123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786 |
- package linalg
- import "core:math"
- import "intrinsics"
- // Specific
- Float :: f32;
- FLOAT_EPSILON :: size_of(Float) == 4 ? 1e-7 : 1e-15;
- Vector2 :: distinct [2]Float;
- Vector3 :: distinct [3]Float;
- Vector4 :: distinct [4]Float;
- Matrix1x1 :: distinct [1][1]Float;
- Matrix1x2 :: distinct [1][2]Float;
- Matrix1x3 :: distinct [1][3]Float;
- Matrix1x4 :: distinct [1][4]Float;
- Matrix2x1 :: distinct [2][1]Float;
- Matrix2x2 :: distinct [2][2]Float;
- Matrix2x3 :: distinct [2][3]Float;
- Matrix2x4 :: distinct [2][4]Float;
- Matrix3x1 :: distinct [3][1]Float;
- Matrix3x2 :: distinct [3][2]Float;
- Matrix3x3 :: distinct [3][3]Float;
- Matrix3x4 :: distinct [3][4]Float;
- Matrix4x1 :: distinct [4][1]Float;
- Matrix4x2 :: distinct [4][2]Float;
- Matrix4x3 :: distinct [4][3]Float;
- Matrix4x4 :: distinct [4][4]Float;
- Matrix1 :: Matrix1x1;
- Matrix2 :: Matrix2x2;
- Matrix3 :: Matrix3x3;
- Matrix4 :: Matrix4x4;
- Quaternion :: distinct (size_of(Float) == size_of(f32) ? quaternion128 : quaternion256);
- MATRIX1_IDENTITY :: Matrix1{{1}};
- MATRIX2_IDENTITY :: Matrix2{{1, 0}, {0, 1}};
- MATRIX3_IDENTITY :: Matrix3{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
- MATRIX4_IDENTITY :: Matrix4{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
- QUATERNION_IDENTITY :: Quaternion(1);
- VECTOR3_X_AXIS :: Vector3{1, 0, 0};
- VECTOR3_Y_AXIS :: Vector3{0, 1, 0};
- VECTOR3_Z_AXIS :: Vector3{0, 0, 1};
- radians :: proc(degrees: Float) -> Float {
- return math.TAU * degrees / 360.0;
- }
- degrees :: proc(radians: Float) -> Float {
- return 360.0 * radians / math.TAU;
- }
- vector2_orthogonal :: proc(v: Vector2) -> Vector2 {
- return {-v.y, v.x};
- }
- vector3_orthogonal :: proc(v: Vector3) -> Vector3 {
- x := abs(v.x);
- y := abs(v.y);
- z := abs(v.z);
- other: Vector3 = x < y ? (x < z ? {1, 0, 0} : {0, 0, 1}) : (y < z ? {0, 1, 0} : {0, 0, 1});
- return normalize(cross(v, other));
- }
- vector4_srgb_to_linear :: proc(col: Vector4) -> Vector4 {
- r := math.pow(col.x, 2.2);
- g := math.pow(col.y, 2.2);
- b := math.pow(col.z, 2.2);
- a := col.w;
- return {r, g, b, a};
- }
- vector4_linear_to_srgb :: proc(col: Vector4) -> Vector4 {
- a :: 2.51;
- b :: 0.03;
- c :: 2.43;
- d :: 0.59;
- e :: 0.14;
- x := col.x;
- y := col.y;
- z := col.z;
- x = (x * (a * x + b)) / (x * (c * x + d) + e);
- y = (y * (a * y + b)) / (y * (c * y + d) + e);
- z = (z * (a * z + b)) / (z * (c * z + d) + e);
- x = math.pow(clamp(x, 0, 1), 1.0 / 2.2);
- y = math.pow(clamp(y, 0, 1), 1.0 / 2.2);
- z = math.pow(clamp(z, 0, 1), 1.0 / 2.2);
- return {x, y, z, col.w};
- }
- vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 {
- hue_to_rgb :: proc(p, q, t0: Float) -> Float {
- t := math.mod(t0, 1.0);
- switch {
- case t < 1.0/6.0: return p + (q - p) * 6.0 * t;
- case t < 1.0/2.0: return q;
- case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t);
- }
- return p;
- }
- r, g, b: Float;
- if s == 0 {
- r = l;
- g = l;
- b = l;
- } else {
- q := l < 0.5 ? l * (1+s) : l+s - l*s;
- p := 2*l - q;
