|
@@ -78,8 +78,6 @@
|
|
|
#define PI 3.14159265358979323846
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
-
|
|
|
#ifndef DEG2RAD
|
|
|
#define DEG2RAD (PI/180.0f)
|
|
|
#endif
|
|
@@ -880,6 +878,18 @@ RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+// Returns zyx-rotation matrix (angles in radians)
|
|
|
+// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
|
|
|
+// instead of using a 3 matrix multiplication
|
|
|
+RMDEF Matrix MatrixRotateZYX(Vector3 ang)
|
|
|
+{
|
|
|
+ Matrix result = MatrixRotateZ(ang.z);
|
|
|
+ result = MatrixMultiply(result, MatrixRotateY(ang.y));
|
|
|
+ result = MatrixMultiply(result, MatrixRotateX(ang.x));
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
// Returns x-rotation matrix (angle in radians)
|
|
|
RMDEF Matrix MatrixRotateX(float angle)
|
|
|
{
|
|
@@ -928,8 +938,6 @@ RMDEF Matrix MatrixRotateZ(float angle)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-
|
|
|
// Returns scaling matrix
|
|
|
RMDEF Matrix MatrixScale(float x, float y, float z)
|
|
|
{
|
|
@@ -967,17 +975,6 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-// TODO suboptimal should be able to create this matrix in one go
|
|
|
-// this is an aditional 3 matrix multiplies!
|
|
|
-RMDEF Matrix MatrixRotateZYX(Vector3 v)
|
|
|
-{
|
|
|
- Matrix result = MatrixRotateZ(v.z);
|
|
|
- result = MatrixMultiply(result, MatrixRotateY(v.y));
|
|
|
- result = MatrixMultiply(result, MatrixRotateX(v.x));
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
// Returns perspective projection matrix
|
|
|
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
|
|
|
{
|
|
@@ -1312,53 +1309,62 @@ RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
|
|
|
}
|
|
|
|
|
|
// Returns a quaternion for a given rotation matrix
|
|
|
-RMDEF Quaternion QuaternionFromMatrix(Matrix m)
|
|
|
-{
|
|
|
- Quaternion q;
|
|
|
- if ( m.m0 > m.m5 && m.m0 > m.m10 ) {
|
|
|
- float s = sqrt( 1.0 + m.m0 - m.m5 - m.m10 ) * 2;
|
|
|
- q.x = 0.25 * s;
|
|
|
- q.y = (m.m4 + m.m1 ) / s;
|
|
|
- q.z = (m.m2 + m.m8 ) / s;
|
|
|
- q.w = (m.m9 - m.m6 ) / s;
|
|
|
- } else if ( m.m5 > m.m10 ) {
|
|
|
- float s = sqrt( 1.0 + m.m5 - m.m0 - m.m10 ) * 2;
|
|
|
- q.x = (m.m4 + m.m1 ) / s;
|
|
|
- q.y = 0.25 * s;
|
|
|
- q.z = (m.m9 + m.m6 ) / s;
|
|
|
- q.w = (m.m2 - m.m8 ) / s;
|
|
|
- } else {
|
|
|
- float s = sqrt( 1.0 + m.m10 - m.m0 - m.m5 ) * 2;
|
|
|
- q.x = (m.m2 + m.m8 ) / s;
|
|
|
- q.y = (m.m9 + m.m6 ) / s;
|
|
|
- q.z = 0.25 * s;
|
|
|
- q.w = (m.m4 - m.m1 ) / s;
|
|
|
+RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
|
|
|
+{
|
|
|
+ Quaternion result = { 0.0f };
|
|
|
+
|
|
|
+ if ((mat.m0 > mat.m5) && (mat.m0 > mat.m10))
|
|
|
+ {
|
|
|
+ float s = sqrtf(1.0f + mat.m0 - mat.m5 - mat.m10)*2;
|
|
|
+
|
|
|
+ result.x = 0.25f*s;
|
|
|
+ result.y = (mat.m4 + mat.m1)/s;
|
|
|
+ result.z = (mat.m2 + mat.m8)/s;
|
|
|
+ result.w = (mat.m9 - mat.m6)/s;
|
|
|
}
|
|
|
- return q;
|
|
|
+ else if (mat.m5 > mat.m10)
|
|
|
+ {
|
|
|
+ float s = sqrtf(1.0f + mat.m5 - mat.m0 - mat.m10)*2;
|
|
|
+ result.x = (mat.m4 + mat.m1)/s;
|
|
|
+ result.y = 0.25f*s;
|
|
|
+ result.z = (mat.m9 + mat.m6)/s;
|
|
|
+ result.w = (mat.m2 - mat.m8)/s;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ float s = sqrtf(1.0f + mat.m10 - mat.m0 - mat.m5)*2;
|
|
|
+ result.x = (mat.m2 + mat.m8)/s;
|
|
|
+ result.y = (mat.m9 + mat.m6)/s;
|
|
|
+ result.z = 0.25f*s;
|
|
|
+ result.w = (mat.m4 - mat.m1)/s;
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
}
|
|
|
|
|
|
// Returns a matrix for a given quaternion
|
|
|
RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
|
|
{
|
|
|
- Matrix m = MatrixIdentity();
|
|
|
- float a2=2*(q.x*q.x), b2=2*(q.y*q.y), c2=2*(q.z*q.z); //, d2=2*(q.w*q.w);
|
|
|
+ Matrix result = MatrixIdentity();
|
|
|
+
|
|
|
+ float a2 = 2*(q.x*q.x), b2=2*(q.y*q.y), c2=2*(q.z*q.z); //, d2=2*(q.w*q.w);
|
|
|
|
|
|
- float ab=2*(q.x*q.y), ac=2*(q.x*q.z), bc=2*(q.y*q.z);
|
|
|
- float ad=2*(q.x*q.w), bd=2*(q.y*q.w), cd=2*(q.z*q.w);
|
|
|
+ float ab = 2*(q.x*q.y), ac=2*(q.x*q.z), bc=2*(q.y*q.z);
|
|
|
+ float ad = 2*(q.x*q.w), bd=2*(q.y*q.w), cd=2*(q.z*q.w);
|
|
|
|
|
|
- m.m0 = 1 - b2 - c2;
|
|
|
- m.m1 = ab - cd;
|
|
|
- m.m2 = ac + bd;
|
|
|
+ result.m0 = 1 - b2 - c2;
|
|
|
+ result.m1 = ab - cd;
|
|
|
+ result.m2 = ac + bd;
|
|
|
|
|
|
- m.m4 = ab + cd;
|
|
|
- m.m5 = 1 - a2 - c2;
|
|
|
- m.m6 = bc - ad;
|
|
|
+ result.m4 = ab + cd;
|
|
|
+ result.m5 = 1 - a2 - c2;
|
|
|
+ result.m6 = bc - ad;
|
|
|
|
|
|
- m.m8 = ac - bd;
|
|
|
- m.m9 = bc + ad;
|
|
|
- m.m10 = 1 - a2 - b2;
|
|
|
+ result.m8 = ac - bd;
|
|
|
+ result.m9 = bc + ad;
|
|
|
+ result.m10 = 1 - a2 - b2;
|
|
|
|
|
|
- return m;
|
|
|
+ return result;
|
|
|
}
|
|
|
|
|
|
// Returns rotation quaternion for an angle and axis
|