name="llvm.cos.f32")
  33. cos_f32 :: proc(θ: f32) -> f32 ---;
  34. @(link_name="llvm.cos.f64")
  35. cos_f64 :: proc(θ: f64) -> f64 ---;
  36. @(link_name="llvm.pow.f32")
  37. pow_f32 :: proc(x, power: f32) -> f32 ---;
  38. @(link_name="llvm.pow.f64")
  39. pow_f64 :: proc(x, power: f64) -> f64 ---;
  40. @(link_name="llvm.fmuladd.f32")
  41. fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
  42. @(link_name="llvm.fmuladd.f64")
  43. fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
  44. @(link_name="llvm.log.f32")
  45. log_f32 :: proc(x: f32) -> f32 ---;
  46. @(link_name="llvm.log.f64")
  47. log_f64 :: proc(x: f64) -> f64 ---;
  48. @(link_name="llvm.exp.f32")
  49. exp_f32 :: proc(x: f32) -> f32 ---;
  50. @(link_name="llvm.exp.f64")
  51. exp_f64 :: proc(x: f64) -> f64 ---;
  52. }
  53. log :: proc{log_f32, log_f64};
  54. exp :: proc{exp_f32, exp_f64};
  55. tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
  56. tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
  57. lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
  58. unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
  59. unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
  60. sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
  61. sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
  62. copy_sign_f32 :: proc(x, y: f32) -> f32 {
  63. ix := transmute(u32)x;
  64. iy := transmute(u32)y;
  65. ix &= 0x7fff_ffff;
  66. ix |= iy & 0x8000_0000;
  67. return transmute(f32)ix;
  68. }
  69. copy_sign_f64 :: proc(x, y: f64) -> f64 {
  70. ix := transmute(u64)x;
  71. iy := transmute(u64)y;
  72. ix &= 0x7fff_ffff_ffff_ffff;
  73. ix |= iy & 0x8000_0000_0000_0000;
  74. return transmute(f64)ix;
  75. }
  76. sqrt :: proc{sqrt_f32, sqrt_f64};
  77. sin :: proc{sin_f32, sin_f64};
  78. cos :: proc{cos_f32, cos_f64};
  79. tan :: proc{tan_f32, tan_f64};
  80. pow :: proc{pow_f32, pow_f64};
  81. fmuladd :: proc{fmuladd_f32, fmuladd_f64};
  82. sign :: proc{sign_f32, sign_f64};
  83. copy_sign :: proc{copy_sign_f32, copy_sign_f64};
  84. round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  85. round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  86. round :: proc{round_f32, round_f64};
  87. floor_f32 :: proc(x: f32) -> f32 {
  88. if x == 0 || is_nan(x) || is_inf(x) {
  89. return x;
  90. }
  91. if x < 0 {
  92. d, fract := modf(-x);
  93. if fract != 0.0 {
  94. d = d + 1;
  95. }
  96. return -d;
  97. }
  98. d, _ := modf(x);
  99. return d;
  100. }
  101. floor_f64 :: proc(x: f64) -> f64 {
  102. if x == 0 || is_nan(x) || is_inf(x) {
  103. return x;
  104. }
  105. if x < 0 {
  106. d, fract := modf(-x);
  107. if fract != 0.0 {
  108. d = d + 1;
  109. }
  110. return -d;
  111. }
  112. d, _ := modf(x);
  113. return d;
  114. }
  115. floor :: proc{floor_f32, floor_f64};
  116. ceil_f32 :: proc(x: f32) -> f32 { return -floor_f32(-x); }
  117. ceil_f64 :: proc(x: f64) -> f64 { return -floor_f64(-x); }
  118. ceil :: proc{ceil_f32, ceil_f64};
  119. remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
  120. remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
  121. remainder :: proc{remainder_f32, remainder_f64};
  122. mod_f32 :: proc(x, y: f32) -> f32 {
  123. result: f32;
  124. y = abs(y);
  125. result = remainder(abs(x), y);
  126. if sign(result) < 0 {
  127. result += y;
  128. }
  129. return copy_sign(result, x);
  130. }
  131. mod_f64 :: proc(x, y: f64) -> f64 {
  132. result: f64;
  133. y = abs(y);
  134. result = remainder(abs(x), y);
  135. if sign(result) < 0 {
  136. result += y;
  137. }
  138. return copy_sign(result, x);
  139. }
  140. mod :: proc{mod_f32, mod_f64};
  141. // TODO(bill): These need to implemented with the actual instructions
  142. modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
  143. shift :: 32 - 8 - 1;
  144. mask :: 0xff;
  145. bias :: 127;
  146. if x < 1 {
  147. switch {
  148. case x < 0:
  149. int, frac = modf(-x);