- r = hue_to_rgb(p, q, h + 1.0/3.0);
- g = hue_to_rgb(p, q, h);
- b = hue_to_rgb(p, q, h - 1.0/3.0);
- }
- return {r, g, b, a};
- }
- vector4_rgb_to_hsl :: proc(col: Vector4) -> Vector4 {
- r := col.x;
- g := col.y;
- b := col.z;
- a := col.w;
- v_min := min(r, g, b);
- v_max := max(r, g, b);
- h, s, l: Float;
- h = 0.0;
- s = 0.0;
- l = (v_min + v_max) * 0.5;
- if v_max != v_min {
- d: = v_max - v_min;
- s = l > 0.5 ? d / (2.0 - v_max - v_min) : d / (v_max + v_min);
- switch {
- case v_max == r:
- h = (g - b) / d + (g < b ? 6.0 : 0.0);
- case v_max == g:
- h = (b - r) / d + 2.0;
- case v_max == b:
- h = (r - g) / d + 4.0;
- }
- h *= 1.0/6.0;
- }
- return {h, s, l, a};
- }
- quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion {
- t := angle_radians*0.5;
- w := math.cos(t);
- v := normalize(axis) * math.sin(t);
- return quaternion(w, v.x, v.y, v.z);
- }
- quaternion_from_euler_angles :: proc(roll, pitch, yaw: Float) -> Quaternion {
- x, y, z := roll, pitch, yaw;
- a, b, c := x, y, z;
- ca, sa := math.cos(a*0.5), math.sin(a*0.5);
- cb, sb := math.cos(b*0.5), math.sin(b*0.5);
- cc, sc := math.cos(c*0.5), math.sin(c*0.5);
- q: Quaternion;
- q.x = sa*cb*cc - ca*sb*sc;
- q.y = ca*sb*cc + sa*cb*sc;
- q.z = ca*cb*sc - sa*sb*cc;
- q.w = ca*cb*cc + sa*sb*sc;
- return q;
- }
- euler_angles_from_quaternion :: proc(q: Quaternion) -> (roll, pitch, yaw: Float) {
- // roll, x-axis rotation
- sinr_cosp: Float = 2 * (q.w * q.x + q.y * q.z);
- cosr_cosp: Float = 1 - 2 * (q.x * q.x + q.y * q.y);
- roll = math.atan2(sinr_cosp, cosr_cosp);
- // pitch, y-axis rotation
- sinp: Float = 2 * (q.w * q.y - q.z * q.x);
- if abs(sinp) >= 1 {
- pitch = math.copy_sign(math.TAU * 0.25, sinp);
- } else {
- pitch = math.asin(sinp);
- }
- // yaw, z-axis rotation
- siny_cosp: Float = 2 * (q.w * q.z + q.x * q.y);
- cosy_cosp: Float = 1 - 2 * (q.y * q.y + q.z * q.z);
- yaw = math.atan2(siny_cosp, cosy_cosp);
- return;
- }
- quaternion_from_forward_and_up :: proc(forward, up: Vector3) -> Quaternion {
- f := normalize(forward);
- s := normalize(cross(f, up));
- u := cross(s, f);
- m := Matrix3{
- {+s.x, +u.x, -f.x},
- {+s.y, +u.y, -f.y},
- {+s.z, +u.z, -f.z},
- };
- tr := trace(m);
- q: Quaternion;
- switch {
- case tr > 0:
- S := 2 * math.sqrt(1 + tr);
- q.w = 0.25 * S;
- q.x = (m[2][1] - m[1][2]) / S;
- q.y = (m[0][2] - m[2][0]) / S;
- q.z = (m[1][0] - m[0][1]) / S;
- case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]):
- S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]);
- q.w = (m[2][1] - m[1][2]) / S;
- q.x = 0.25 * S;
- q.y = (m[0][1] + m[1][0]) / S;
- q.z = (m[0][2] + m[2][0]) / S;
- case m[1][1] > m[2][2]:
- S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]);
- q.w = (m[0][2] - m[2][0]) / S;
- q.x = (m[0][1] + m[1][0]) / S;
- q.y = 0.25 * S;
- q.z = (m[1][2] + m[2][1]) / S;
- case:
- S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]);
- q.w = (m[1][0] - m[0][1]) / S;
- q.x = (m[0][2] - m[2][0]) / S;
- q.y = (m[1][2] + m[2][1]) / S;
- q.z = 0.25 * S;
- }
- return normalize(q);
- }
