|
|
@@ -0,0 +1,8513 @@
|
|
|
+//
|
|
|
+// Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved.
|
|
|
+//
|
|
|
+// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
+// of this software and associated documentation files (the "Software"), to deal
|
|
|
+// in the Software without restriction, including without limitation the rights
|
|
|
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
+// copies of the Software, and to permit persons to whom the Software is
|
|
|
+// furnished to do so, subject to the following conditions:
|
|
|
+//
|
|
|
+// The above copyright notice and this permission notice shall be included in
|
|
|
+// all copies or substantial portions of the Software.
|
|
|
+//
|
|
|
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
+// THE SOFTWARE.
|
|
|
+//
|
|
|
+
|
|
|
+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
+#define AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
+
|
|
|
+#ifdef __cplusplus
|
|
|
+extern "C" {
|
|
|
+#endif
|
|
|
+
|
|
|
+/** \mainpage Vulkan Memory Allocator
|
|
|
+
|
|
|
+<b>Version 2.0.0-alpha.6</b> (2017-11-13)
|
|
|
+
|
|
|
+Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved. \n
|
|
|
+License: MIT
|
|
|
+
|
|
|
+Documentation of all members: vk_mem_alloc.h
|
|
|
+
|
|
|
+Table of contents:
|
|
|
+
|
|
|
+- User guide
|
|
|
+ - \subpage quick_start
|
|
|
+ - \subpage choosing_memory_type
|
|
|
+ - \subpage memory_mapping
|
|
|
+ - \subpage custom_memory_pools
|
|
|
+ - \subpage defragmentation
|
|
|
+ - \subpage lost_allocations
|
|
|
+ - \subpage allocation_annotation
|
|
|
+- \subpage configuration
|
|
|
+ - \subpage vk_khr_dedicated_allocation
|
|
|
+- \subpage thread_safety
|
|
|
+
|
|
|
+See also:
|
|
|
+
|
|
|
+- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
|
|
|
+- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+\page quick_start Quick start
|
|
|
+
|
|
|
+\section project_setup Project setup
|
|
|
+
|
|
|
+In your project code:
|
|
|
+
|
|
|
+-# Include "vk_mem_alloc.h" file wherever you want to use the library.
|
|
|
+-# In exacly one C++ file define following macro before include to build library
|
|
|
+ implementation.
|
|
|
+
|
|
|
+\code
|
|
|
+#define VMA_IMPLEMENTATION
|
|
|
+#include "vk_mem_alloc.h"
|
|
|
+\endcode
|
|
|
+
|
|
|
+\section initialization Initialization
|
|
|
+
|
|
|
+At program startup:
|
|
|
+
|
|
|
+-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
|
|
|
+-# Fill VmaAllocatorCreateInfo structure and create `VmaAllocator` object by
|
|
|
+ calling vmaCreateAllocator().
|
|
|
+
|
|
|
+\code
|
|
|
+VmaAllocatorCreateInfo allocatorInfo = {};
|
|
|
+allocatorInfo.physicalDevice = physicalDevice;
|
|
|
+allocatorInfo.device = device;
|
|
|
+
|
|
|
+VmaAllocator allocator;
|
|
|
+vmaCreateAllocator(&allocatorInfo, &allocator);
|
|
|
+\endcode
|
|
|
+
|
|
|
+\section resource_allocation Resource allocation
|
|
|
+
|
|
|
+When you want to create a buffer or image:
|
|
|
+
|
|
|
+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
|
|
|
+-# Fill VmaAllocationCreateInfo structure.
|
|
|
+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
|
|
|
+ already allocated and bound to it.
|
|
|
+
|
|
|
+\code
|
|
|
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
|
+bufferInfo.size = 65536;
|
|
|
+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocInfo = {};
|
|
|
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
+
|
|
|
+VkBuffer buffer;
|
|
|
+VmaAllocation allocation;
|
|
|
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
|
+\endcode
|
|
|
+
|
|
|
+Don't forget to destroy your objects when no longer needed:
|
|
|
+
|
|
|
+\code
|
|
|
+vmaDestroyBuffer(allocator, buffer, allocation);
|
|
|
+vmaDestroyAllocator(allocator);
|
|
|
+\endcode
|
|
|
+
|
|
|
+
|
|
|
+\page choosing_memory_type Choosing memory type
|
|
|
+
|
|
|
+Physical devices in Vulkan support various combinations of memory heaps and
|
|
|
+types. Help with choosing correct and optimal memory type for your specific
|
|
|
+resource is one of the key features of this library. You can use it by filling
|
|
|
+appropriate members of VmaAllocationCreateInfo structure, as described below.
|
|
|
+You can also combine multiple methods.
|
|
|
+
|
|
|
+-# If you just want to find memory type index that meets your requirements, you
|
|
|
+ can use function vmaFindMemoryTypeIndex().
|
|
|
+-# If you want to allocate a region of device memory without association with any
|
|
|
+ specific image or buffer, you can use function vmaAllocateMemory(). Usage of
|
|
|
+ this function is not recommended and usually not needed.
|
|
|
+-# If you already have a buffer or an image created, you want to allocate memory
|
|
|
+ for it and then you will bind it yourself, you can use function
|
|
|
+ vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
|
|
|
+-# If you want to create a buffer or an image, allocate memory for it and bind
|
|
|
+ them together, all in one call, you can use function vmaCreateBuffer(),
|
|
|
+ vmaCreateImage(). This is the recommended way to use this library.
|
|
|
+
|
|
|
+When using 3. or 4., the library internally queries Vulkan for memory types
|
|
|
+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
|
|
|
+and uses only one of these types.
|
|
|
+
|
|
|
+If no memory type can be found that meets all the requirements, these functions
|
|
|
+return `VK_ERROR_FEATURE_NOT_PRESENT`.
|
|
|
+
|
|
|
+You can leave VmaAllocationCreateInfo structure completely filled with zeros.
|
|
|
+It means no requirements are specified for memory type.
|
|
|
+It is valid, although not very useful.
