math.odin 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. TAU :: 6.28318530717958647692528676655900576;
  2. PI :: 3.14159265358979323846264338327950288;
  3. ONE_OVER_TAU :: 0.636619772367581343075535053490057448;
  4. ONE_OVER_PI :: 0.159154943091895335768883763372514362;
  5. E :: 2.71828182845904523536;
  6. SQRT_TWO :: 1.41421356237309504880168872420969808;
  7. SQRT_THREE :: 1.73205080756887729352744634150587236;
  8. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  9. LOG_TWO :: 0.693147180559945309417232121458176568;
  10. LOG_TEN :: 2.30258509299404568401799145468436421;
  11. EPSILON :: 1.19209290e-7;
  12. τ :: TAU;
  13. π :: PI;
  14. Vec2 :: [vector 2]f32;
  15. Vec3 :: [vector 3]f32;
  16. Vec4 :: [vector 4]f32;
  17. // Column major
  18. Mat2 :: [2][2]f32;
  19. Mat3 :: [3][3]f32;
  20. Mat4 :: [4][4]f32;
  21. Complex :: complex64;
  22. foreign __llvm_core {
  23. sqrt :: proc(x: f32) -> f32 #link_name "llvm.sqrt.f32" ---;
  24. sqrt :: proc(x: f64) -> f64 #link_name "llvm.sqrt.f64" ---;
  25. sin :: proc(θ: f32) -> f32 #link_name "llvm.sin.f32" ---;
  26. sin :: proc(θ: f64) -> f64 #link_name "llvm.sin.f64" ---;
  27. cos :: proc(θ: f32) -> f32 #link_name "llvm.cos.f32" ---;
  28. cos :: proc(θ: f64) -> f64 #link_name "llvm.cos.f64" ---;
  29. pow :: proc(x, power: f32) -> f32 #link_name "llvm.pow.f32" ---;
  30. pow :: proc(x, power: f64) -> f64 #link_name "llvm.pow.f64" ---;
  31. fmuladd :: proc(a, b, c: f32) -> f32 #link_name "llvm.fmuladd.f32" ---;
  32. fmuladd :: proc(a, b, c: f64) -> f64 #link_name "llvm.fmuladd.f64" ---;
  33. }
  34. tan :: proc(θ: f32) -> f32 #inline do return sin(θ)/cos(θ);
  35. tan :: proc(θ: f64) -> f64 #inline do return sin(θ)/cos(θ);
  36. lerp :: proc(a, b, t: f32) -> (x: f32) do return a*(1-t) + b*t;
  37. lerp :: proc(a, b, t: f64) -> (x: f64) do return a*(1-t) + b*t;
  38. unlerp :: proc(a, b, x: f32) -> (t: f32) do return (x-a)/(b-a);
  39. unlerp :: proc(a, b, x: f64) -> (t: f64) do return (x-a)/(b-a);
  40. sign :: proc(x: f32) -> f32 { if x >= 0 do return +1; return -1; }
  41. sign :: proc(x: f64) -> f64 { if x >= 0 do return +1; return -1; }
  42. copy_sign :: proc(x, y: f32) -> f32 {
  43. ix := transmute(u32)x;
  44. iy := transmute(u32)y;
  45. ix &= 0x7fff_ffff;
  46. ix |= iy & 0x8000_0000;
  47. return transmute(f32)ix;
  48. }
  49. copy_sign :: proc(x, y: f64) -> f64 {
  50. ix := transmute(u64)x;
  51. iy := transmute(u64)y;
  52. ix &= 0x7fff_ffff_ffff_ff;
  53. ix |= iy & 0x8000_0000_0000_0000;
  54. return transmute(f64)ix;
  55. }
  56. round :: proc(x: f32) -> f32 { if x >= 0 do return floor(x + 0.5); return ceil(x - 0.5); }
  57. round :: proc(x: f64) -> f64 { if x >= 0 do return floor(x + 0.5); return ceil(x - 0.5); }
  58. floor :: proc(x: f32) -> f32 { if x >= 0 do return f32(i64(x)); return f32(i64(x-0.5)); } // TODO: Get accurate versions
  59. floor :: proc(x: f64) -> f64 { if x >= 0 do return f64(i64(x)); return f64(i64(x-0.5)); } // TODO: Get accurate versions
  60. ceil :: proc(x: f32) -> f32 { if x < 0 do return f32(i64(x)); return f32(i64(x+1)); }// TODO: Get accurate versions
  61. ceil :: proc(x: f64) -> f64 { if x < 0 do return f64(i64(x)); return f64(i64(x+1)); }// TODO: Get accurate versions
  62. remainder :: proc(x, y: f32) -> f32 do return x - round(x/y) * y;
  63. remainder :: proc(x, y: f64) -> f64 do return x - round(x/y) * y;
  64. mod :: proc(x, y: f32) -> f32 {
  65. result: f32;
  66. y = abs(y);
  67. result = remainder(abs(x), y);
  68. if sign(result) < 0 {
  69. result += y;
  70. }
  71. return copy_sign(result, x);
  72. }
  73. mod :: proc(x, y: f64) -> f64 {
  74. result: f64;
  75. y = abs(y);
  76. result = remainder(abs(x), y);
  77. if sign(result) < 0 {
  78. result += y;
  79. }
  80. return copy_sign(result, x);
  81. }
  82. to_radians :: proc(degrees: f32) -> f32 do return degrees * TAU / 360;
  83. to_degrees :: proc(radians: f32) -> f32 do return radians * 360 / TAU;
