|
@@ -1,9 +1,23 @@
|
|
|
/**********************************************************************************************
|
|
|
*
|
|
|
-* raymath
|
|
|
+* raymath (header only file)
|
|
|
*
|
|
|
* Some useful functions to work with Vector3, Matrix and Quaternions
|
|
|
*
|
|
|
+* You must:
|
|
|
+* #define RAYMATH_IMPLEMENTATION
|
|
|
+* before you include this file in *only one* C or C++ file to create the implementation.
|
|
|
+*
|
|
|
+* Example:
|
|
|
+* #define RAYMATH_IMPLEMENTATION
|
|
|
+* #include "raymath.h"
|
|
|
+*
|
|
|
+* You can also use:
|
|
|
+* #define RAYMATH_EXTERN_INLINE // Inlines all functions code, so it runs faster.
|
|
|
+* // This requires lots of memory on system.
|
|
|
+* #define RAYMATH_STANDALONE // Not dependent on raylib.h structs: Vector3, Matrix.
|
|
|
+*
|
|
|
+*
|
|
|
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
|
|
|
*
|
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
@@ -22,37 +36,21 @@
|
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
|
*
|
|
|
**********************************************************************************************/
|
|
|
-//============================================================================
|
|
|
-// YOU MUST
|
|
|
-//
|
|
|
-// #define RAYMATH_DEFINE
|
|
|
-//
|
|
|
-// Like:
|
|
|
-//
|
|
|
-// #define RAYMATH_DEFINE
|
|
|
-// #include "raymath.h"
|
|
|
-//
|
|
|
-// YOU CAN:
|
|
|
-// #define RAYMATH_INLINE //inlines all code, so it runs faster. This requires lots of memory on system.
|
|
|
-// AND
|
|
|
-// #define RAYMATH_STANDALONE //not dependent on outside libs
|
|
|
-//
|
|
|
-// This needs to be done for every library/source file.
|
|
|
-//============================================================================
|
|
|
-
|
|
|
-#ifdef RAYMATH_INLINE
|
|
|
- #define RMDEF static inline
|
|
|
-#else
|
|
|
- #define RMDEF static
|
|
|
-#endif
|
|
|
|
|
|
#ifndef RAYMATH_H
|
|
|
#define RAYMATH_H
|
|
|
|
|
|
-//#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line
|
|
|
+//#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line
|
|
|
+//#define RAYMATH_EXTERN_INLINE // NOTE: To compile functions as static inline, uncomment this line
|
|
|
|
|
|
#ifndef RAYMATH_STANDALONE
|
|
|
- #include "raylib.h" // Required for typedef: Vector3
|
|
|
+ #include "raylib.h" // Required for structs: Vector3, Matrix
|
|
|
+#endif
|
|
|
+
|
|
|
+#if defined(RAYMATH_EXTERN_INLINE)
|
|
|
+ #define RMDEF extern inline
|
|
|
+#else
|
|
|
+ #define RMDEF extern
|
|
|
#endif
|
|
|
|
|
|
//----------------------------------------------------------------------------------
|
|
@@ -63,18 +61,18 @@
|
|
|
#endif
|
|
|
|
|
|
#ifndef DEG2RAD
|
|
|
- #define DEG2RAD (PI / 180.0f)
|
|
|
+ #define DEG2RAD (PI/180.0f)
|
|
|
#endif
|
|
|
|
|
|
#ifndef RAD2DEG
|
|
|
- #define RAD2DEG (180.0f / PI)
|
|
|
+ #define RAD2DEG (180.0f/PI)
|
|
|
#endif
|
|
|
|
|
|
//----------------------------------------------------------------------------------
|
|
|
// Types and Structures Definition
|
|
|
//----------------------------------------------------------------------------------
|
|
|
|
|
|
-#ifdef RAYMATH_STANDALONE
|
|
|
+#if defined(RAYMATH_STANDALONE)
|
|
|
// Vector2 type
|
|
|
typedef struct Vector2 {
|
|
|
float x;
|
|
@@ -105,7 +103,77 @@ typedef struct Quaternion {
|
|
|
float w;
|
|
|
} Quaternion;
|
|
|
|
|
|
-#ifdef RAYMATH_DEFINE
|
|
|
+#ifndef RAYMATH_EXTERN_INLINE