  150. return -int, -frac;
  151. case x == 0:
  152. return x, x;
  153. }
  154. return 0, x;
  155. }
  156. i := transmute(u32)x;
  157. e := uint(i>>shift)&mask - bias;
  158. if e < 32-9 {
  159. i &~= 1<<(32-9-e) - 1;
  160. }
  161. int = transmute(f32)i;
  162. frac = x - int;
  163. return;
  164. }
  165. modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) {
  166. shift :: 64 - 11 - 1;
  167. mask :: 0x7ff;
  168. bias :: 1023;
  169. if x < 1 {
  170. switch {
  171. case x < 0:
  172. int, frac = modf(-x);
  173. return -int, -frac;
  174. case x == 0:
  175. return x, x;
  176. }
  177. return 0, x;
  178. }
  179. i := transmute(u64)x;
  180. e := uint(i>>shift)&mask - bias;
  181. if e < 64-12 {
  182. i &~= 1<<(64-12-e) - 1;
  183. }
  184. int = transmute(f64)i;
  185. frac = x - int;
  186. return;
  187. }
  188. modf :: proc{modf_f32, modf_f64};
  189. is_nan_f32 :: inline proc(x: f32) -> bool { return x != x; }
  190. is_nan_f64 :: inline proc(x: f64) -> bool { return x != x; }
  191. is_nan :: proc{is_nan_f32, is_nan_f64};
  192. is_finite_f32 :: inline proc(x: f32) -> bool { return !is_nan(x-x); }
  193. is_finite_f64 :: inline proc(x: f64) -> bool { return !is_nan(x-x); }
  194. is_finite :: proc{is_finite_f32, is_finite_f64};
  195. is_inf_f32 :: proc(x: f32, sign := 0) -> bool {
  196. return sign >= 0 && x > F32_MAX || sign <= 0 && x < -F32_MAX;
  197. }
  198. is_inf_f64 :: proc(x: f64, sign := 0) -> bool {
  199. return sign >= 0 && x > F64_MAX || sign <= 0 && x < -F64_MAX;
  200. }
  201. // If sign > 0, is_inf reports whether f is positive infinity
  202. // If sign < 0, is_inf reports whether f is negative infinity
  203. // If sign == 0, is_inf reports whether f is either infinity
  204. is_inf :: proc{is_inf_f32, is_inf_f64};
  205. to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
  206. to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
  207. mul :: proc{
  208. mat3_mul,
  209. mat4_mul, mat4_mul_vec4,
  210. quat_mul, quat_mulf,
  211. };
  212. div :: proc{quat_div, quat_divf};
  213. inverse :: proc{mat4_inverse, quat_inverse};
  214. dot :: proc{vec_dot, quat_dot};
  215. cross :: proc{cross2, cross3};
  216. vec_dot :: proc(a, b: $T/[$N]$E) -> E {
  217. res: E;
  218. for i in 0..<N {
  219. res += a[i] * b[i];
  220. }
  221. return res;
  222. }
  223. cross2 :: proc(a, b: $T/[2]$E) -> E {
  224. return a[0]*b[1] - a[1]*b[0];
  225. }
  226. cross3 :: proc(a, b: $T/[3]$E) -> T {
  227. i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
  228. j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
  229. return T(i - j);
  230. }
  231. length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); }
  232. norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); }
  233. norm0 :: proc(v: $T/[$N]$E) -> T {
  234. m := length(v);
  235. return m == 0 ? 0 : v/m;
  236. }
  237. identity :: proc($T: typeid/[$N][N]$E) -> T {
  238. m: T;
  239. for i in 0..<N do m[i][i] = E(1);
  240. return m;
  241. }
  242. transpose :: proc(m: $M/[$N][N]f32) -> M {
  243. for j in 0..<N {
  244. for i in 0..<N {
  245. m[i][j], m[j][i] = m[j][i], m[i][j];
  246. }
  247. }
  248. return m;
  249. }
  250. mat3_mul :: proc(a, b: Mat3) -> Mat3 {
  251. c: Mat3;
  252. for j in 0..<3 {
  253. for i in 0..<3 {
  254. c[j][i] = a[0][i]*b[j][0] +
  255. a[1][i]*b[j][1] +
  256. a[2][i]*b[j][2];
  257. }
  258. }
  259. return c;
  260. }
  261. mat4_mul :: proc(a, b: Mat4) -> Mat4 {
  262. c: Mat4;
  263. for j in 0..<4 {
  264. for i in 0..<4 {
  265. c[j][i] = a[0][i]*b[j][0] +
  266. a[1][i]*b[j][1] +
  267. a[2][i]*b[j][2] +
  268. a[3][i]*b[j][3];
  269. }
  270. }
  271. return c;
  272. }
  273. mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
  274. return Vec4{
  275. m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
  276. m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
  277. m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