  84. dot :: proc(a, b: $T/[vector 2]$E) -> E { c := a*b; return c.x + c.y; }
  85. dot :: proc(a, b: $T/[vector 3]$E) -> E { c := a*b; return c.x + c.y + c.z; }
  86. dot :: proc(a, b: $T/[vector 4]$E) -> E { c := a*b; return c.x + c.y + c.z + c.w; }
  87. cross :: proc(x, y: $T/[vector 3]$E) -> T {
  88. a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1);
  89. b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0);
  90. return T(a - b);
  91. }
  92. mag :: proc(v: $T/[vector 2]$E) -> E do return sqrt(dot(v, v));
  93. mag :: proc(v: $T/[vector 3]$E) -> E do return sqrt(dot(v, v));
  94. mag :: proc(v: $T/[vector 4]$E) -> E do return sqrt(dot(v, v));
  95. norm :: proc(v: $T/[vector 2]$E) -> T do return v / mag(v);
  96. norm :: proc(v: $T/[vector 3]$E) -> T do return v / mag(v);
  97. norm :: proc(v: $T/[vector 4]$E) -> T do return v / mag(v);
  98. norm0 :: proc(v: $T/[vector 2]$E) -> T {
  99. m := mag(v);
  100. if m == 0 do return 0;
  101. return v/m;
  102. }
  103. norm0 :: proc(v: $T/[vector 3]$E) -> T {
  104. m := mag(v);
  105. if m == 0 do return 0;
  106. return v/m;
  107. }
  108. norm0 :: proc(v: $T/[vector 4]$E) -> T {
  109. m := mag(v);
  110. if m == 0 do return 0;
  111. return v/m;
  112. }
  113. mat4_identity :: proc() -> Mat4 {
  114. return Mat4{
  115. {1, 0, 0, 0},
  116. {0, 1, 0, 0},
  117. {0, 0, 1, 0},
  118. {0, 0, 0, 1},
  119. };
  120. }
  121. mat4_transpose :: proc(m: Mat4) -> Mat4 {
  122. for j in 0..4 {
  123. for i in 0..4 {
  124. m[i][j], m[j][i] = m[j][i], m[i][j];
  125. }
  126. }
  127. return m;
  128. }
  129. mul :: proc(a, b: Mat4) -> Mat4 {
  130. c: Mat4;
  131. for j in 0..4 {
  132. for i in 0..4 {
  133. c[j][i] = a[0][i]*b[j][0] +
  134. a[1][i]*b[j][1] +
  135. a[2][i]*b[j][2] +
  136. a[3][i]*b[j][3];
  137. }
  138. }
  139. return c;
  140. }
  141. mul :: proc(m: Mat4, v: Vec4) -> Vec4 {
  142. return Vec4{
  143. m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
  144. m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
  145. m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
  146. m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
  147. };
  148. }
  149. inverse :: proc(m: Mat4) -> Mat4 {
  150. o: Mat4;
  151. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
  152. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
  153. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
  154. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
  155. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
  156. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
  157. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
  158. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  159. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
  160. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
  161. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
  162. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  163. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
  164. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
  165. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
  166. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
  167. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
  168. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
  169. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
  170. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
  171. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
  172. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
  173. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
  174. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
  175. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
  176. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
  177. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
  178. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
  179. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
  180. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