|
|
|
+
|
|
|
+#ifdef __cplusplus
|
|
|
+extern "C" {
|
|
|
+#endif
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------
|
|
|
+// Functions Declaration to work with Vector3
|
|
|
+//------------------------------------------------------------------------------------
|
|
|
+RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
|
|
|
+RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
|
|
|
+RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
|
|
|
+RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
|
|
|
+RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
|
|
|
+RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
|
|
|
+RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
|
|
|
+RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
|
|
|
+RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
|
|
|
+RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
|
|
|
+RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
|
|
|
+RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
|
|
|
+RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
|
|
|
+RMDEF Vector3 VectorZero(void); // Return a Vector3 init to zero
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------
|
|
|
+// Functions Declaration to work with Matrix
|
|
|
+//------------------------------------------------------------------------------------
|
|
|
+RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
|
|
|
+RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
|
|
|
+RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
|
|
|
+RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
|
|
|
+RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
|
|
|
+RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
|
|
|
+RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
|
|
|
+RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
|
|
|
+RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
|
|
|
+RMDEF Matrix MatrixRotate(float angle, Vector3 axis); // Returns rotation matrix for an angle around an specified axis (angle in radians)
|
|
|
+RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
|
|
|
+RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
|
|
|
+RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
|
|
|
+RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
|
|
|
+RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
|
|
|
+RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix
|
|
|
+RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
|
|
|
+RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
|
|
|
+RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Returns camera look-at matrix (view matrix)
|
|
|
+RMDEF void PrintMatrix(Matrix m); // Print matrix utility
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------
|
|
|
+// Functions Declaration to work with Quaternions
|
|
|
+//------------------------------------------------------------------------------------
|
|
|
+RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
|
|
|
+RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
|
|
|
+RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
|
|
|
+RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
|
|
|
+RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
|
|
|
+RMDEF Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion
|
|
|
+RMDEF Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis); // Returns rotation quaternion for an angle and axis