- quaternion_look_at :: proc(eye, centre: Vector3, up: Vector3) -> Quaternion {
- return quaternion_from_forward_and_up(centre-eye, up);
- }
- quaternion_nlerp :: proc(a, b: Quaternion, t: Float) -> Quaternion {
- c := a + (b-a)*quaternion(t, 0, 0, 0);
- return normalize(c);
- }
- quaternion_slerp :: proc(x, y: Quaternion, t: Float) -> Quaternion {
- a, b := x, y;
- cos_angle := dot(a, b);
- if cos_angle < 0 {
- b = -b;
- cos_angle = -cos_angle;
- }
- if cos_angle > 1 - FLOAT_EPSILON {
- return a + (b-a)*quaternion(t, 0, 0, 0);
- }
- angle := math.acos(cos_angle);
- sin_angle := math.sin(angle);
- factor_a, factor_b: Quaternion;
- factor_a = quaternion(math.sin((1-t) * angle) / sin_angle, 0, 0, 0);
- factor_b = quaternion(math.sin(t * angle) / sin_angle, 0, 0, 0);
- return factor_a * a + factor_b * b;
- }
- quaternion_from_matrix4 :: proc(m: Matrix4) -> Quaternion {
- four_x_squared_minus_1, four_y_squared_minus_1,
- four_z_squared_minus_1, four_w_squared_minus_1,
- four_biggest_squared_minus_1: Float;
- /* xyzw */
- /* 0123 */
- biggest_index := 3;
- biggest_value, mult: Float;
- four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
- four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
- four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
- four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
- four_biggest_squared_minus_1 = four_w_squared_minus_1;
- if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_x_squared_minus_1;
- biggest_index = 0;
- }
- if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_y_squared_minus_1;
- biggest_index = 1;
- }
- if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_z_squared_minus_1;
- biggest_index = 2;
- }
- biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5;
- mult = 0.25 / biggest_value;
- switch biggest_index {
- case 0:
- return quaternion(
- biggest_value,
- (m[0][1] + m[1][0]) * mult,
- (m[2][0] + m[0][2]) * mult,
- (m[1][2] - m[2][1]) * mult,
- );
- case 1:
- return quaternion(
- (m[0][1] + m[1][0]) * mult,
- biggest_value,
- (m[1][2] + m[2][1]) * mult,
- (m[2][0] - m[0][2]) * mult,
- );
- case 2:
- return quaternion(
- (m[2][0] + m[0][2]) * mult,
- (m[1][2] + m[2][1]) * mult,
- biggest_value,
- (m[0][1] - m[1][0]) * mult,
- );
- case 3:
- return quaternion(
- (m[1][2] - m[2][1]) * mult,
- (m[2][0] - m[0][2]) * mult,
- (m[0][1] - m[1][0]) * mult,
- biggest_value,
- );
- }
- return 0;
- }
- quaternion_from_matrix3 :: proc(m: Matrix3) -> Quaternion {
- four_x_squared_minus_1, four_y_squared_minus_1,
- four_z_squared_minus_1, four_w_squared_minus_1,
- four_biggest_squared_minus_1: Float;
- /* xyzw */
- /* 0123 */
- biggest_index := 3;
- biggest_value, mult: Float;
- four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
- four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
- four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
- four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
- four_biggest_squared_minus_1 = four_w_squared_minus_1;
- if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_x_squared_minus_1;
- biggest_index = 0;
- }
