|
|
@@ -0,0 +1,173 @@
|
|
|
+using System.Runtime.InteropServices;
|
|
|
+using AtomicEngine;
|
|
|
+
|
|
|
+public class Program
|
|
|
+{
|
|
|
+ public static void Main(string[] args)
|
|
|
+ {
|
|
|
+ Application.Run<HelloQuad>(args);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// This struct represents a vertex in our geometry, its layout should be sequential and we're specifying the size although it's
|
|
|
+// not necessary in this example. They hold the vertex position in 3D, the color channels, and the texture coordinates (UV)
|
|
|
+[StructLayout(LayoutKind.Sequential, Size = 24)]
|
|
|
+public struct VertexUVColor
|
|
|
+{
|
|
|
+ // These are the vertex position in each individual axis. z is depth in this case, useful for sorting in orthographic projection
|
|
|
+ public float x, y, z; // 3 elements of 4 bytes each (single precision 32-bit): 3x4 = 12 bytes
|
|
|
+ // Individual color channels: red, green, blue, alpha (transparency; 0 = transparent, 255 = opaque)
|
|
|
+ public byte r, g, b, a; // 4 elements of 1 byte
|
|
|
+ // These are the texture x and y coordinates, commonly called u and v respectively; they are simply normalized cartesian coordinates
|
|
|
+ public float u, v; // 2x4 = 8 bytes here, totalling 12+4+6 bytes = 24 bytes (total size of this struct)
|
|
|
+}
|
|
|
+
|
|
|
+public class HelloQuad : AppDelegate
|
|
|
+{
|
|
|
+ // Scene reference kept here so it won't be collected by the GC
|
|
|
+ Scene scene;
|
|
|
+ Graphics graphics;
|
|
|
+ Viewport viewport;
|
|
|
+ Camera camera;
|
|
|
+ Texture2D texture;
|
|
|
+ VertexBuffer vertexBuffer;
|
|
|
+
|
|
|
+ public override void Start()
|
|
|
+ {
|
|
|
+ // We get the variables we are going to use in this example
|
|
|
+ Renderer renderer = GetSubsystem<Renderer>();
|
|
|
+ graphics = GetSubsystem<Graphics>();
|
|
|
+ viewport = renderer.GetViewport(0);
|
|
|
+
|
|
|
+ // We create a new Scene
|
|
|
+ scene = new Scene();
|
|
|
+ // The Octree should be added to the root scene node (mandatory?) TODO: answer this
|
|
|
+ scene.CreateComponent<Octree>();
|
|
|
+ // We pass the scene we just created to be displayed in the viewport
|
|
|
+ viewport.Scene = scene;
|
|
|
+
|
|
|
+ // We create a new camera on the scene, called "Camera". Tip: you can think of a camera as a glorified projection matrix
|
|
|
+ // - Scene.CreateChild(string name) returns a new Node with that name.
|
|
|
+ // - Node.CreateComponent<ComponentType>() returns a component attached to that Node
|
|
|
+ camera = scene.CreateChild("Camera").CreateComponent<Camera>();
|
|
|
+ // We can access the Node any component is attached to using Component.Node
|
|
|
+ camera.Node.Position = new Vector3(0.5f, 0.5f, 0.0f);
|
|
|
+ // Remember, 'camera' is a Camera component, so we access it directly here
|
|
|
+ camera.Orthographic = true;
|
|
|
+ camera.OrthoSize = 1.5f;
|
|
|
+ // We pass our newly created camera to the viewport so it's used to display our scene
|
|
|
+ viewport.Camera = camera;
|
|
|
+
|
|
|
+ // We create an XML from string so this code is fully self-contained
|
|
|
+ XMLFile xml = new XMLFile(); xml.FromString("<renderpath><command type=\"sendevent\"/></renderpath>");
|
|
|
+
|
|
|
+ // We create a new RenderPath. A Viewport comes by default with some events, and you can use viewport.GetRenderPath().Clone()
|
|
|
+ // to clone the default RenderPath and Append instructions to it instead (see AtomicBlaster for examples on how to do effects)
|
|
|
+ RenderPath renderpath = new RenderPath();
|
|
|
+ renderpath.Append(xml);
|
|
|
+ // We replace the viewport's default renderpath by the one we just created
|
|
|
+ viewport.SetRenderPath(renderpath);
|
|
|