|
|
|
+RMDEF void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis); // Returns the rotation angle and axis for a given quaternion
|
|
|
+RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix
|
|
|
+
|
|
|
+#ifdef __cplusplus
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+#endif // notdef RAYMATH_EXTERN_INLINE
|
|
|
+
|
|
|
+//////////////////////////////////////////////////////////////////// end of header file
|
|
|
+
|
|
|
+#if defined(RAYMATH_IMPLEMENTATION) || defined(RAYMATH_EXTERN_INLINE)
|
|
|
+
|
|
|
#include <stdio.h> // Used only on PrintMatrix()
|
|
|
#include <math.h> // Standard math libary: sin(), cos(), tan()...
|
|
|
#include <stdlib.h> // Used for abs()
|
|
@@ -114,18 +182,6 @@ typedef struct Quaternion {
|
|
|
// Module Functions Definition - Vector3 math
|
|
|
//----------------------------------------------------------------------------------
|
|
|
|
|
|
-// Converts Vector3 to float array
|
|
|
-RMDEF float *VectorToFloat(Vector3 vec)
|
|
|
-{
|
|
|
- static float buffer[3];
|
|
|
-
|
|
|
- buffer[0] = vec.x;
|
|
|
- buffer[1] = vec.y;
|
|
|
- buffer[2] = vec.z;
|
|
|
-
|
|
|
- return buffer;
|
|
|
-}
|
|
|
-
|
|
|
// Add two vectors
|
|
|
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
|
|
|
{
|
|
@@ -229,9 +285,9 @@ RMDEF void VectorNormalize(Vector3 *v)
|
|
|
|
|
|
length = VectorLength(*v);
|
|
|
|
|
|
- if (length == 0) length = 1;
|
|
|
+ if (length == 0) length = 1.0f;
|
|
|
|
|
|
- ilength = 1.0/length;
|
|
|
+ ilength = 1.0f/length;
|
|
|
|
|
|
v->x *= ilength;
|
|
|
v->y *= ilength;
|
|
@@ -257,9 +313,9 @@ RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
|
|
|
{
|
|
|
Vector3 result;
|
|
|
|
|
|
- result.x = v1.x + amount * (v2.x - v1.x);
|
|
|
- result.y = v1.y + amount * (v2.y - v1.y);
|
|
|
- result.z = v1.z + amount * (v2.z - v1.z);
|
|
|
+ result.x = v1.x + amount*(v2.x - v1.x);
|
|
|
+ result.y = v1.y + amount*(v2.y - v1.y);
|
|
|
+ result.z = v1.z + amount*(v2.z - v1.z);
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -269,15 +325,15 @@ RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
|
|
|
{
|
|
|
// I is the original vector
|
|
|
// N is the normal of the incident plane
|
|
|
- // R = I - (2 * N * ( DotProduct[ I,N] ))
|
|
|
+ // R = I - (2*N*( DotProduct[ I,N] ))
|
|
|
|
|
|
Vector3 result;
|
|
|
|
|
|
float dotProduct = VectorDotProduct(vector, normal);
|
|
|
|
|
|
- result.x = vector.x - (2.0 * normal.x) * dotProduct;
|
|
|
- result.y = vector.y - (2.0 * normal.y) * dotProduct;
|
|
|
- result.z = vector.z - (2.0 * normal.z) * dotProduct;
|
|
|
+ result.x = vector.x - (2.0f*normal.x)*dotProduct;
|
|
|
+ result.y = vector.y - (2.0f*normal.y)*dotProduct;
|
|
|
+ result.z = vector.z - (2.0f*normal.z)*dotProduct;
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -308,34 +364,6 @@ RMDEF Vector3 VectorZero(void)
|
|
|
// Module Functions Definition - Matrix math
|
|
|
//----------------------------------------------------------------------------------
|
|
|
|
|
|
-// Converts Matrix to float array
|
|
|
-// NOTE: Returned vector is a transposed version of the Matrix struct,
|
|
|
-// it should be this way because, despite raymath use OpenGL column-major convention,
|
|
|
-// Matrix struct memory alignment and variables naming are not coherent
|
|
|
-RMDEF float *MatrixToFloat(Matrix mat)
|
|
|
-{
|
|
|