- if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_y_squared_minus_1;
- biggest_index = 1;
- }
- if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
- four_biggest_squared_minus_1 = four_z_squared_minus_1;
- biggest_index = 2;
- }
- biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5;
- mult = 0.25 / biggest_value;
- switch biggest_index {
- case 0:
- return quaternion(
- biggest_value,
- (m[0][1] + m[1][0]) * mult,
- (m[2][0] + m[0][2]) * mult,
- (m[1][2] - m[2][1]) * mult,
- );
- case 1:
- return quaternion(
- (m[0][1] + m[1][0]) * mult,
- biggest_value,
- (m[1][2] + m[2][1]) * mult,
- (m[2][0] - m[0][2]) * mult,
- );
- case 2:
- return quaternion(
- (m[2][0] + m[0][2]) * mult,
- (m[1][2] + m[2][1]) * mult,
- biggest_value,
- (m[0][1] - m[1][0]) * mult,
- );
- case 3:
- return quaternion(
- (m[1][2] - m[2][1]) * mult,
- (m[2][0] - m[0][2]) * mult,
- (m[0][1] - m[1][0]) * mult,
- biggest_value,
- );
- }
- return 0;
- }
- quaternion_between_two_vector3 :: proc(from, to: Vector3) -> Quaternion {
- x := normalize(from);
- y := normalize(to);
- cos_theta := dot(x, y);
- if abs(cos_theta + 1) < 2*FLOAT_EPSILON {
- v := vector3_orthogonal(x);
- return quaternion(0, v.x, v.y, v.z);
- }
- v := cross(x, y);
- w := cos_theta + 1;
- return Quaternion(normalize(quaternion(w, v.x, v.y, v.z)));
- }
- matrix2_inverse_transpose :: proc(m: Matrix2) -> Matrix2 {
- c: Matrix2;
- d := m[0][0]*m[1][1] - m[1][0]*m[0][1];
- id := 1.0/d;
- c[0][0] = +m[1][1] * id;
- c[0][1] = -m[0][1] * id;
- c[1][0] = -m[1][0] * id;
- c[1][1] = +m[0][0] * id;
- return c;
- }
- matrix2_determinant :: proc(m: Matrix2) -> Float {
- return m[0][0]*m[1][1] - m[1][0]*m[0][1];
- }
- matrix2_inverse :: proc(m: Matrix2) -> Matrix2 {
- c: Matrix2;
- d := m[0][0]*m[1][1] - m[1][0]*m[0][1];
- id := 1.0/d;
- c[0][0] = +m[1][1] * id;
- c[1][0] = -m[0][1] * id;
- c[0][1] = -m[1][0] * id;
- c[1][1] = +m[0][0] * id;
- return c;
- }
- matrix2_adjoint :: proc(m: Matrix2) -> Matrix2 {
- c: Matrix2;
- c[0][0] = +m[1][1];
- c[0][1] = -m[1][0];
- c[1][0] = -m[0][1];
- c[1][1] = +m[0][0];
- return c;
- }
- matrix3_from_quaternion :: proc(q: Quaternion) -> Matrix3 {
- xx := q.x * q.x;
- xy := q.x * q.y;
- xz := q.x * q.z;
- xw := q.x * q.w;
- yy := q.y * q.y;
- yz := q.y * q.z;
- yw := q.y * q.w;
- zz := q.z * q.z;
- zw := q.z * q.w;
- m: Matrix3;
- m[0][0] = 1 - 2 * (yy + zz);
- m[1][0] = 2 * (xy - zw);
- m[2][0] = 2 * (xz + yw);
- m[0][1] = 2 * (xy + zw);
- m[1][1] = 1 - 2 * (xx + zz);
- m[2][1] = 2 * (yz - xw);
- m[0][2] = 2 * (xz - yw);
- m[1][2] = 2 * (yz + xw);
- m[2][2] = 1 - 2 * (xx + yy);
- return m;
- }
- matrix3_inverse :: proc(m: Matrix3) -> Matrix3 {
- return transpose(matrix3_inverse_transpose(m));
- }
- matrix3_determinant :: proc(m: Matrix3) -> Float {
- a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
- b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
- c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
- return a + b + c;
- }
- matrix3_adjoint :: proc(m: Matrix3) -> Matrix3 {
- adjoint: Matrix3;
- adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]);
- adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]);
- adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]);
- adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]);
- adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]);
- adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]);
- adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]);
- adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]);
- adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]);
- return adjoint;
- }
- matrix3_inverse_transpose :: proc(m: Matrix3) -> Matrix3 {
- inverse_transpose: Matrix3;
- adjoint := matrix3_adjoint(m);
- determinant := matrix3_determinant(m);
- inv_determinant := 1.0 / determinant;
- for i in 0..<3 {
- for j in 0..<3 {
- inverse_transpose[i][j] = adjoint[i][j] * inv_determinant;
- }
- }
- return inverse_transpose;
- }
- matrix3_scale :: proc(s: Vector3) -> Matrix3 {
- m: Matrix3;
- m[0][0] = s[0];
- m[1][1] = s[1];
- m[2][2] = s[2];
- return m;
- }
- matrix3_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix3 {
- c := math.cos(angle_radians);
- s := math.sin(angle_radians);
- a := normalize(v);
- t := a * (1-c);
- rot: Matrix3 = ---;
- rot[0][0] = c + t[0]*a[0];
- rot[0][1] = 0 + t[0]*a[1] + s*a[2];
- rot[0][2] = 0 + t[0]*a[2] - s*a[1];
- rot[1][0] = 0 + t[1]*a[0] - s*a[2];
- rot[1][1] = c + t[1]*a[1];
- rot[1][2] = 0 + t[1]*a[2] + s*a[0];
- rot[2][0] = 0 + t[2]*a[0] + s*a[1];
- rot[2][1] = 0 + t[2]*a[1] - s*a[0];
- rot[2][2] = c + t[2]*a[2];
- return rot;
- }
- matrix3_look_at :: proc(eye, centre, up: Vector3) -> Matrix3 {
- f := normalize(centre - eye);
- s := normalize(cross(f, up));
- u := cross(s, f);
- return Matrix3{
- {+s.x, +u.x, -f.x},
- {+s.y, +u.y, -f.y},
- {+s.z, +u.z, -f.z},
- };
- }
- matrix4_from_quaternion :: proc(q: Quaternion) -> Matrix4 {
- m := identity(Matrix4);
- xx := q.x * q.x;
- xy := q.x * q.y;
- xz := q.x * q.z;
- xw := q.x * q.w;
- yy := q.y * q.y;
- yz := q.y * q.z;
- yw := q.y * q.w;
- zz := q.z * q.z;
- zw := q.z * q.w;
- m[0][0] = 1 - 2 * (yy + zz);
- m[1][0] = 2 * (xy - zw);
- m[2][0] = 2 * (xz + yw);
- m[0][1] = 2 * (xy + zw);
- m[1][1] = 1 - 2 * (xx + zz);
- m[2][1] = 2 * (yz - xw);
- m[0][2] = 2 * (xz - yw);
- m[1][2] = 2 * (yz + xw);
- m[2][2] = 1 - 2 * (xx + yy);
- return m;
- }
- matrix4_from_trs :: proc(t: Vector3, r: Quaternion, s: Vector3) -> Matrix4 {
- translation := matrix4_translate(t);
- rotation := matrix4_from_quaternion(r);
- scale := matrix4_scale(s);
- return mul(translation, mul(rotation, scale));
- }
- matrix4_inverse :: proc(m: Matrix4) -> Matrix4 {
- return transpose(matrix4_inverse_transpose(m));
- }
- matrix4_minor :: proc(m: Matrix4, c, r: int) -> Float {
- cut_down: Matrix3;
- for i in 0..<3 {
- col := i < c ? i : i+1;
- for j in 0..<3 {
- row := j < r ? j : j+1;
- cut_down[i][j] = m[col][row];
- }
- }
- return matrix3_determinant(cut_down);
- }
- matrix4_cofactor :: proc(m: Matrix4, c, r: int) -> Float {
- sign, minor: Float;
- sign = (c + r) % 2 == 0 ? 1 : -1;
- minor = matrix4_minor(m, c, r);
- return sign * minor;