  278. m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
  279. };
  280. }
  281. mat4_inverse :: proc(m: Mat4) -> Mat4 {
  282. o: Mat4;
  283. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
  284. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
  285. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
  286. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
  287. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
  288. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
  289. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
  290. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  291. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
  292. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
  293. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
  294. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  295. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
  296. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
  297. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
  298. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
  299. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
  300. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
  301. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
  302. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
  303. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
  304. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
  305. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
  306. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
  307. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
  308. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
  309. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
  310. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
  311. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
  312. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
  313. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
  314. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
  315. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
  316. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
  317. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
  318. ood := 1.0 / (m[0][0] * o[0][0] +
  319. m[0][1] * o[0][1] +
  320. m[0][2] * o[0][2] +
  321. m[0][3] * o[0][3]);
  322. o[0][0] *= ood;
  323. o[0][1] *= ood;
  324. o[0][2] *= ood;
  325. o[0][3] *= ood;
  326. o[1][0] *= ood;
  327. o[1][1] *= ood;
  328. o[1][2] *= ood;
  329. o[1][3] *= ood;
  330. o[2][0] *= ood;
  331. o[2][1] *= ood;
  332. o[2][2] *= ood;
  333. o[2][3] *= ood;
  334. o[3][0] *= ood;
  335. o[3][1] *= ood;
  336. o[3][2] *= ood;
  337. o[3][3] *= ood;
  338. return o;
  339. }
  340. mat4_translate :: proc(v: Vec3) -> Mat4 {
  341. m := identity(Mat4);
  342. m[3][0] = v[0];
  343. m[3][1] = v[1];
  344. m[3][2] = v[2];
  345. m[3][3] = 1;
  346. return m;
  347. }
  348. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  349. c := cos(angle_radians);
  350. s := sin(angle_radians);
  351. a := norm(v);
  352. t := a * (1-c);
  353. rot := identity(Mat4);
  354. rot[0][0] = c + t[0]*a[0];
  355. rot[0][1] = 0 + t[0]*a[1] + s*a[2];
  356. rot[0][2] = 0 + t[0]*a[2] - s*a[1];
  357. rot[0][3] = 0;
  358. rot[1][0] = 0 + t[1]*a[0] - s*a[2];
  359. rot[1][1] = c + t[1]*a[1];
  360. rot[1][2] = 0 + t[1]*a[2] + s*a[0];
  361. rot[1][3] = 0;
  362. rot[2][0] = 0 + t[2]*a[0] + s*a[1];
  363. rot[2][1] = 0 + t[2]*a[1] - s*a[0];
  364. rot[2][2] = c + t[2]*a[2];
  365. rot[2][3] = 0;
  366. return rot;
  367. }
  368. scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 {
  369. m[0][0] *= v[0];
  370. m[1][1] *= v[1];
  371. m[2][2] *= v[2];
  372. return m;
  373. }
  374. scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 {
  375. m[0][0] *= s;
  376. m[1][1] *= s;
  377. m[2][2] *= s;
  378. return m;
  379. }
  380. scale :: proc{scale_vec3, scale_f32};