- static float buffer[16];
|
|
|
-
|
|
|
- buffer[0] = mat.m0;
|
|
|
- buffer[1] = mat.m4;
|
|
|
- buffer[2] = mat.m8;
|
|
|
- buffer[3] = mat.m12;
|
|
|
- buffer[4] = mat.m1;
|
|
|
- buffer[5] = mat.m5;
|
|
|
- buffer[6] = mat.m9;
|
|
|
- buffer[7] = mat.m13;
|
|
|
- buffer[8] = mat.m2;
|
|
|
- buffer[9] = mat.m6;
|
|
|
- buffer[10] = mat.m10;
|
|
|
- buffer[11] = mat.m14;
|
|
|
- buffer[12] = mat.m3;
|
|
|
- buffer[13] = mat.m7;
|
|
|
- buffer[14] = mat.m11;
|
|
|
- buffer[15] = mat.m15;
|
|
|
-
|
|
|
- return buffer;
|
|
|
-}
|
|
|
-
|
|
|
// Compute matrix determinant
|
|
|
RMDEF float MatrixDeterminant(Matrix mat)
|
|
|
{
|
|
@@ -413,7 +441,7 @@ RMDEF void MatrixInvert(Matrix *mat)
|
|
|
float b11 = a22*a33 - a23*a32;
|
|
|
|
|
|
// Calculate the invert determinant (inlined to avoid double-caching)
|
|
|
- float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
|
|
|
+ float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
|
|
|
|
|
|
temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
|
|
|
temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
|
|
@@ -461,7 +489,10 @@ RMDEF void MatrixNormalize(Matrix *mat)
|
|
|
// Returns identity matrix
|
|
|
RMDEF Matrix MatrixIdentity(void)
|
|
|
{
|
|
|
- Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
|
|
|
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
|
|
|
+ 0.0f, 1.0f, 0.0f, 0.0f,
|
|
|
+ 0.0f, 0.0f, 1.0f, 0.0f,
|
|
|
+ 0.0f, 0.0f, 0.0f, 1.0f };
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -519,7 +550,10 @@ RMDEF Matrix MatrixSubstract(Matrix left, Matrix right)
|
|
|
// Returns translation matrix
|
|
|
RMDEF Matrix MatrixTranslate(float x, float y, float z)
|
|
|
{
|
|
|
- Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 };
|
|
|
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
|
|
|
+ 0.0f, 1.0f, 0.0f, 0.0f,
|
|
|
+ 0.0f, 0.0f, 1.0f, 0.0f,
|
|
|
+ x, y, z, 1.0f };
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -536,9 +570,9 @@ RMDEF Matrix MatrixRotate(float angle, Vector3 axis)
|
|
|
|
|
|
float length = sqrt(x*x + y*y + z*z);
|
|
|
|
|
|
- if ((length != 1) && (length != 0))
|
|
|
+ if ((length != 1.0f) && (length != 0.0f))
|
|
|
{
|
|
|
- length = 1/length;
|
|
|
+ length = 1.0f/length;
|
|
|
x *= length;
|
|
|
y *= length;
|
|
|
z *= length;
|
|
@@ -594,15 +628,15 @@ RMDEF Matrix MatrixRotate(float angle, float x, float y, float z)
|
|
|
m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
|
|
|
|
|
|
// build rotation matrix
|
|
|
- float r0 = x * x * c1 + c;
|
|
|
- float r1 = x * y * c1 + z * s;
|
|
|
- float r2 = x * z * c1 - y * s;
|
|
|
- float r4 = x * y * c1 - z * s;
|
|
|
- float r5 = y * y * c1 + c;
|
|
|
- float r6 = y * z * c1 + x * s;
|
|
|
- float r8 = x * z * c1 + y * s;
|
|
|
- float r9 = y * z * c1 - x * s;
|
|
|
- float r10= z * z * c1 + c;
|
|
|
+ float r0 = x*x*c1 + c;
|
|
|
+ float r1 = x*y*c1 + z*s;
|
|
|
+ float r2 = x*z*c1 - y*s;
|
|
|
+ float r4 = x*y*c1 - z*s;
|
|
|
+ float r5 = y*y*c1 + c;
|
|
|
+ float r6 = y*z*c1 + x*s;
|
|
|
+ float r8 = x*z*c1 + y*s;
|
|
|
+ float r9 = y*z*c1 - x*s;
|
|
|
+ float r10= z*z*c1 + c;
|
|
|
|
|
|
// multiply rotation matrix
|
|
|
result.m0 = r0*m0 + r4*m1 + r8*m2;
|
|
@@ -673,7 +707,10 @@ RMDEF Matrix MatrixRotateZ(float angle)
|
|
|
// Returns scaling matrix
|
|
|
RMDEF Matrix MatrixScale(float x, float y, float z)
|
|
|
{
|
|
|
- Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 };