|
|
|
+
|
|
|
+\section choosing_memory_type_usage Usage
|
|
|
+
|
|
|
+The easiest way to specify memory requirements is to fill member
|
|
|
+VmaAllocationCreateInfo::usage using one of the values of enum `VmaMemoryUsage`.
|
|
|
+It defines high level, common usage types.
|
|
|
+
|
|
|
+For example, if you want to create a uniform buffer that will be filled using
|
|
|
+transfer only once or infrequently and used for rendering every frame, you can
|
|
|
+do it using following code:
|
|
|
+
|
|
|
+\code
|
|
|
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
|
+bufferInfo.size = 65536;
|
|
|
+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocInfo = {};
|
|
|
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
+
|
|
|
+VkBuffer buffer;
|
|
|
+VmaAllocation allocation;
|
|
|
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
|
+\endcode
|
|
|
+
|
|
|
+\section choosing_memory_type_required_preferred_flags Required and preferred flags
|
|
|
+
|
|
|
+You can specify more detailed requirements by filling members
|
|
|
+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
|
|
|
+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
|
|
|
+if you want to create a buffer that will be persistently mapped on host (so it
|
|
|
+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
|
|
|
+use following code:
|
|
|
+
|
|
|
+\code
|
|
|
+VmaAllocationCreateInfo allocInfo = {};
|
|
|
+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
|
+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
|
+allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
+
|
|
|
+VkBuffer buffer;
|
|
|
+VmaAllocation allocation;
|
|
|
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
|
+\endcode
|
|
|
+
|
|
|
+A memory type is chosen that has all the required flags and as many preferred
|
|
|
+flags set as possible.
|
|
|
+
|
|
|
+If you use VmaAllocationCreateInfo::usage, it is just internally converted to
|
|
|
+a set of required and preferred flags.
|
|
|
+
|
|
|
+\section choosing_memory_type_explicit_memory_types Explicit memory types
|
|
|
+
|
|
|
+If you inspected memory types available on the physical device and you have
|
|
|
+a preference for memory types that you want to use, you can fill member
|
|
|
+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
|
|
|
+means that a memory type with that index is allowed to be used for the
|
|
|
+allocation. Special value 0, just like UINT32_MAX, means there are no
|
|
|
+restrictions to memory type index.
|
|
|
+
|
|
|
+Please note that this member is NOT just a memory type index.
|
|
|
+Still you can use it to choose just one, specific memory type.
|
|
|
+For example, if you already determined that your buffer should be created in
|
|
|
+memory type 2, use following code:
|
|
|
+
|
|
|
+\code
|
|
|
+uint32_t memoryTypeIndex = 2;
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocInfo = {};
|
|
|
+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
|
|
|
+
|
|
|
+VkBuffer buffer;
|
|
|
+VmaAllocation allocation;
|
|
|
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
|
+\endcode
|
|
|
+
|
|
|
+\section choosing_memory_type_custom_memory_pools Custom memory pools
|
|
|
+
|
|
|
+If you allocate from custom memory pool, all the ways of specifying memory
|
|
|
+requirements described above are not applicable and the aforementioned members
|
|
|
+of VmaAllocationCreateInfo structure are ignored. Memory type is selected
|
|
|
+explicitly when creating the pool and then used to make all the allocations from
|
|
|
+that pool. For further details, see \ref custom_memory_pools.
|
|
|
+
|
|
|
+
|
|
|
+\page memory_mapping Memory mapping
|
|
|
+
|
|
|
+\section persistently_mapped_memory Persistently mapped memory
|
|
|
+
|
|
|
+If you need to map memory on host, it may happen that two allocations are
|
|
|
+assigned to the same `VkDeviceMemory` block, so if you map them both at the same
|
|
|
+time, it will cause error because mapping single memory block multiple times is
|
|
|
+illegal in Vulkan.
|
|
|
+
|
|
|
+TODO update this...
|
|
|
+
|
|
|
+It is safer, more convenient and more efficient to use special feature designed
|
|
|
+for that: persistently mapped memory. Allocations made with
|
|
|
+`VMA_ALLOCATION_CREATE_MAPPED_BIT` flag set in
|
|
|
+VmaAllocationCreateInfo::flags are returned from device memory
|
|
|
+blocks that stay mapped all the time, so you can just access CPU pointer to it.
|
|
|
+VmaAllocationInfo::pMappedData pointer is already offseted to the beginning of
|
|
|
+particular allocation. Example:
|
|
|
+
|
|
|
+\code
|
|
|
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
|
+bufCreateInfo.size = 1024;
|
|
|
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocCreateInfo = {};
|
|
|
+allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
|
|
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
+
|
|
|
+VkBuffer buf;
|
|
|
+VmaAllocation alloc;
|
|
|
+VmaAllocationInfo allocInfo;
|
|
|
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
+
|
|
|
+// Buffer is immediately mapped. You can access its memory.
|
|
|
+memcpy(allocInfo.pMappedData, myData, 1024);
|
|
|
+\endcode
|
|
|
+
|
|
|
+Memory in Vulkan doesn't need to be unmapped before using it e.g. for transfers,
|
|
|
+but if you are not sure whether it's `HOST_COHERENT` (here is surely is because
|
|
|
+it's created with `VMA_MEMORY_USAGE_CPU_ONLY`), you should check it. If it's
|
|
|
+not, you should call `vkInvalidateMappedMemoryRanges()` before reading and
|
|
|
+`vkFlushMappedMemoryRanges()` after writing to mapped memory on CPU. Example:
|
|
|
+
|
|
|
+\code
|
|
|
+VkMemoryPropertyFlags memFlags;
|
|
|
+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
|
|
|
+if((memFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
|
|
|
+{
|
|
|
+ VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
|
|
|
+ memRange.memory = allocInfo.deviceMemory;
|
|
|
+ memRange.offset = allocInfo.offset;
|
|
|
+ memRange.size = allocInfo.size;
|
|
|
+ vkFlushMappedMemoryRanges(device, 1, &memRange);
|
|
|
+}
|
|
|
+\endcode
|
|
|
+
|
|
|
+\section amd_perf_note Note on performance
|
|
|
+
|
|
|
+There is a situation that you should be careful about. It happens only if all of
|
|
|
+following conditions are met:
|
|
|
+
|
|
|
+-# You use AMD GPU.
