internal.odin 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. package runtime
  2. import "core:mem"
  3. import "core:os"
  4. import "core:unicode/utf8"
  5. print_u64 :: proc(fd: os.Handle, u: u64) {
  6. digits := "0123456789";
  7. a: [129]byte;
  8. i := len(a);
  9. b := u64(10);
  10. for u >= b {
  11. i -= 1; a[i] = digits[u % b];
  12. u /= b;
  13. }
  14. i -= 1; a[i] = digits[u % b];
  15. os.write(fd, a[i:]);
  16. }
  17. print_i64 :: proc(fd: os.Handle, u: i64) {
  18. digits := "0123456789";
  19. neg := u < 0;
  20. u = abs(u);
  21. a: [129]byte;
  22. i := len(a);
  23. b := i64(10);
  24. for u >= b {
  25. i -= 1; a[i] = digits[u % b];
  26. u /= b;
  27. }
  28. i -= 1; a[i] = digits[u % b];
  29. if neg {
  30. i -= 1; a[i] = '-';
  31. }
  32. os.write(fd, a[i:]);
  33. }
  34. print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) {
  35. os.write_string(fd, file_path);
  36. os.write_byte(fd, '(');
  37. print_u64(fd, u64(line));
  38. os.write_byte(fd, ':');
  39. print_u64(fd, u64(column));
  40. os.write_byte(fd, ')');
  41. }
  42. print_typeid :: proc(fd: os.Handle, id: typeid) {
  43. ti := type_info_of(id);
  44. print_type(fd, ti);
  45. }
  46. print_type :: proc(fd: os.Handle, ti: ^Type_Info) {
  47. if ti == nil {
  48. os.write_string(fd, "nil");
  49. return;
  50. }
  51. switch info in ti.variant {
  52. case Type_Info_Named:
  53. os.write_string(fd, info.name);
  54. case Type_Info_Integer:
  55. switch ti.id {
  56. case int: os.write_string(fd, "int");
  57. case uint: os.write_string(fd, "uint");
  58. case uintptr: os.write_string(fd, "uintptr");
  59. case:
  60. os.write_byte(fd, info.signed ? 'i' : 'u');
  61. print_u64(fd, u64(8*ti.size));
  62. }
  63. case Type_Info_Rune:
  64. os.write_string(fd, "rune");
  65. case Type_Info_Float:
  66. os.write_byte(fd, 'f');
  67. print_u64(fd, u64(8*ti.size));
  68. case Type_Info_Complex:
  69. os.write_string(fd, "complex");
  70. print_u64(fd, u64(8*ti.size));
  71. case Type_Info_String:
  72. os.write_string(fd, "string");
  73. case Type_Info_Boolean:
  74. switch ti.id {
  75. case bool: os.write_string(fd, "bool");
  76. case:
  77. os.write_byte(fd, 'b');
  78. print_u64(fd, u64(8*ti.size));
  79. }
  80. case Type_Info_Any:
  81. os.write_string(fd, "any");
  82. case Type_Info_Type_Id:
  83. os.write_string(fd, "typeid");
  84. case Type_Info_Pointer:
  85. if info.elem == nil {
  86. os.write_string(fd, "rawptr");
  87. } else {
  88. os.write_string(fd, "^");
  89. print_type(fd, info.elem);
  90. }
  91. case Type_Info_Procedure:
  92. os.write_string(fd, "proc");
  93. if info.params == nil {
  94. os.write_string(fd, "()");
  95. } else {
  96. t := info.params.variant.(Type_Info_Tuple);
  97. os.write_string(fd, "(");
  98. for t, i in t.types {
  99. if i > 0 do os.write_string(fd, ", ");
  100. print_type(fd, t);
  101. }
  102. os.write_string(fd, ")");
  103. }
  104. if info.results != nil {
  105. os.write_string(fd, " -> ");
  106. print_type(fd, info.results);
  107. }
  108. case Type_Info_Tuple:
  109. count := len(info.names);
  110. if count != 1 do os.write_string(fd, "(");
  111. for name, i in info.names {
  112. if i > 0 do os.write_string(fd, ", ");
  113. t := info.types[i];
  114. if len(name) > 0 {
  115. os.write_string(fd, name);
  116. os.write_string(fd, ": ");
  117. }
  118. print_type(fd, t);
  119. }
  120. if count != 1 do os.write_string(fd, ")");
  121. case Type_Info_Array:
  122. os.write_string(fd, "[");