|
|
|
+ Matrix result = { x, 0.0f, 0.0f, 0.0f,
|
|
|
+ 0.0f, y, 0.0f, 0.0f,
|
|
|
+ 0.0f, 0.0f, z, 0.0f,
|
|
|
+ 0.0f, 0.0f, 0.0f, 1.0f };
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -713,25 +750,25 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
|
|
|
float tb = (top - bottom);
|
|
|
float fn = (far - near);
|
|
|
|
|
|
- result.m0 = (near*2.0f) / rl;
|
|
|
- result.m1 = 0;
|
|
|
- result.m2 = 0;
|
|
|
- result.m3 = 0;
|
|
|
+ result.m0 = (near*2.0f)/rl;
|
|
|
+ result.m1 = 0.0f;
|
|
|
+ result.m2 = 0.0f;
|
|
|
+ result.m3 = 0.0f;
|
|
|
|
|
|
- result.m4 = 0;
|
|
|
- result.m5 = (near*2.0f) / tb;
|
|
|
- result.m6 = 0;
|
|
|
- result.m7 = 0;
|
|
|
+ result.m4 = 0.0f;
|
|
|
+ result.m5 = (near*2.0f)/tb;
|
|
|
+ result.m6 = 0.0f;
|
|
|
+ result.m7 = 0.0f;
|
|
|
|
|
|
- result.m8 = (right + left) / rl;
|
|
|
- result.m9 = (top + bottom) / tb;
|
|
|
- result.m10 = -(far + near) / fn;
|
|
|
+ result.m8 = (right + left)/rl;
|
|
|
+ result.m9 = (top + bottom)/tb;
|
|
|
+ result.m10 = -(far + near)/fn;
|
|
|
result.m11 = -1.0f;
|
|
|
|
|
|
- result.m12 = 0;
|
|
|
- result.m13 = 0;
|
|
|
- result.m14 = -(far*near*2.0f) / fn;
|
|
|
- result.m15 = 0;
|
|
|
+ result.m12 = 0.0f;
|
|
|
+ result.m13 = 0.0f;
|
|
|
+ result.m14 = -(far*near*2.0f)/fn;
|
|
|
+ result.m15 = 0.0f;
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -739,7 +776,7 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
|
|
|
// Returns perspective projection matrix
|
|
|
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
|
|
|
{
|
|
|
- double top = near*tanf(fovy*PI / 360.0f);
|
|
|
+ double top = near*tanf(fovy*PI/360.0f);
|
|
|
double right = top*aspect;
|
|
|
|
|
|
return MatrixFrustum(-right, right, -top, top, near, far);
|
|
@@ -754,22 +791,22 @@ RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, d
|
|
|
float tb = (top - bottom);
|
|
|
float fn = (far - near);
|
|
|
|
|
|
- result.m0 = 2 / rl;
|
|
|
- result.m1 = 0;
|
|
|
- result.m2 = 0;
|
|
|
- result.m3 = 0;
|
|
|
- result.m4 = 0;
|
|
|
- result.m5 = 2 / tb;
|
|
|
- result.m6 = 0;
|
|
|
- result.m7 = 0;
|
|
|
- result.m8 = 0;
|
|
|
- result.m9 = 0;
|
|
|
- result.m10 = -2 / fn;
|
|
|
- result.m11 = 0;
|
|
|
- result.m12 = -(left + right) / rl;
|
|
|
- result.m13 = -(top + bottom) / tb;
|
|
|
- result.m14 = -(far + near) / fn;
|
|
|
- result.m15 = 1;
|
|
|
+ result.m0 = 2.0f/rl;
|
|
|
+ result.m1 = 0.0f;
|
|
|
+ result.m2 = 0.0f;
|
|
|
+ result.m3 = 0.0f;
|
|
|
+ result.m4 = 0.0f;
|
|
|
+ result.m5 = 2.0f/tb;
|
|
|
+ result.m6 = 0.0f;
|
|
|
+ result.m7 = 0.0f;
|
|
|
+ result.m8 = 0.0f;
|
|
|
+ result.m9 = 0.0f;
|
|
|
+ result.m10 = -2.0f/fn;
|
|
|
+ result.m11 = 0.0f;
|
|
|
+ result.m12 = -(left + right)/rl;
|
|
|
+ result.m13 = -(top + bottom)/tb;
|
|
|
+ result.m14 = -(far + near)/fn;
|
|
|
+ result.m15 = 1.0f;
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -789,19 +826,19 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
|
|
|
result.m0 = x.x;
|
|
|
result.m1 = x.y;
|
|
|
result.m2 = x.z;
|
|
|
- result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z));
|
|
|
+ result.m3 = -((x.x*eye.x) + (x.y*eye.y) + (x.z*eye.z));
|
|
|
result.m4 = y.x;
|
|
|
result.m5 = y.y;
|
|
|
result.m6 = y.z;
|
|
|
- result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z));
|
|
|
+ result.m7 = -((y.x*eye.x) + (y.y*eye.y) + (y.z*eye.z));
|
|
|
result.m8 = z.x;
|
|
|
result.m9 = z.y;
|
|
|