|
|
|
+-# You use the memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE`
|
|
|
+ (used when you specify `VMA_MEMORY_USAGE_CPU_TO_GPU`).
|
|
|
+-# Operating system is Windows 7 or 8.x (Windows 10 is not affected because it
|
|
|
+ uses WDDM2).
|
|
|
+
|
|
|
+Then whenever a `VkDeviceMemory` block allocated from this memory type is mapped
|
|
|
+for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
|
|
|
+block is migrated by WDDM to system RAM, which degrades performance. It doesn't
|
|
|
+matter if that particular memory block is actually used by the command buffer
|
|
|
+being submitted.
|
|
|
+
|
|
|
+To avoid this problem, either make sure to unmap all allocations made from this
|
|
|
+memory type before your Submit and Present, or use `VMA_MEMORY_USAGE_GPU_ONLY`
|
|
|
+and transfer from a staging buffer in `VMA_MEMORY_USAGE_CPU_ONLY`, which can
|
|
|
+safely stay mapped all the time.
|
|
|
+
|
|
|
+\page custom_memory_pools Custom memory pools
|
|
|
+
|
|
|
+The library automatically creates and manages default memory pool for each
|
|
|
+memory type available on the device. A pool contains a number of
|
|
|
+`VkDeviceMemory` blocks. You can create custom pool and allocate memory out of
|
|
|
+it. It can be useful if you want to:
|
|
|
+
|
|
|
+- Keep certain kind of allocations separate from others.
|
|
|
+- Enforce particular size of Vulkan memory blocks.
|
|
|
+- Limit maximum amount of Vulkan memory allocated for that pool.
|
|
|
+
|
|
|
+To use custom memory pools:
|
|
|
+
|
|
|
+-# Fill VmaPoolCreateInfo structure.
|
|
|
+-# Call vmaCreatePool() to obtain `VmaPool` handle.
|
|
|
+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
|
|
|
+ You don't need to specify any other parameters of this structure, like usage.
|
|
|
+
|
|
|
+Example:
|
|
|
+
|
|
|
+\code
|
|
|
+// Create a pool that could have at most 2 blocks, 128 MB each.
|
|
|
+VmaPoolCreateInfo poolCreateInfo = {};
|
|
|
+poolCreateInfo.memoryTypeIndex = ...
|
|
|
+poolCreateInfo.blockSize = 128ull * 1024 * 1024;
|
|
|
+poolCreateInfo.maxBlockCount = 2;
|
|
|
+
|
|
|
+VmaPool pool;
|
|
|
+vmaCreatePool(allocator, &poolCreateInfo, &pool);
|
|
|
+
|
|
|
+// Allocate a buffer out of it.
|
|
|
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
|
+bufCreateInfo.size = 1024;
|
|
|
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocCreateInfo = {};
|
|
|
+allocCreateInfo.pool = pool;
|
|
|
+
|
|
|
+VkBuffer buf;
|
|
|
+VmaAllocation alloc;
|
|
|
+VmaAllocationInfo allocInfo;
|
|
|
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
+\endcode
|
|
|
+
|
|
|
+You have to free all allocations made from this pool before destroying it.
|
|
|
+
|
|
|
+\code
|
|
|
+vmaDestroyBuffer(allocator, buf, alloc);
|
|
|
+vmaDestroyPool(allocator, pool);
|
|
|
+\endcode
|
|
|
+
|
|
|
+\page defragmentation Defragmentation
|
|
|
+
|
|
|
+Interleaved allocations and deallocations of many objects of varying size can
|
|
|
+cause fragmentation, which can lead to a situation where the library is unable
|
|
|
+to find a continuous range of free memory for a new allocation despite there is
|
|
|
+enough free space, just scattered across many small free ranges between existing
|
|
|
+allocations.
|
|
|
+
|
|
|
+To mitigate this problem, you can use vmaDefragment(). Given set of allocations,
|
|
|
+this function can move them to compact used memory, ensure more continuous free
|
|
|
+space and possibly also free some `VkDeviceMemory`. It can work only on
|
|
|
+allocations made from memory type that is `HOST_VISIBLE`. Allocations are
|
|
|
+modified to point to the new `VkDeviceMemory` and offset. Data in this memory is
|
|
|
+also `memmove`-ed to the new place. However, if you have images or buffers bound
|
|
|
+to these allocations (and you certainly do), you need to destroy, recreate, and
|
|
|
+bind them to the new place in memory.
|
|
|
+
|
|
|
+For further details and example code, see documentation of function
|
|
|
+vmaDefragment().
|
|
|
+
|
|
|
+\page lost_allocations Lost allocations
|
|
|
+
|
|
|
+If your game oversubscribes video memory, if may work OK in previous-generation
|
|
|
+graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
|
|
|
+paged to system RAM. In Vulkan you can't do it because when you run out of
|
|
|
+memory, an allocation just fails. If you have more data (e.g. textures) that can
|
|
|
+fit into VRAM and you don't need it all at once, you may want to upload them to
|
|
|
+GPU on demand and "push out" ones that are not used for a long time to make room
|
|
|
+for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
|
|
|
+cache. Vulkan Memory Allocator can help you with that by supporting a concept of
|
|
|
+"lost allocations".
|
|
|
+
|
|
|
+To create an allocation that can become lost, include `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT`
|
|
|
+flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
|
|
|
+such allocation in every new frame, you need to query it if it's not lost. To
|
|
|
+check it: call vmaGetAllocationInfo() and see if VmaAllocationInfo::deviceMemory
|
|
|
+is not `VK_NULL_HANDLE`. If the allocation is lost, you should not use it or
|
|
|
+buffer/image bound to it. You mustn't forget to destroy this allocation and this
|
|
|
+buffer/image.
|
|
|
+
|
|
|
+To create an allocation that can make some other allocations lost to make room
|
|
|
+for it, use `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flag. You will
|
|
|
+usually use both flags `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` and
|
|
|
+`VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` at the same time.