  123. print_u64(fd, u64(info.count));
  124. os.write_string(fd, "]");
  125. print_type(fd, info.elem);
  126. case Type_Info_Dynamic_Array:
  127. os.write_string(fd, "[dynamic]");
  128. print_type(fd, info.elem);
  129. case Type_Info_Slice:
  130. os.write_string(fd, "[]");
  131. print_type(fd, info.elem);
  132. case Type_Info_Map:
  133. os.write_string(fd, "map[");
  134. print_type(fd, info.key);
  135. os.write_byte(fd, ']');
  136. print_type(fd, info.value);
  137. case Type_Info_Struct:
  138. os.write_string(fd, "struct ");
  139. if info.is_packed do os.write_string(fd, "#packed ");
  140. if info.is_raw_union do os.write_string(fd, "#raw_union ");
  141. if info.custom_align {
  142. os.write_string(fd, "#align ");
  143. print_u64(fd, u64(ti.align));
  144. os.write_byte(fd, ' ');
  145. }
  146. os.write_byte(fd, '{');
  147. for name, i in info.names {
  148. if i > 0 do os.write_string(fd, ", ");
  149. os.write_string(fd, name);
  150. os.write_string(fd, ": ");
  151. print_type(fd, info.types[i]);
  152. }
  153. os.write_byte(fd, '}');
  154. case Type_Info_Union:
  155. os.write_string(fd, "union {");
  156. for variant, i in info.variants {
  157. if i > 0 do os.write_string(fd, ", ");
  158. print_type(fd, variant);
  159. }
  160. os.write_string(fd, "}");
  161. case Type_Info_Enum:
  162. os.write_string(fd, "enum ");
  163. print_type(fd, info.base);
  164. os.write_string(fd, " {");
  165. for name, i in info.names {
  166. if i > 0 do os.write_string(fd, ", ");
  167. os.write_string(fd, name);
  168. }
  169. os.write_string(fd, "}");
  170. case Type_Info_Bit_Field:
  171. os.write_string(fd, "bit_field ");
  172. if ti.align != 1 {
  173. os.write_string(fd, "#align ");
  174. print_u64(fd, u64(ti.align));
  175. os.write_byte(fd, ' ');
  176. }
  177. os.write_string(fd, " {");
  178. for name, i in info.names {
  179. if i > 0 do os.write_string(fd, ", ");
  180. os.write_string(fd, name);
  181. os.write_string(fd, ": ");
  182. print_u64(fd, u64(info.bits[i]));
  183. }
  184. os.write_string(fd, "}");
  185. case Type_Info_Bit_Set:
  186. os.write_string(fd, "bit_set[");
  187. switch elem in type_info_base(info.elem).variant {
  188. case Type_Info_Enum:
  189. print_type(fd, info.elem);
  190. case Type_Info_Rune:
  191. os.write_encoded_rune(fd, rune(info.lower));
  192. os.write_string(fd, "..");
  193. os.write_encoded_rune(fd, rune(info.upper));
  194. case:
  195. print_i64(fd, info.lower);
  196. os.write_string(fd, "..");
  197. print_i64(fd, info.upper);
  198. }
  199. if info.underlying != nil {
  200. os.write_string(fd, "; ");
  201. print_type(fd, info.underlying);
  202. }
  203. os.write_byte(fd, ']');
  204. }
  205. }
  206. string_eq :: proc "contextless" (a, b: string) -> bool {
  207. switch {
  208. case len(a) != len(b): return false;
  209. case len(a) == 0: return true;
  210. case &a[0] == &b[0]: return true;
  211. }
  212. return string_cmp(a, b) == 0;
  213. }
  214. string_cmp :: proc "contextless" (a, b: string) -> int {
  215. return mem.compare_byte_ptrs(&a[0], &b[0], min(len(a), len(b)));
  216. }
  217. string_ne :: inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); }
  218. string_lt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; }
  219. string_gt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; }
  220. string_le :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; }
  221. string_ge :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; }
  222. cstring_len :: proc "contextless" (s: cstring) -> int {