result.m10 = z.z;
|
|
|
- result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z));
|
|
|
- result.m12 = 0;
|
|
|
- result.m13 = 0;
|
|
|
- result.m14 = 0;
|
|
|
- result.m15 = 1;
|
|
|
+ result.m11 = -((z.x*eye.x) + (z.y*eye.y) + (z.z*eye.z));
|
|
|
+ result.m12 = 0.0f;
|
|
|
+ result.m13 = 0.0f;
|
|
|
+ result.m14 = 0.0f;
|
|
|
+ result.m15 = 1.0f;
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -834,9 +871,9 @@ RMDEF void QuaternionNormalize(Quaternion *q)
|
|
|
|
|
|
length = QuaternionLength(*q);
|
|
|
|
|
|
- if (length == 0) length = 1;
|
|
|
+ if (length == 0.0f) length = 1.0f;
|
|
|
|
|
|
- ilength = 1.0/length;
|
|
|
+ ilength = 1.0f/length;
|
|
|
|
|
|
q->x *= ilength;
|
|
|
q->y *= ilength;
|
|
@@ -882,8 +919,8 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
- float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta;
|
|
|
- float ratioB = sin(amount*halfTheta) / sinHalfTheta;
|
|
|
+ float ratioA = sin((1 - amount)*halfTheta)/sinHalfTheta;
|
|
|
+ float ratioB = sin(amount*halfTheta)/sinHalfTheta;
|
|
|
|
|
|
result.x = (q1.x*ratioA + q2.x*ratioB);
|
|
|
result.y = (q1.y*ratioA + q2.y*ratioB);
|
|
@@ -902,15 +939,15 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
|
|
|
|
|
|
float trace = MatrixTrace(matrix);
|
|
|
|
|
|
- if (trace > 0)
|
|
|
+ if (trace > 0.0f)
|
|
|
{
|
|
|
- float s = (float)sqrt(trace + 1) * 2;
|
|
|
- float invS = 1 / s;
|
|
|
+ float s = (float)sqrt(trace + 1)*2.0f;
|
|
|
+ float invS = 1.0f/s;
|
|
|
|
|
|
- result.w = s * 0.25;
|
|
|
- result.x = (matrix.m6 - matrix.m9) * invS;
|
|
|
- result.y = (matrix.m8 - matrix.m2) * invS;
|
|
|
- result.z = (matrix.m1 - matrix.m4) * invS;
|
|
|
+ result.w = s*0.25f;
|
|
|
+ result.x = (matrix.m6 - matrix.m9)*invS;
|
|
|
+ result.y = (matrix.m8 - matrix.m2)*invS;
|
|
|
+ result.z = (matrix.m1 - matrix.m4)*invS;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
@@ -918,33 +955,33 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
|
|
|
|
|
|
if (m00 > m11 && m00 > m22)
|
|
|
{
|
|
|
- float s = (float)sqrt(1 + m00 - m11 - m22) * 2;
|
|
|
- float invS = 1 / s;
|
|
|
+ float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
|
|
|
+ float invS = 1.0f/s;
|
|
|
|
|
|
- result.w = (matrix.m6 - matrix.m9) * invS;
|
|
|
- result.x = s * 0.25;
|
|
|
- result.y = (matrix.m4 + matrix.m1) * invS;
|
|
|
- result.z = (matrix.m8 + matrix.m2) * invS;
|
|
|
+ result.w = (matrix.m6 - matrix.m9)*invS;
|
|
|
+ result.x = s*0.25f;
|
|
|
+ result.y = (matrix.m4 + matrix.m1)*invS;
|
|
|
+ result.z = (matrix.m8 + matrix.m2)*invS;
|
|
|
}
|
|
|
else if (m11 > m22)
|
|
|
{
|
|
|
- float s = (float)sqrt(1 + m11 - m00 - m22) * 2;
|
|
|
- float invS = 1 / s;
|
|
|
+ float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f;
|
|
|
+ float invS = 1.0f/s;
|
|
|
|
|
|
- result.w = (matrix.m8 - matrix.m2) * invS;
|
|
|
- result.x = (matrix.m4 + matrix.m1) * invS;
|
|
|
- result.y = s * 0.25;
|
|
|
- result.z = (matrix.m9 + matrix.m6) * invS;
|
|
|
+ result.w = (matrix.m8 - matrix.m2)*invS;
|
|
|
+ result.x = (matrix.m4 + matrix.m1)*invS;
|
|
|
+ result.y = s*0.25f;
|
|
|
+ result.z = (matrix.m9 + matrix.m6)*invS;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
- float s = (float)sqrt(1 + m22 - m00 - m11) * 2;
|
|
|
- float invS = 1 / s;
|
|
|
+ float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f;
|
|
|
+ float invS = 1.0f/s;
|
|
|
|
|
|