- }
- matrix4_adjoint :: proc(m: Matrix4) -> Matrix4 {
- adjoint: Matrix4;
- for i in 0..<4 {
- for j in 0..<4 {
- adjoint[i][j] = matrix4_cofactor(m, i, j);
- }
- }
- return adjoint;
- }
- matrix4_determinant :: proc(m: Matrix4) -> Float {
- adjoint := matrix4_adjoint(m);
- determinant: Float = 0;
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0];
- }
- return determinant;
- }
- matrix4_inverse_transpose :: proc(m: Matrix4) -> Matrix4 {
- adjoint := matrix4_adjoint(m);
- determinant: Float = 0;
- for i in 0..<4 {
- determinant += m[i][0] * adjoint[i][0];
- }
- inv_determinant := 1.0 / determinant;
- inverse_transpose: Matrix4;
- for i in 0..<4 {
- for j in 0..<4 {
- inverse_transpose[i][j] = adjoint[i][j] * inv_determinant;
- }
- }
- return inverse_transpose;
- }
- matrix4_translate :: proc(v: Vector3) -> Matrix4 {
- m := identity(Matrix4);
- m[3][0] = v[0];
- m[3][1] = v[1];
- m[3][2] = v[2];
- return m;
- }
- matrix4_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix4 {
- c := math.cos(angle_radians);
- s := math.sin(angle_radians);
- a := normalize(v);
- t := a * (1-c);
- rot := identity(Matrix4);
- rot[0][0] = c + t[0]*a[0];
- rot[0][1] = 0 + t[0]*a[1] + s*a[2];
- rot[0][2] = 0 + t[0]*a[2] - s*a[1];
- rot[0][3] = 0;
- rot[1][0] = 0 + t[1]*a[0] - s*a[2];
- rot[1][1] = c + t[1]*a[1];
- rot[1][2] = 0 + t[1]*a[2] + s*a[0];
- rot[1][3] = 0;
- rot[2][0] = 0 + t[2]*a[0] + s*a[1];
- rot[2][1] = 0 + t[2]*a[1] - s*a[0];
- rot[2][2] = c + t[2]*a[2];
- rot[2][3] = 0;
- return rot;
- }
- matrix4_scale :: proc(v: Vector3) -> Matrix4 {
- m: Matrix4;
- m[0][0] = v[0];
- m[1][1] = v[1];
- m[2][2] = v[2];
- m[3][3] = 1;
- return m;
- }
- matrix4_look_at :: proc(eye, centre, up: Vector3) -> Matrix4 {
- f := normalize(centre - eye);
- s := normalize(cross(f, up));
- u := cross(s, f);
- return Matrix4{
- {+s.x, +u.x, -f.x, 0},
- {+s.y, +u.y, -f.y, 0},
- {+s.z, +u.z, -f.z, 0},
- {-dot(s, eye), -dot(u, eye), +dot(f, eye), 1},
- };
- }
- matrix4_perspective :: proc(fovy, aspect, near, far: Float, flip_z_axis := true) -> (m: Matrix4) {
- tan_half_fovy := math.tan(0.5 * fovy);
- m[0][0] = 1 / (aspect*tan_half_fovy);
- m[1][1] = 1 / (tan_half_fovy);
- m[2][2] = +(far + near) / (far - near);
- m[2][3] = +1;
- m[3][2] = -2*far*near / (far - near);
- if flip_z_axis {
- m[2] = -m[2];
- }
- return;
- }
- matrix_ortho3d :: proc(left, right, bottom, top, near, far: Float, flip_z_axis := true) -> (m: Matrix4) {
- m[0][0] = +2 / (right - left);
- m[1][1] = +2 / (top - bottom);
- m[2][2] = +2 / (far - near);
- m[3][0] = -(right + left) / (right - left);
- m[3][1] = -(top + bottom) / (top - bottom);
- m[3][2] = -(far + near) / (far- near);
- m[3][3] = 1;
- if flip_z_axis {
- m[2] = -m[2];
- }
- return;
- }
- matrix4_infinite_perspective :: proc(fovy, aspect, near: Float, flip_z_axis := true) -> (m: Matrix4) {
- tan_half_fovy := math.tan(0.5 * fovy);
- m[0][0] = 1 / (aspect*tan_half_fovy);
- m[1][1] = 1 / (tan_half_fovy);
- m[2][2] = +1;
- m[2][3] = +1;
- m[3][2] = -2*near;
- if flip_z_axis {
- m[2] = -m[2];
- }
- return;
- }
|