+ // We subscribe to the RenderPathEvent. Here we pass an anonymous function that just absorbs the argument and calls Render()
|
|
|
+ SubscribeToEvent<RenderPathEvent>(e => { Render(); });
|
|
|
+
|
|
|
+ // Here we setup our shaders, we are using the BasicVColUnlitAlpha "technique" and selecting DIFFMAP and VERTEXCOLOR
|
|
|
+ // DIFFMAP is the diffuse texture and VERTEXCOLOR is a color each vertex holds that is used to 'tint' the surface
|
|
|
+ // See this link: github.com/AtomicGameEngine/AtomicGameEngine/tree/master/Resources/CoreData/Techniques
|
|
|
+ ShaderVariation pixelShader = graphics.GetShader(ShaderType.PS, "Basic", "DIFFMAP VERTEXCOLOR");
|
|
|
+ ShaderVariation vertexShader = graphics.GetShader(ShaderType.VS, "Basic", "DIFFMAP VERTEXCOLOR");
|
|
|
+ graphics.SetShaders(vertexShader, pixelShader);
|
|
|
+ // This vertex shader parameter just applies no transformation (Identity Matrix means no transformation) so the vertices
|
|
|
+ // display in world coordinates what allow us to use the camera properly. NOTE: Identity Matrix is also called Unit Matrix
|
|
|
+ graphics.SetShaderParameter(ShaderParams.VSP_MODEL, Matrix3x4.IDENTITY);
|
|
|
+ // We set the pixel shader diffuse color to be white. You can change this to 'tint' the texture similar to vertex colors
|
|
|
+ // but this applies to the whole material and in this example vertex colors will also affect it
|
|
|
+ graphics.SetShaderParameter(ShaderParams.PSP_MATDIFFCOLOR, Color.White);
|
|
|
+ // We set cull mode to NONE so our geometry won't be culled (ignored), for this example we don't really need any culling
|
|
|
+ graphics.SetCullMode(CullMode.CULL_NONE);
|
|
|
+
|
|
|
+ // We create a texture from literal data so this code is fully self-contained, you can safely skip the lines below.
|
|
|
+ // In your real projects you're most likely going to load textures from the disk using Texture.Load
|
|
|
+ Image image = new Image();
|
|
|
+ image.SetSize(16, 16, 3);
|
|
|
+
|
|
|
+ Color z = Color.White;
|
|
|
+ Color M = Color.Blue;
|
|
|
+ Color k = Color.Black;
|
|
|
+
|
|
|
+ Color[] imageData =
|
|
|
+ {
|
|
|
+ k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,
|
|
|
+ k,z,z,z,z,z,z,z,z,z,z,z,z,z,M,k,
|
|
|
+ k,z,z,z,z,z,z,M,M,z,z,z,z,z,z,k,
|
|
|
+ k,z,z,z,z,z,z,M,M,z,z,z,z,z,z,k,
|
|
|
+ k,z,z,z,z,z,M,z,z,M,z,z,z,z,z,k,
|
|
|
+ k,z,z,z,z,z,M,z,z,M,z,z,z,z,z,k,
|
|
|
+ k,z,z,z,z,M,z,z,z,z,M,z,z,z,z,k,
|
|
|
+ k,z,z,z,z,M,z,z,z,z,M,z,z,z,z,k,
|
|
|
+ k,z,z,z,M,z,z,z,z,z,z,M,z,z,z,k,
|
|
|
+ k,z,z,z,M,z,z,z,z,z,z,M,z,z,z,k,
|
|
|
+ k,z,z,M,M,M,M,M,M,M,M,M,M,z,z,k,
|
|
|
+ k,z,z,M,z,z,z,z,z,z,z,z,M,z,z,k,
|
|
|
+ k,z,M,z,z,z,z,z,z,z,z,z,z,M,z,k,
|
|
|
+ k,z,M,z,z,z,z,z,z,z,z,z,z,M,z,k,
|
|
|
+ k,z,z,z,z,z,z,z,z,z,z,z,z,z,z,k,
|
|
|
+ k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,
|
|
|
+ };
|
|
|
+
|
|
|
+ for (int pixel = 0; pixel < imageData.Length; pixel++)
|
|
|
+ {
|
|
|
+ image.SetPixel(pixel % 16, 15 - pixel / 16, imageData[pixel]);
|
|
|
+ }
|
|
|
+
|
|
|
+ texture = new Texture2D();
|
|
|
+ texture.SetData(image);
|
|
|
+
|
|
|
+ // We call this function that creates the quad geometry
|
|
|
+ CreateQuad();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // We use unsafe code only to access the vertex buffer data
|
|
|
+ private unsafe void CreateQuad()
|
|
|
+ {
|
|
|
+ // We create a new VertexBuffer object, it holds our vertices and is passed to the GPU
|
|
|
+ vertexBuffer = new VertexBuffer();
|
|
|
+ // We set its size and the elements it's containing, the 3rd optional argument (dynamic) should be 'true' if you're planning
|
|
|
+ // to update the VertexBuffer constantly, that will improve performance in those cases.