- result.w = (matrix.m1 - matrix.m4) * invS;
|
|
|
- result.x = (matrix.m8 + matrix.m2) * invS;
|
|
|
- result.y = (matrix.m9 + matrix.m6) * invS;
|
|
|
- result.z = s * 0.25;
|
|
|
+ result.w = (matrix.m1 - matrix.m4)*invS;
|
|
|
+ result.x = (matrix.m8 + matrix.m2)*invS;
|
|
|
+ result.y = (matrix.m9 + matrix.m6)*invS;
|
|
|
+ result.z = s*0.25f;
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -974,22 +1011,22 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
|
|
float wy = w*y2;
|
|
|
float wz = w*z2;
|
|
|
|
|
|
- result.m0 = 1 - (yy + zz);
|
|
|
+ result.m0 = 1.0f - (yy + zz);
|
|
|
result.m1 = xy - wz;
|
|
|
result.m2 = xz + wy;
|
|
|
- result.m3 = 0;
|
|
|
+ result.m3 = 0.0f;
|
|
|
result.m4 = xy + wz;
|
|
|
- result.m5 = 1 - (xx + zz);
|
|
|
+ result.m5 = 1.0f - (xx + zz);
|
|
|
result.m6 = yz - wx;
|
|
|
- result.m7 = 0;
|
|
|
+ result.m7 = 0.0f;
|
|
|
result.m8 = xz - wy;
|
|
|
result.m9 = yz + wx;
|
|
|
- result.m10 = 1 - (xx + yy);
|
|
|
- result.m11 = 0;
|
|
|
- result.m12 = 0;
|
|
|
- result.m13 = 0;
|
|
|
- result.m14 = 0;
|
|
|
- result.m15 = 1;
|
|
|
+ result.m10 = 1.0f - (xx + yy);
|
|
|
+ result.m11 = 0.0f;
|
|
|
+ result.m12 = 0.0f;
|
|
|
+ result.m13 = 0.0f;
|
|
|
+ result.m14 = 0.0f;
|
|
|
+ result.m15 = 1.0f;
|
|
|
|
|
|
return result;
|
|
|
}
|
|
@@ -998,17 +1035,17 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
|
|
// NOTE: angle must be provided in radians
|
|
|
RMDEF Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis)
|
|
|
{
|
|
|
- Quaternion result = { 0, 0, 0, 1 };
|
|
|
+ Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
|
|
|
|
|
|
- if (VectorLength(axis) != 0.0)
|
|
|
+ if (VectorLength(axis) != 0.0f)
|
|
|
|
|
|
- angle *= 0.5;
|
|
|
+ angle *= 0.5f;
|
|
|
|
|
|
VectorNormalize(&axis);
|
|
|
|
|
|
- result.x = axis.x * (float)sin(angle);
|
|
|
- result.y = axis.y * (float)sin(angle);
|
|
|
- result.z = axis.z * (float)sin(angle);
|
|
|
+ result.x = axis.x*(float)sin(angle);
|
|
|
+ result.y = axis.y*(float)sin(angle);
|
|
|
+ result.z = axis.z*(float)sin(angle);
|
|
|
result.w = (float)cos(angle);
|
|
|
|
|
|
QuaternionNormalize(&result);
|
|
@@ -1021,23 +1058,23 @@ RMDEF void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis
|
|
|
{
|
|
|
if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);
|
|
|
|
|
|
- Vector3 resAxis = { 0, 0, 0 };
|
|
|
- float resAngle = 0;
|
|
|
+ Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
|
|
|
+ float resAngle = 0.0f;
|
|
|
|
|
|
- resAngle = 2.0f * (float)acos(q.w);
|
|
|
- float den = (float)sqrt(1.0 - q.w * q.w);
|
|
|
+ resAngle = 2.0f*(float)acos(q.w);
|
|
|
+ float den = (float)sqrt(1.0f - q.w*q.w);
|
|
|
|
|
|
if (den > 0.0001f)
|
|
|
{
|
|
|
- resAxis.x = q.x / den;
|
|
|
- resAxis.y = q.y / den;
|
|
|
- resAxis.z = q.z / den;
|
|
|
+ resAxis.x = q.x/den;
|
|
|
+ resAxis.y = q.y/den;
|
|
|
+ resAxis.z = q.z/den;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
// This occurs when the angle is zero.
|
|
|
// Not a problem: just set an arbitrary normalized axis.
|
|
|
- resAxis.x = 1.0;
|
|
|
+ resAxis.x = 1.0f;
|
|
|
}
|
|
|
|
|
|
*outAxis = resAxis;
|
|
@@ -1058,5 +1095,6 @@ RMDEF void QuaternionTransform(Quaternion *q, Matrix mat)
|
|
|
q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
|
|
|
}
|
|
|
|
|
|
-#endif // RAYMATH_DEFINE
|
|
|
-#endif // RAYMATH_H
|
|
|
+#endif // RAYMATH_IMPLEMENTATION
|
|
|
+
|
|
|
+#endif // RAYMATH_H
|