|
|
|
+
|
|
|
+Warning! Current implementation uses quite naive, brute force algorithm,
|
|
|
+which can make allocation calls that use `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT`
|
|
|
+flag quite slow. A new, more optimal algorithm and data structure to speed this
|
|
|
+up is planned for the future.
|
|
|
+
|
|
|
+<b>When interleaving creation of new allocations with usage of existing ones,
|
|
|
+how do you make sure that an allocation won't become lost while it's used in the
|
|
|
+current frame?</b>
|
|
|
+
|
|
|
+It is ensured because vmaGetAllocationInfo() not only returns allocation
|
|
|
+parameters and checks whether it's not lost, but when it's not, it also
|
|
|
+atomically marks it as used in the current frame, which makes it impossible to
|
|
|
+become lost in that frame. It uses lockless algorithm, so it works fast and
|
|
|
+doesn't involve locking any internal mutex.
|
|
|
+
|
|
|
+<b>What if my allocation may still be in use by the GPU when it's rendering a
|
|
|
+previous frame while I already submit new frame on the CPU?</b>
|
|
|
+
|
|
|
+You can make sure that allocations "touched" by vmaGetAllocationInfo() will not
|
|
|
+become lost for a number of additional frames back from the current one by
|
|
|
+specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
|
|
|
+memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
|
|
|
+
|
|
|
+<b>How do you inform the library when new frame starts?</b>
|
|
|
+
|
|
|
+You need to call function vmaSetCurrentFrameIndex().
|
|
|
+
|
|
|
+Example code:
|
|
|
+
|
|
|
+\code
|
|
|
+struct MyBuffer
|
|
|
+{
|
|
|
+ VkBuffer m_Buf = nullptr;
|
|
|
+ VmaAllocation m_Alloc = nullptr;
|
|
|
+
|
|
|
+ // Called when the buffer is really needed in the current frame.
|
|
|
+ void EnsureBuffer();
|
|
|
+};
|
|
|
+
|
|
|
+void MyBuffer::EnsureBuffer()
|
|
|
+{
|
|
|
+ // Buffer has been created.
|
|
|
+ if(m_Buf != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ // Check if its allocation is not lost + mark it as used in current frame.
|
|
|
+ VmaAllocationInfo allocInfo;
|
|
|
+ vmaGetAllocationInfo(allocator, m_Alloc, &allocInfo);
|
|
|
+ if(allocInfo.deviceMemory != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ // It's all OK - safe to use m_Buf.
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Buffer not yet exists or lost - destroy and recreate it.
|
|
|
+
|
|
|
+ vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
|
|
|
+
|
|
|
+ VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
|
+ bufCreateInfo.size = 1024;
|
|
|
+ bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
+
|
|
|
+ VmaAllocationCreateInfo allocCreateInfo = {};
|
|
|
+ allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
+ allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
|
|
|
+ VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
|
|
+
|
|
|
+ vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
|
|
|
+}
|
|
|
+\endcode
|
|
|
+
|
|
|
+When using lost allocations, you may see some Vulkan validation layer warnings
|
|
|
+about overlapping regions of memory bound to different kinds of buffers and
|
|
|
+images. This is still valid as long as you implement proper handling of lost
|
|
|
+allocations (like in the example above) and don't use them.
|
|
|
+
|
|
|
+The library uses following algorithm for allocation, in order:
|
|
|
+
|
|
|
+-# Try to find free range of memory in existing blocks.
|
|
|
+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
|
|
|
+-# If failed, try to create such block with size/2 and size/4.
|
|
|
+-# If failed and `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flag was
|
|
|
+ specified, try to find space in existing blocks, possilby making some other
|
|
|
+ allocations lost.
|
|
|
+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
|
|
|
+ just like when you use `VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT`.
|
|
|
+-# If failed, choose other memory type that meets the requirements specified in
|
|
|
+ VmaAllocationCreateInfo and go to point 1.
|
|
|
+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
|
+
|
|
|
+
|
|
|
+\page allocation_annotation Allocation names and user data
|
|
|
+
|
|
|
+\section allocation_user_data Allocation user data
|
|
|
+
|
|
|
+You can annotate allocations with your own information, e.g. for debugging purposes.
|
|
|
+To do that, fill VmaAllocationCreateInfo::pUserData field when creating
|
|
|
+an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
|
|
|
+some handle, index, key, ordinal number or any other value that would associate
|
|
|
+the allocation with your custom metadata.
|
|
|
+
|
|
|
+\code
|
|
|
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
|
+// Fill bufferInfo...
|
|
|
+
|
|
|
+MyBufferMetadata* pMetadata = CreateBufferMetadata();
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocCreateInfo = {};
|
|
|
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
+allocCreateInfo.pUserData = pMetadata;
|
|
|
+
|
|
|
+VkBuffer buffer;
|
|
|
+VmaAllocation allocation;
|
|
|
+vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
|
|
|
+\endcode
|
|
|
+
|
|
|
+The pointer may be later retrieved as VmaAllocationInfo::pUserData:
|
|
|
+
|
|
|
+\code
|
|
|
+VmaAllocationInfo allocInfo;
|
|
|
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
|
|
|
+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
|
|
|
+\endcode
|
|
|
+
|
|
|
+It can also be changed using function vmaSetAllocationUserData().
|
|
|
+
|
|
|
+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
|
|
|
+vmaBuildStatsString(), in hexadecimal form.
|
|
|
+
|
|
|
+\section allocation_names Allocation names
|
|
|
+
|
|
|
+There is alternative mode available where `pUserData` pointer is used to point to
|
|
|
+a null-terminated string, giving a name to the allocation. To use this mode,
|
|
|
+set `VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT` flag in VmaAllocationCreateInfo::flags.
|
|
|
+Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
|
|
|
+vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
|
|
|
+The library creates internal copy of the string, so the pointer you pass doesn't need
|
|
|
+to be valid for whole lifetime of the allocation. You can free it after the call.
|
|
|
+
|
|
|
+\code
|
|
|
+VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
|
+// Fill imageInfo...