  181. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
  182. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
  183. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
  184. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
  185. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
  186. ood := 1.0 / (m[0][0] * o[0][0] +
  187. m[0][1] * o[0][1] +
  188. m[0][2] * o[0][2] +
  189. m[0][3] * o[0][3]);
  190. o[0][0] *= ood;
  191. o[0][1] *= ood;
  192. o[0][2] *= ood;
  193. o[0][3] *= ood;
  194. o[1][0] *= ood;
  195. o[1][1] *= ood;
  196. o[1][2] *= ood;
  197. o[1][3] *= ood;
  198. o[2][0] *= ood;
  199. o[2][1] *= ood;
  200. o[2][2] *= ood;
  201. o[2][3] *= ood;
  202. o[3][0] *= ood;
  203. o[3][1] *= ood;
  204. o[3][2] *= ood;
  205. o[3][3] *= ood;
  206. return o;
  207. }
  208. mat4_translate :: proc(v: Vec3) -> Mat4 {
  209. m := mat4_identity();
  210. m[3][0] = v.x;
  211. m[3][1] = v.y;
  212. m[3][2] = v.z;
  213. m[3][3] = 1;
  214. return m;
  215. }
  216. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  217. c := cos(angle_radians);
  218. s := sin(angle_radians);
  219. a := norm(v);
  220. t := a * (1-c);
  221. rot := mat4_identity();
  222. rot[0][0] = c + t.x*a.x;
  223. rot[0][1] = 0 + t.x*a.y + s*a.z;
  224. rot[0][2] = 0 + t.x*a.z - s*a.y;
  225. rot[0][3] = 0;
  226. rot[1][0] = 0 + t.y*a.x - s*a.z;
  227. rot[1][1] = c + t.y*a.y;
  228. rot[1][2] = 0 + t.y*a.z + s*a.x;
  229. rot[1][3] = 0;
  230. rot[2][0] = 0 + t.z*a.x + s*a.y;
  231. rot[2][1] = 0 + t.z*a.y - s*a.x;
  232. rot[2][2] = c + t.z*a.z;
  233. rot[2][3] = 0;
  234. return rot;
  235. }
  236. scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
  237. m[0][0] *= v.x;
  238. m[1][1] *= v.y;
  239. m[2][2] *= v.z;
  240. return m;
  241. }
  242. scale :: proc(m: Mat4, s: f32) -> Mat4 {
  243. m[0][0] *= s;
  244. m[1][1] *= s;
  245. m[2][2] *= s;
  246. return m;
  247. }
  248. look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  249. f := norm(centre - eye);
  250. s := norm(cross(f, up));
  251. u := cross(s, f);
  252. return Mat4{
  253. {+s.x, +u.x, -f.x, 0},
  254. {+s.y, +u.y, -f.y, 0},
  255. {+s.z, +u.z, -f.z, 0},
  256. {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
  257. };
  258. }
  259. perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  260. m: Mat4;
  261. tan_half_fovy := tan(0.5 * fovy);
  262. m[0][0] = 1.0 / (aspect*tan_half_fovy);
  263. m[1][1] = 1.0 / (tan_half_fovy);
  264. m[2][2] = -(far + near) / (far - near);
  265. m[2][3] = -1.0;
  266. m[3][2] = -2.0*far*near / (far - near);
  267. return m;
  268. }
  269. ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  270. m := mat4_identity();
  271. m[0][0] = +2.0 / (right - left);
  272. m[1][1] = +2.0 / (top - bottom);
  273. m[2][2] = -2.0 / (far - near);
  274. m[3][0] = -(right + left) / (right - left);
  275. m[3][1] = -(top + bottom) / (top - bottom);
  276. m[3][2] = -(far + near) / (far - near);
  277. return m;
  278. }
  279. F32_DIG :: 6;
  280. F32_EPSILON :: 1.192092896e-07;
  281. F32_GUARD :: 0;
  282. F32_MANT_DIG :: 24;
  283. F32_MAX :: 3.402823466e+38;
  284. F32_MAX_10_EXP :: 38;
  285. F32_MAX_EXP :: 128;
  286. F32_MIN :: 1.175494351e-38;
  287. F32_MIN_10_EXP :: -37;
  288. F32_MIN_EXP :: -125;
  289. F32_NORMALIZE :: 0;
  290. F32_RADIX :: 2;
  291. F32_ROUNDS :: 1;
  292. F64_DIG :: 15; // # of decimal digits of precision
  293. F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
  294. F64_MANT_DIG :: 53; // # of bits in mantissa
  295. F64_MAX :: 1.7976931348623158e+308; // max value
  296. F64_MAX_10_EXP :: 308; // max decimal exponent
  297. F64_MAX_EXP :: 1024; // max binary exponent
  298. F64_MIN :: 2.2250738585072014e-308; // min positive value
  299. F64_MIN_10_EXP :: -307; // min decimal exponent
  300. F64_MIN_EXP :: -1021; // min binary exponent
  301. F64_RADIX :: 2; // exponent radix
  302. F64_ROUNDS :: 1; // addition rounding: near