|
|
|
+ vertexBuffer.SetSize(6, Constants.MASK_POSITION | Constants.MASK_TEXCOORD1 | Constants.MASK_COLOR, false);
|
|
|
+
|
|
|
+ // Here we lock the vertexBuffer what returns a pointer (IntPtr) to its data (vertexData here), I'm using a code block for clarity
|
|
|
+ System.IntPtr vertexData = vertexBuffer.Lock(0, 6, true);
|
|
|
+ {
|
|
|
+ // We can cast the data pointer to whatever data type we want, here we are using the custom VertexUVColor struct
|
|
|
+ VertexUVColor* vertex = (VertexUVColor*) vertexData;
|
|
|
+
|
|
|
+ // Each of these blocks is a vertex, we set the their position (x and y), texture coordinate (u and v) and color in individual
|
|
|
+ // red, green and blue channels (r, g, b), alpha has no effect in this example because there's no transparency in the shader
|
|
|
+ vertex[0] = new VertexUVColor{ x = 0, y = 0, u = 0, v = 0, r = 255, g = 0, b = 255 };
|
|
|
+ vertex[1] = new VertexUVColor{ x = 0, y = 1, u = 0, v = 1, r = 255, g = 255, b = 0 };
|
|
|
+ vertex[2] = new VertexUVColor{ x = 1, y = 1, u = 1, v = 1, r = 255, g = 255, b = 255 };
|
|
|
+ vertex[3] = new VertexUVColor{ x = 0, y = 0, u = 0, v = 0, r = 255, g = 0, b = 255 };
|
|
|
+ vertex[4] = new VertexUVColor{ x = 1, y = 1, u = 1, v = 1, r = 255, g = 255, b = 255 };
|
|
|
+ vertex[5] = new VertexUVColor{ x = 1, y = 0, u = 1, v = 0, r = 0, g = 255, b = 0 };
|
|
|
+ }
|
|
|
+ // Don't forget to unlock the VertexBuffer after you modify it
|
|
|
+ vertexBuffer.Unlock();
|
|
|
+ }
|
|
|
+
|
|
|
+ void Render()
|
|
|
+ {
|
|
|
+ // We clear the whole screen white before drawing anything
|
|
|
+ graphics.Clear(Constants.CLEAR_COLOR, Color.White);
|
|
|
+ // The 3 lines below don't have to be set every frame in this specific example, but you'll most likely be changing the often
|
|
|
+ viewport.View.SetCameraShaderParameters(camera);
|
|
|
+ // We set the Texture to be used in the next draw call and we are also setting the filter to nearest neighbor so it looks sharp
|
|
|
+ graphics.SetTexture((uint)TextureUnit.TU_DIFFUSE, texture);
|
|
|
+ graphics.SetDefaultTextureFilterMode(TextureFilterMode.FILTER_NEAREST);
|
|
|
+ // We set the VertexBuffer to be used on the next draw call
|
|
|
+ graphics.SetVertexBuffer(vertexBuffer);
|
|
|
+ // We finally call Draw passing the primitive type our VertexBuffer uses, TRIANGLE_LIST basically means that every 3 vertices
|
|
|
+ // in the buffer should have a face (triangle) between them (see: http://math.hws.edu/graphicsbook/c3/triangle-primitives.png)
|
|
|
+ graphics.Draw(PrimitiveType.TRIANGLE_LIST, 0, 6);
|
|
|
+ }
|
|
|
+}
|