|
|
|
+
|
|
|
+std::string imageName = "Texture: ";
|
|
|
+imageName += fileName;
|
|
|
+
|
|
|
+VmaAllocationCreateInfo allocCreateInfo = {};
|
|
|
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
|
|
|
+allocCreateInfo.pUserData = imageName.c_str();
|
|
|
+
|
|
|
+VkImage image;
|
|
|
+VmaAllocation allocation;
|
|
|
+vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
|
|
|
+\endcode
|
|
|
+
|
|
|
+The value of `pUserData` pointer of the allocation will be different than the one
|
|
|
+you passed when setting allocation's name - pointing to a buffer managed
|
|
|
+internally that holds copy of the string.
|
|
|
+
|
|
|
+\code
|
|
|
+VmaAllocationInfo allocInfo;
|
|
|
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
|
|
|
+const char* imageName = (const char*)allocInfo.pUserData;
|
|
|
+printf("Image name: %s\n", imageName);
|
|
|
+\endcode
|
|
|
+
|
|
|
+That string is also printed in JSON report created by vmaBuildStatsString().
|
|
|
+
|
|
|
+\page configuration Configuration
|
|
|
+
|
|
|
+Please check "CONFIGURATION SECTION" in the code to find macros that you can define
|
|
|
+before each include of this file or change directly in this file to provide
|
|
|
+your own implementation of basic facilities like assert, `min()` and `max()` functions,
|
|
|
+mutex etc. C++ STL is used by default, but changing these allows you to get rid
|
|
|
+of any STL usage if you want, as many game developers tend to do.
|
|
|
+
|
|
|
+\section config_Vulkan_functions Pointers to Vulkan functions
|
|
|
+
|
|
|
+The library uses Vulkan functions straight from the `vulkan.h` header by default.
|
|
|
+If you want to provide your own pointers to these functions, e.g. fetched using
|
|
|
+`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:
|
|
|
+
|
|
|
+-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.
|
|
|
+-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
|
+
|
|
|
+\section custom_memory_allocator Custom host memory allocator
|
|
|
+
|
|
|
+If you use custom allocator for CPU memory rather than default operator `new`
|
|
|
+and `delete` from C++, you can make this library using your allocator as well
|
|
|
+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
|
|
|
+functions will be passed to Vulkan, as well as used by the library itself to
|
|
|
+make any CPU-side allocations.
|
|
|
+
|
|
|
+\section allocation_callbacks Device memory allocation callbacks
|
|
|
+
|
|
|
+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
|
|
|
+You can setup callbacks to be informed about these calls, e.g. for the purpose
|
|
|
+of gathering some statistics. To do it, fill optional member
|
|
|
+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
|
|
|
+
|
|
|
+\section heap_memory_limit Device heap memory limit
|
|
|
+
|
|
|
+If you want to test how your program behaves with limited amount of Vulkan device
|
|
|
+memory available without switching your graphics card to one that really has
|
|
|
+smaller VRAM, you can use a feature of this library intended for this purpose.
|
|
|
+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
|
|
|
+
|
|
|
+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
|
|
|
+performance on some GPUs. It augments Vulkan API with possibility to query
|
|
|
+driver whether it prefers particular buffer or image to have its own, dedicated
|
|
|
+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
|
|
|
+to do some internal optimizations.
|
|
|
+
|
|
|
+The extension is supported by this library. It will be used automatically when
|
|
|
+enabled. To enable it:
|
|
|
+
|
|
|
+1 . When creating Vulkan device, check if following 2 device extensions are
|
|
|
+supported (call `vkEnumerateDeviceExtensionProperties()`).
|
|
|
+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
|
|
|
+
|
|
|
+- VK_KHR_get_memory_requirements2
|
|
|
+- VK_KHR_dedicated_allocation
|
|
|
+
|
|
|
+If you enabled these extensions:
|
|
|
+
|
|
|
+2 . Use `VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT` flag when creating
|
|
|
+your `VmaAllocator` to inform the library that you enabled required extensions
|
|
|
+and you want the library to use them.
|
|
|
+
|
|
|
+\code
|
|
|
+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
|
|
|
+
|
|
|
+vmaCreateAllocator(&allocatorInfo, &allocator);
|
|
|
+\endcode
|
|
|
+
|
|
|
+That's all. The extension will be automatically used whenever you create a
|
|
|
+buffer using vmaCreateBuffer() or image using vmaCreateImage().
|
|
|
+
|
|
|
+When using the extension together with Vulkan Validation Layer, you will receive
|
|
|
+warnings like this:
|
|
|
+
|
|
|
+ vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
|
|
|
+
|
|
|
+It is OK, you should just ignore it. It happens because you use function
|
|
|
+`vkGetBufferMemoryRequirements2KHR()` instead of standard
|
|
|
+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
|
|
|
+unaware of it.
|
|
|
+
|
|
|
+To learn more about this extension, see:
|
|
|
+
|
|
|
+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)
|
|
|
+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+\page thread_safety Thread safety
|
|
|
+
|
|
|
+- The library has no global state, so separate `VmaAllocator` objects can be used
|
|
|
+ independently.
|
|
|
+- By default, all calls to functions that take `VmaAllocator` as first parameter
|
|
|
+ are safe to call from multiple threads simultaneously because they are
|
|
|
+ synchronized internally when needed.
|
|
|
+- When the allocator is created with `VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT`
|
|
|
+ flag, calls to functions that take such `VmaAllocator` object must be
|
|
|
+ synchronized externally.
|
|
|
+- Access to a `VmaAllocation` object must be externally synchronized. For example,
|
|
|
+ you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
|
|
|
+ threads at the same time if you pass the same `VmaAllocation` object to these
|
|
|
+ functions.
|
|
|
+
|
|
|
+*/
|
|
|
+
|
|
|
+#include <vulkan/vulkan.h>
|
|
|
+
|
|
|
+VK_DEFINE_HANDLE(VmaAllocator)
|
|
|
+
|
|
|
+/// Callback function called after successful vkAllocateMemory.
|
|
|
+typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t memoryType,
|
|
|
+ VkDeviceMemory memory,
|
|
|
+ VkDeviceSize size);
|
|
|
+/// Callback function called before vkFreeMemory.