  381. look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  382. f := norm(centre - eye);
  383. s := norm(cross(f, up));
  384. u := cross(s, f);
  385. return Mat4{
  386. {+s.x, +u.x, -f.x, 0},
  387. {+s.y, +u.y, -f.y, 0},
  388. {+s.z, +u.z, -f.z, 0},
  389. {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
  390. };
  391. }
  392. perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  393. m: Mat4;
  394. tan_half_fovy := tan(0.5 * fovy);
  395. m[0][0] = 1.0 / (aspect*tan_half_fovy);
  396. m[1][1] = 1.0 / (tan_half_fovy);
  397. m[2][2] = -(far + near) / (far - near);
  398. m[2][3] = -1.0;
  399. m[3][2] = -2.0*far*near / (far - near);
  400. return m;
  401. }
  402. ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  403. m := identity(Mat4);
  404. m[0][0] = +2.0 / (right - left);
  405. m[1][1] = +2.0 / (top - bottom);
  406. m[2][2] = -2.0 / (far - near);
  407. m[3][0] = -(right + left) / (right - left);
  408. m[3][1] = -(top + bottom) / (top - bottom);
  409. m[3][2] = -(far + near) / (far - near);
  410. return m;
  411. }
  412. // Quaternion operations
  413. conj :: proc(q: Quat) -> Quat {
  414. return Quat{-q.x, -q.y, -q.z, q.w};
  415. }
  416. quat_mul :: proc(q0, q1: Quat) -> Quat {
  417. d: Quat;
  418. d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y;
  419. d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x;
  420. d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w;
  421. d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z;
  422. return d;
  423. }
  424. quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; }
  425. quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; }
  426. quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); }
  427. quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); }
  428. quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; }
  429. quat_norm :: proc(q: Quat) -> Quat {
  430. m := sqrt(dot(q, q));
  431. return div(q, m);
  432. }
  433. axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat {
  434. v := norm(axis) * sin(0.5*angle_radians);
  435. w := cos(0.5*angle_radians);
  436. return Quat{v.x, v.y, v.z, w};
  437. }
  438. euler_angles :: proc(pitch, yaw, roll: f32) -> Quat {
  439. p := axis_angle(Vec3{1, 0, 0}, pitch);
  440. y := axis_angle(Vec3{0, 1, 0}, yaw);
  441. r := axis_angle(Vec3{0, 0, 1}, roll);
  442. return mul(mul(y, p), r);
  443. }
  444. quat_to_mat4 :: proc(q: Quat) -> Mat4 {
  445. a := quat_norm(q);
  446. xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z;
  447. xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z;
  448. wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z;
  449. m := identity(Mat4);
  450. m[0][0] = 1 - 2*(yy + zz);
  451. m[0][1] = 2*(xy + wz);
  452. m[0][2] = 2*(xz - wy);
  453. m[1][0] = 2*(xy - wz);
  454. m[1][1] = 1 - 2*(xx + zz);
  455. m[1][2] = 2*(yz + wx);
  456. m[2][0] = 2*(xz + wy);
  457. m[2][1] = 2*(yz - wx);
  458. m[2][2] = 1 - 2*(xx + yy);
  459. return m;
  460. }
  461. F32_DIG :: 6;
  462. F32_EPSILON :: 1.192092896e-07;
  463. F32_GUARD :: 0;
  464. F32_MANT_DIG :: 24;
  465. F32_MAX :: 3.402823466e+38;
  466. F32_MAX_10_EXP :: 38;
  467. F32_MAX_EXP :: 128;
  468. F32_MIN :: 1.175494351e-38;
  469. F32_MIN_10_EXP :: -37;
  470. F32_MIN_EXP :: -125;
  471. F32_NORMALIZE :: 0;
  472. F32_RADIX :: 2;
  473. F32_ROUNDS :: 1;
  474. F64_DIG :: 15; // # of decimal digits of precision
  475. F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
  476. F64_MANT_DIG :: 53; // # of bits in mantissa
  477. F64_MAX :: 1.7976931348623158e+308; // max value
  478. F64_MAX_10_EXP :: 308; // max decimal exponent
  479. F64_MAX_EXP :: 1024; // max binary exponent
  480. F64_MIN :: 2.2250738585072014e-308; // min positive value
  481. F64_MIN_10_EXP :: -307; // min decimal exponent
  482. F64_MIN_EXP :: -1021; // min binary exponent
  483. F64_RADIX :: 2; // exponent radix
  484. F64_ROUNDS :: 1; // addition rounding: near