  223. n := 0;
  224. for p := (^byte)(s); p != nil && p^ != 0; p = mem.ptr_offset(p, 1) {
  225. n += 1;
  226. }
  227. return n;
  228. }
  229. cstring_to_string :: proc "contextless" (s: cstring) -> string {
  230. if s == nil do return "";
  231. ptr := (^byte)(s);
  232. n := cstring_len(s);
  233. return transmute(string)mem.Raw_String{ptr, n};
  234. }
  235. complex64_eq :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
  236. complex64_ne :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
  237. complex128_eq :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
  238. complex128_ne :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
  239. bounds_check_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
  240. if 0 <= index && index < count do return;
  241. fd := os.stderr;
  242. print_caller_location(fd, Source_Code_Location{file, line, column, ""});
  243. os.write_string(fd, " Index ");
  244. print_i64(fd, i64(index));
  245. os.write_string(fd, " is out of bounds range 0:");
  246. print_i64(fd, i64(count));
  247. os.write_byte(fd, '\n');
  248. debug_trap();
  249. }
  250. slice_expr_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
  251. if 0 <= lo && lo <= hi && hi <= len do return;
  252. fd := os.stderr;
  253. print_caller_location(fd, Source_Code_Location{file, line, column, ""});
  254. os.write_string(fd, " Invalid slice indices: ");
  255. print_i64(fd, i64(lo));
  256. os.write_string(fd, ":");
  257. print_i64(fd, i64(hi));
  258. os.write_string(fd, ":");
  259. print_i64(fd, i64(len));
  260. os.write_byte(fd, '\n');
  261. debug_trap();
  262. }
  263. dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
  264. if 0 <= low && low <= high && high <= max do return;
  265. fd := os.stderr;
  266. print_caller_location(fd, Source_Code_Location{file, line, column, ""});
  267. os.write_string(fd, " Invalid dynamic array values: ");
  268. print_i64(fd, i64(low));
  269. os.write_string(fd, ":");
  270. print_i64(fd, i64(high));
  271. os.write_string(fd, ":");
  272. print_i64(fd, i64(max));
  273. os.write_byte(fd, '\n');
  274. debug_trap();
  275. }
  276. type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column: int, from, to: typeid) {
  277. if ok do return;
  278. fd := os.stderr;
  279. print_caller_location(fd, Source_Code_Location{file, line, column, ""});
  280. os.write_string(fd, " Invalid type assertion from ");
  281. print_typeid(fd, from);
  282. os.write_string(fd, " to ");
  283. print_typeid(fd, to);
  284. os.write_byte(fd, '\n');
  285. debug_trap();
  286. }
  287. string_decode_rune :: inline proc "contextless" (s: string) -> (rune, int) {
  288. return utf8.decode_rune_from_string(s);
  289. }
  290. bounds_check_error_loc :: inline proc "contextless" (using loc := #caller_location, index, count: int) {
  291. bounds_check_error(file_path, int(line), int(column), index, count);
  292. }
  293. slice_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, lo, hi: int, len: int) {
  294. slice_expr_error(file_path, int(line), int(column), lo, hi, len);
  295. }
  296. dynamic_array_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, low, high, max: int) {
  297. dynamic_array_expr_error(file_path, int(line), int(column), low, high, max);
  298. }
  299. make_slice_error_loc :: inline proc "contextless" (using loc := #caller_location, len: int) {
  300. if 0 <= len do return;
  301. fd := os.stderr;
  302. print_caller_location(fd, loc);
  303. os.write_string(fd, " Invalid slice length for make: ");