|
|
|
+typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t memoryType,
|
|
|
+ VkDeviceMemory memory,
|
|
|
+ VkDeviceSize size);
|
|
|
+
|
|
|
+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
|
|
|
+
|
|
|
+Provided for informative purpose, e.g. to gather statistics about number of
|
|
|
+allocations or total amount of memory allocated in Vulkan.
|
|
|
+
|
|
|
+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
|
|
|
+*/
|
|
|
+typedef struct VmaDeviceMemoryCallbacks {
|
|
|
+ /// Optional, can be null.
|
|
|
+ PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
|
|
|
+ /// Optional, can be null.
|
|
|
+ PFN_vmaFreeDeviceMemoryFunction pfnFree;
|
|
|
+} VmaDeviceMemoryCallbacks;
|
|
|
+
|
|
|
+/// Flags for created VmaAllocator.
|
|
|
+typedef enum VmaAllocatorCreateFlagBits {
|
|
|
+ /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
|
|
|
+
|
|
|
+ Using this flag may increase performance because internal mutexes are not used.
|
|
|
+ */
|
|
|
+ VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
|
|
|
+ /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
|
|
|
+
|
|
|
+ Using this extenion will automatically allocate dedicated blocks of memory for
|
|
|
+ some buffers and images instead of suballocating place for them out of bigger
|
|
|
+ memory blocks (as if you explicitly used VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
|
|
|
+ flag) when it is recommended by the driver. It may improve performance on some
|
|
|
+ GPUs.
|
|
|
+
|
|
|
+ You may set this flag only if you found out that following device extensions are
|
|
|
+ supported, you enabled them while creating Vulkan device passed as
|
|
|
+ VmaAllocatorCreateInfo::device, and you want them to be used internally by this
|
|
|
+ library:
|
|
|
+
|
|
|
+ - VK_KHR_get_memory_requirements2
|
|
|
+ - VK_KHR_dedicated_allocation
|
|
|
+
|
|
|
+When this flag is set, you can experience following warnings reported by Vulkan
|
|
|
+validation layer. You can ignore them.
|
|
|
+
|
|
|
+> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
|
|
|
+ */
|
|
|
+ VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
|
|
|
+
|
|
|
+ VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
|
+} VmaAllocatorCreateFlagBits;
|
|
|
+typedef VkFlags VmaAllocatorCreateFlags;
|
|
|
+
|
|
|
+/** \brief Pointers to some Vulkan functions - a subset used by the library.
|
|
|
+
|
|
|
+Used in VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
|
+*/
|
|
|
+typedef struct VmaVulkanFunctions {
|
|
|
+ PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
|
|
|
+ PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
|
|
|
+ PFN_vkAllocateMemory vkAllocateMemory;
|
|
|
+ PFN_vkFreeMemory vkFreeMemory;
|
|
|
+ PFN_vkMapMemory vkMapMemory;
|
|
|
+ PFN_vkUnmapMemory vkUnmapMemory;
|
|
|
+ PFN_vkBindBufferMemory vkBindBufferMemory;
|
|
|
+ PFN_vkBindImageMemory vkBindImageMemory;
|
|
|
+ PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
|
|
|
+ PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
|
|
|
+ PFN_vkCreateBuffer vkCreateBuffer;
|
|
|
+ PFN_vkDestroyBuffer vkDestroyBuffer;
|
|
|
+ PFN_vkCreateImage vkCreateImage;
|
|
|
+ PFN_vkDestroyImage vkDestroyImage;
|
|
|
+ PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;
|
|
|
+ PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;
|
|
|
+} VmaVulkanFunctions;
|
|
|
+
|
|
|
+/// Description of a Allocator to be created.
|
|
|
+typedef struct VmaAllocatorCreateInfo
|
|
|
+{
|
|
|
+ /// Flags for created allocator. Use VmaAllocatorCreateFlagBits enum.
|
|
|
+ VmaAllocatorCreateFlags flags;
|
|
|
+ /// Vulkan physical device.
|
|
|
+ /** It must be valid throughout whole lifetime of created allocator. */
|
|
|
+ VkPhysicalDevice physicalDevice;
|
|
|
+ /// Vulkan device.
|
|
|
+ /** It must be valid throughout whole lifetime of created allocator. */
|
|
|
+ VkDevice device;
|
|
|
+ /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps.
|
|
|
+ /** Set to 0 to use default, which is currently 256 MB. */
|
|
|
+ VkDeviceSize preferredLargeHeapBlockSize;
|
|
|
+ /// Preferred size of a single `VkDeviceMemory` block to be allocated from small heaps <= 512 MB.
|
|
|
+ /** Set to 0 to use default, which is currently 64 MB. */
|
|
|
+ VkDeviceSize preferredSmallHeapBlockSize;
|
|
|
+ /// Custom CPU memory allocation callbacks.
|
|
|
+ /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
|
|
|
+ const VkAllocationCallbacks* pAllocationCallbacks;
|
|
|
+ /// Informative callbacks for vkAllocateMemory, vkFreeMemory.
|
|
|
+ /** Optional, can be null. */
|
|
|
+ const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;
|
|
|
+ /** \brief Maximum number of additional frames that are in use at the same time as current frame.
|
|
|
+
|
|
|
+ This value is used only when you make allocations with
|
|
|
+ VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
|
|
|
+ lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
|
|
|
+
|
|
|
+ For example, if you double-buffer your command buffers, so resources used for
|
|
|
+ rendering in previous frame may still be in use by the GPU at the moment you
|
|
|
+ allocate resources needed for the current frame, set this value to 1.
|
|
|
+
|
|
|
+ If you want to allow any allocations other than used in the current frame to
|
|
|
+ become lost, set this value to 0.
|
|
|
+ */
|
|
|
+ uint32_t frameInUseCount;
|
|
|
+ /** \brief Either NULL or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
|
|
|
+
|
|
|
+ If not NULL, it must be a pointer to an array of
|
|
|
+ `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
|
|
|
+ maximum number of bytes that can be allocated out of particular Vulkan memory
|
|
|
+ heap.
|
|
|
+
|
|
|
+ Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
|
|
|
+ heap. This is also the default in case of `pHeapSizeLimit` = NULL.
