123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- package os
- import "core:mem"
- import "core:strconv"
- import "core:unicode/utf8"
- write_string :: proc(fd: Handle, str: string) -> (int, Errno) {
- return write(fd, transmute([]byte)str);
- }
- write_byte :: proc(fd: Handle, b: byte) -> (int, Errno) {
- return write(fd, []byte{b});
- }
- write_rune :: proc(fd: Handle, r: rune) -> (int, Errno) {
- if r < utf8.RUNE_SELF {
- return write_byte(fd, byte(r));
- }
- b, n := utf8.encode_rune(r);
- return write(fd, b[:n]);
- }
- write_encoded_rune :: proc(fd: Handle, r: rune) {
- write_byte(fd, '\'');
- switch r {
- case '\a': write_string(fd, "\\a");
- case '\b': write_string(fd, "\\b");
- case '\e': write_string(fd, "\\e");
- case '\f': write_string(fd, "\\f");
- case '\n': write_string(fd, "\\n");
- case '\r': write_string(fd, "\\r");
- case '\t': write_string(fd, "\\t");
- case '\v': write_string(fd, "\\v");
- case:
- if r < 32 {
- write_string(fd, "\\x");
- b: [2]byte;
- s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil);
- switch len(s) {
- case 0: write_string(fd, "00");
- case 1: write_rune(fd, '0');
- case 2: write_string(fd, s);
- }
- } else {
- write_rune(fd, r);
- }
- }
- write_byte(fd, '\'');
- }
- file_size_from_path :: proc(path: string) -> i64 {
- fd, err := open(path, O_RDONLY, 0);
- if err != 0 {
- return -1;
- }
- defer close(fd);
- length: i64;
- if length, err = file_size(fd); err != 0 {
- return -1;
- }
- return length;
- }
- read_entire_file :: proc(name: string) -> (data: []byte, success: bool) {
- fd, err := open(name, O_RDONLY, 0);
- if err != 0 {
- return nil, false;
- }
- defer close(fd);
- length: i64;
- if length, err = file_size(fd); err != 0 {
- return nil, false;
- }
- if length <= 0 {
- return nil, true;
- }
- data = make([]byte, int(length));
- if data == nil {
- return nil, false;
- }
- bytes_read, read_err := read(fd, data);
- if read_err != 0 {
- delete(data);
- return nil, false;
- }
- return data[0:bytes_read], true;
- }
- write_entire_file :: proc(name: string, data: []byte, truncate := true) -> (success: bool) {
- flags: int = O_WRONLY|O_CREATE;
- if truncate {
- flags |= O_TRUNC;
- }
- mode: int = 0;
- when OS == "linux" {
- // NOTE(justasd): 644 (owner read, write; group read; others read)
- mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
- }
- fd, err := open(name, flags, mode);
- if err != 0 {
- return false;
- }
- defer close(fd);
- _, write_err := write(fd, data);
- return write_err == 0;
- }
- write_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) {
- s := transmute([]byte)mem.Raw_Slice{data, len};
- return write(fd, s);
- }
- read_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) {
- s := transmute([]byte)mem.Raw_Slice{data, len};
- return read(fd, s);
- }
- heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode,
- size, alignment: int,
- old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
- /*
- //
- // NOTE(tetra, 2019-11-10): The heap doesn't respect alignment.
- // HACK: Overallocate, align forwards, and then use the two bytes immediately before
- // the address we return, to store the padding we inserted.
- // This allows us to pass the original pointer we got back from the heap to `free` later.
- //
- align_and_store_padding :: proc(ptr: rawptr, alignment: int) -> rawptr {
- ptr := mem.ptr_offset(cast(^u8) ptr, 2);
- new_ptr := cast(^u8) mem.align_forward(ptr, uintptr(alignment));
- offset := mem.ptr_sub(new_ptr, cast(^u8) ptr) + 2;
- assert(offset < int(max(u16)));
- (^[2]u8)(mem.ptr_offset(new_ptr, -2))^ = transmute([2]u8) u16(offset);
- return new_ptr;
- }
- recover_original_pointer :: proc(ptr: rawptr) -> rawptr {
- ptr := cast(^u8) ptr;
- offset := transmute(u16) (^[2]u8)(mem.ptr_offset(ptr, -2))^;
- ptr = mem.ptr_offset(ptr, -int(offset));
- return ptr;
- }
- aligned_heap_alloc :: proc(size: int, alignment: int) -> rawptr {
- // NOTE(tetra): Alignment 1 will mean we only have one extra byte.
- // This is not enough for a u16 - so we ensure there is at least two bytes extra.
- // This also means that the pointer is always aligned to at least 2.
- extra := alignment;
- if extra <= 1 do extra = 2;
- orig := cast(^u8) heap_alloc(size + extra);
- if orig == nil do return nil;
- ptr := align_and_store_padding(orig, alignment);
- assert(recover_original_pointer(ptr) == orig);
- return ptr;
- }
- switch mode {
- case .Alloc:
- return aligned_heap_alloc(size, alignment);
- case .Free:
- if old_memory != nil {
- ptr := recover_original_pointer(old_memory);
- heap_free(ptr);
- }
- return nil;
- case .Free_All:
- // NOTE(bill): Does nothing
- case .Resize:
- if old_memory == nil {
- return aligned_heap_alloc(size, alignment);
- }
- ptr := recover_original_pointer(old_memory);
- ptr = heap_resize(ptr, size);
- assert(ptr != nil);
- return align_and_store_padding(ptr, alignment);
- }
- return nil;
- */
- switch mode {
- case .Alloc:
- return heap_alloc(size);
- case .Free:
- if old_memory != nil {
- heap_free(old_memory);
- }
- return nil;
- case .Free_All:
- // NOTE(bill): Does nothing
- case .Resize:
- return heap_resize(old_memory, size);
- }
- return nil;
- }
- heap_allocator :: proc() -> mem.Allocator {
- return mem.Allocator{
- procedure = heap_allocator_proc,
- data = nil,
- };
- }
|