  304. print_i64(fd, i64(len));
  305. os.write_byte(fd, '\n');
  306. debug_trap();
  307. }
  308. make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_location, len, cap: int) {
  309. if 0 <= len && len <= cap do return;
  310. fd := os.stderr;
  311. print_caller_location(fd, loc);
  312. os.write_string(fd, " Invalid dynamic array parameters for make: ");
  313. print_i64(fd, i64(len));
  314. os.write_byte(fd, ':');
  315. print_i64(fd, i64(cap));
  316. os.write_byte(fd, '\n');
  317. debug_trap();
  318. }
  319. make_map_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, cap: int) {
  320. if 0 <= cap do return;
  321. fd := os.stderr;
  322. print_caller_location(fd, loc);
  323. os.write_string(fd, " Invalid map capacity for make: ");
  324. print_i64(fd, i64(cap));
  325. os.write_byte(fd, '\n');
  326. debug_trap();
  327. }
  328. @(default_calling_convention = "c")
  329. foreign {
  330. @(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 ---
  331. @(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 ---
  332. }
  333. abs_f32 :: inline proc "contextless" (x: f32) -> f32 {
  334. foreign {
  335. @(link_name="llvm.fabs.f32") _abs :: proc "c" (x: f32) -> f32 ---
  336. }
  337. return _abs(x);
  338. }
  339. abs_f64 :: inline proc "contextless" (x: f64) -> f64 {
  340. foreign {
  341. @(link_name="llvm.fabs.f64") _abs :: proc "c" (x: f64) -> f64 ---
  342. }
  343. return _abs(x);
  344. }
  345. min_f32 :: proc(a, b: f32) -> f32 {
  346. foreign {
  347. @(link_name="llvm.minnum.f32") _min :: proc "c" (a, b: f32) -> f32 ---
  348. }
  349. return _min(a, b);
  350. }
  351. min_f64 :: proc(a, b: f64) -> f64 {
  352. foreign {
  353. @(link_name="llvm.minnum.f64") _min :: proc "c" (a, b: f64) -> f64 ---
  354. }
  355. return _min(a, b);
  356. }
  357. max_f32 :: proc(a, b: f32) -> f32 {
  358. foreign {
  359. @(link_name="llvm.maxnum.f32") _max :: proc "c" (a, b: f32) -> f32 ---
  360. }
  361. return _max(a, b);
  362. }
  363. max_f64 :: proc(a, b: f64) -> f64 {
  364. foreign {
  365. @(link_name="llvm.maxnum.f64") _max :: proc "c" (a, b: f64) -> f64 ---
  366. }
  367. return _max(a, b);
  368. }
  369. abs_complex64 :: inline proc "contextless" (x: complex64) -> f32 {
  370. r, i := real(x), imag(x);
  371. return _sqrt_f32(r*r + i*i);
  372. }
  373. abs_complex128 :: inline proc "contextless" (x: complex128) -> f64 {
  374. r, i := real(x), imag(x);
  375. return _sqrt_f64(r*r + i*i);
  376. }
  377. quo_complex64 :: proc(n, m: complex64) -> complex64 {
  378. e, f: f32;
  379. if abs(real(m)) >= abs(imag(m)) {
  380. ratio := imag(m) / real(m);
  381. denom := real(m) + ratio*imag(m);
  382. e = (real(n) + imag(n)*ratio) / denom;
  383. f = (imag(n) - real(n)*ratio) / denom;
  384. } else {
  385. ratio := real(m) / imag(m);
  386. denom := imag(m) + ratio*real(m);
  387. e = (real(n)*ratio + imag(n)) / denom;
  388. f = (imag(n)*ratio - real(n)) / denom;
  389. }
  390. return complex(e, f);
  391. }
  392. quo_complex128 :: proc(n, m: complex128) -> complex128 {
  393. e, f: f64;
  394. if abs(real(m)) >= abs(imag(m)) {
  395. ratio := imag(m) / real(m);
  396. denom := real(m) + ratio*imag(m);
  397. e = (real(n) + imag(n)*ratio) / denom;
  398. f = (imag(n) - real(n)*ratio) / denom;
  399. } else {
  400. ratio := real(m) / imag(m);
  401. denom := imag(m) + ratio*real(m);
  402. e = (real(n)*ratio + imag(n)) / denom;
  403. f = (imag(n)*ratio - real(n)) / denom;
  404. }
  405. return complex(e, f);
  406. }