|
|
|
+
|
|
|
+ If there is a limit defined for a heap:
|
|
|
+
|
|
|
+ - If user tries to allocate more memory from that heap using this allocator,
|
|
|
+ the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
|
+ - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
|
|
|
+ value of this limit will be reported instead when using vmaGetMemoryProperties().
|
|
|
+
|
|
|
+ Warning! Using this feature may not be equivalent to installing a GPU with
|
|
|
+ smaller amount of memory, because graphics driver doesn't necessary fail new
|
|
|
+ allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
|
|
|
+ exceeded. It may return success and just silently migrate some device memory
|
|
|
+ blocks to system RAM.
|
|
|
+ */
|
|
|
+ const VkDeviceSize* pHeapSizeLimit;
|
|
|
+ /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.
|
|
|
+
|
|
|
+ If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,
|
|
|
+ you can pass null as this member, because the library will fetch pointers to
|
|
|
+ Vulkan functions internally in a static way, like:
|
|
|
+
|
|
|
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
|
|
|
+
|
|
|
+ Fill this member if you want to provide your own pointers to Vulkan functions,
|
|
|
+ e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.
|
|
|
+ */
|
|
|
+ const VmaVulkanFunctions* pVulkanFunctions;
|
|
|
+} VmaAllocatorCreateInfo;
|
|
|
+
|
|
|
+/// Creates Allocator object.
|
|
|
+VkResult vmaCreateAllocator(
|
|
|
+ const VmaAllocatorCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocator* pAllocator);
|
|
|
+
|
|
|
+/// Destroys allocator object.
|
|
|
+void vmaDestroyAllocator(
|
|
|
+ VmaAllocator allocator);
|
|
|
+
|
|
|
+/**
|
|
|
+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
|
|
|
+You can access it here, without fetching it again on your own.
|
|
|
+*/
|
|
|
+void vmaGetPhysicalDeviceProperties(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
|
|
|
+
|
|
|
+/**
|
|
|
+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
|
|
|
+You can access it here, without fetching it again on your own.
|
|
|
+*/
|
|
|
+void vmaGetMemoryProperties(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
|
|
|
+
|
|
|
+/**
|
|
|
+\brief Given Memory Type Index, returns Property Flags of this memory type.
|
|
|
+
|
|
|
+This is just a convenience function. Same information can be obtained using
|
|
|
+vmaGetMemoryProperties().
|
|
|
+*/
|
|
|
+void vmaGetMemoryTypeProperties(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t memoryTypeIndex,
|
|
|
+ VkMemoryPropertyFlags* pFlags);
|
|
|
+
|
|
|
+/** \brief Sets index of the current frame.
|
|
|
+
|
|
|
+This function must be used if you make allocations with
|
|
|
+`VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` and
|
|
|
+`VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flags to inform the allocator
|
|
|
+when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
|
|
|
+become lost in the current frame.
|
|
|
+*/
|
|
|
+void vmaSetCurrentFrameIndex(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t frameIndex);
|
|
|
+
|
|
|
+/** \brief Calculated statistics of memory usage in entire allocator.
|
|
|
+*/
|
|
|
+typedef struct VmaStatInfo
|
|
|
+{
|
|
|
+ /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
|
|
|
+ uint32_t blockCount;
|
|
|
+ /// Number of `VmaAllocation` allocation objects allocated.
|
|
|
+ uint32_t allocationCount;
|
|
|
+ /// Number of free ranges of memory between allocations.
|
|
|
+ uint32_t unusedRangeCount;
|
|
|
+ /// Total number of bytes occupied by all allocations.
|
|
|
+ VkDeviceSize usedBytes;
|
|
|
+ /// Total number of bytes occupied by unused ranges.
|
|
|
+ VkDeviceSize unusedBytes;
|
|
|
+ VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
|
|
|
+ VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
|
|
|
+} VmaStatInfo;
|
|
|
+
|
|
|
+/// General statistics from current state of Allocator.
|
|
|
+typedef struct VmaStats
|
|
|
+{
|
|
|
+ VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
|
|
|
+ VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
|
|
|
+ VmaStatInfo total;
|
|
|
+} VmaStats;
|
|
|
+
|
|
|
+/// Retrieves statistics from current state of the Allocator.
|
|
|
+void vmaCalculateStats(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaStats* pStats);
|
|
|
+
|
|
|
+#define VMA_STATS_STRING_ENABLED 1
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+/// Builds and returns statistics as string in JSON format.
|
|
|
+/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
|
|
|
+*/
|
|
|
+void vmaBuildStatsString(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ char** ppStatsString,
|
|
|
+ VkBool32 detailedMap);
|
|
|
+
|
|
|
+void vmaFreeStatsString(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ char* pStatsString);
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+VK_DEFINE_HANDLE(VmaPool)
|
|
|
+
|
|
|
+typedef enum VmaMemoryUsage
|
|
|
+{
|
|
|
+ /** No intended memory usage specified.
|
|
|
+ Use other members of VmaAllocationCreateInfo to specify your requirements.
|
|
|
+ */
|
|
|
+ VMA_MEMORY_USAGE_UNKNOWN = 0,
|
|
|
+ /** Memory will be used on device only, so faster access from the device is preferred.
|
|
|
+ It usually means device-local GPU memory.
|
|
|
+ No need to be mappable on host.
|
|
|
+ Good e.g. for images to be used as attachments, images containing textures to be sampled,
|
|
|
+ buffers used as vertex buffer, index buffer, uniform buffer and majority of
|
|
|
+ other types of resources used by device.
|
|
|
+ You can still do transfers from/to such resource to/from host memory.
|
|
|
+
|
|
|
+ The allocation may still end up in `HOST_VISIBLE` memory on some implementations.
|
|
|
+ In such case, you are free to map it.
|
|
|
+ You can also use `VMA_ALLOCATION_CREATE_MAPPED_BIT` with this usage type.
|
|
|
+ */
|
|
|
+ VMA_MEMORY_USAGE_GPU_ONLY = 1,
|
|
|
+ /** Memory will be mapped and used on host.
|
|
|
+ It usually means CPU system memory.
|
|
|
+ Could be used for transfer to/from device.
|
|
|
+ Good e.g. for "staging" copy of buffers and images, used as transfer source or destination.
|
|
|
+ Resources created in this pool may still be accessible to the device, but access to them can be slower.
|
|
|
+
|
|
|
+ Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
|
|
|
+ */
|
|
|
+ VMA_MEMORY_USAGE_CPU_ONLY = 2,
|
|
|
+ /** Memory will be used for frequent (dynamic) updates from host and reads on device (upload).
|
|
|
+ Good e.g. for vertex buffers or uniform buffers updated every frame.
|
|
|
+
|
|
|
+ Guarantees to be `HOST_VISIBLE`.
|
|
|
+ */
|
|
|
+ VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
|
|
|
+ /** Memory will be used for frequent writing on device and readback on host (download).
|
|
|
+
|
|
|
+ Guarantees to be `HOST_VISIBLE`.
|
|
|
+ */
|
|
|
+ VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
|
|
|
+ VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
|
|
|
+} VmaMemoryUsage;
|
|
|
+
|
|
|
+/// Flags to be passed as VmaAllocationCreateInfo::flags.
|
|
|
+typedef enum VmaAllocationCreateFlagBits {
|
|
|
+ /** \brief Set this flag if the allocation should have its own memory block.
|
|
|
+
|
|
|
+ Use it for special, big resources, like fullscreen images used as attachments.
|
|
|
+
|
|
|
+ This flag must also be used for host visible resources that you want to map
|
|
|
+ simultaneously because otherwise they might end up as regions of the same
|
|
|
+ `VkDeviceMemory`, while mapping same `VkDeviceMemory` multiple times
|
|
|
+ simultaneously is illegal.
|
|
|
+
|
|
|
+ You should not use this flag if VmaAllocationCreateInfo::pool is not null.
|
|
|
+ */
|
|
|
+ VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
|
|
|
+
|
|
|
+ /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
|
|
|
+
|
|
|
+ If new allocation cannot be placed in any of the existing blocks, allocation
|
|
|
+ fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
|
|
|
+
|
|
|
+ You should not use `VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT` and
|
|
|
+ `VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT` at the same time. It makes no sense.
|
|
|
+
|
|
|
+ If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
|
|
|
+ VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
|
|
|
+ /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
|
|
|
+
|
|
|
+ Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
|
|
|
+
|
|
|
+ Is it valid to use this flag for allocation made from memory type that is not
|
|
|
+ `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
|
|
|
+ useful if you need an allocation that is efficient to use on GPU
|
|
|
+ (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
|
|
|
+ support it (e.g. Intel GPU).
|
|
|
+
|
|
|
+ You should not use this flag together with `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT`.
|
|
|
+ */
|
|
|
+ VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
|
|
|
+ /** Allocation created with this flag can become lost as a result of another
|
|
|
+ allocation with `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flag, so you
|
|
|
+ must check it before use.
|
|
|
+
|
|
|
+ To check if allocation is not lost, call vmaGetAllocationInfo() and check if
|
|
|
+ VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
|
|
|
+
|
|
|
+ For details about supporting lost allocations, see Lost Allocations
|
|
|
+ chapter of User Guide on Main Page.
|
|
|
+
|
|
|
+ You should not use this flag together with `VMA_ALLOCATION_CREATE_MAPPED_BIT`.
|
|
|
+ */
|
|
|
+ VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
|
|
|
+ /** While creating allocation using this flag, other allocations that were
|
|
|
+ created with flag `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` can become lost.
|
|
|
+
|
|
|
+ For details about supporting lost allocations, see Lost Allocations
|
|
|
+ chapter of User Guide on Main Page.
|
|
|
+ */
|
|
|
+ VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
|
|
|
+ /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
|
|
|
+ null-terminated string. Instead of copying pointer value, a local copy of the
|
|
|
+ string is made and stored in allocation's pUserData. The string is automatically
|
|
|
+ freed together with the allocation. It is also used in vmaBuildStatsString().
|
|
|
+ */
|
|
|
+ VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
|
|
|
+
|
|
|
+ VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
|
+} VmaAllocationCreateFlagBits;
|
|
|
+typedef VkFlags VmaAllocationCreateFlags;
|
|
|
+
|
|
|
+typedef struct VmaAllocationCreateInfo
|
|
|
+{
|
|
|
+ /// Use VmaAllocationCreateFlagBits enum.
|
|
|
+ VmaAllocationCreateFlags flags;
|
|
|
+ /** \brief Intended usage of memory.
|
|
|
+
|
|
|
+ You can leave `VMA_MEMORY_USAGE_UNKNOWN` if you specify memory requirements in other way. \n
|
|
|
+ If `pool` is not null, this member is ignored.
|
|
|
+ */
|
|
|
+ VmaMemoryUsage usage;
|
|
|
+ /** \brief Flags that must be set in a Memory Type chosen for an allocation.
|
|
|
+
|
|
|
+ Leave 0 if you specify memory requirements in other way. \n
|
|
|
+ If `pool` is not null, this member is ignored.*/
|
|
|
+ VkMemoryPropertyFlags requiredFlags;
|
|
|
+ /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
|
|
|
+
|
|
|
+ Set to 0 if no additional flags are prefered. \n
|
|
|
+ If `pool` is not null, this member is ignored. */
|
|
|
+ VkMemoryPropertyFlags preferredFlags;
|
|
|
+ /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
|
|
|
+
|
|
|
+ Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
|
|
|
+ it meets other requirements specified by this structure, with no further
|
|
|
+ restrictions on memory type index. \n
|
|
|
+ If `pool` is not null, this member is ignored.
|
|
|
+ */
|
|
|
+ uint32_t memoryTypeBits;
|
|
|
+ /** \brief Pool that this allocation should be created in.
|
|
|
+
|
|
|
+ Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
|
|
|
+ `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
|
|
|
+ */
|
|
|
+ VmaPool pool;
|
|
|
+ /** \brief Custom general-purpose pointer that will be stored in VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
|
|
|
+
|
|
|
+ If `VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT` is used, it must be either
|
|
|
+ null or pointer to a null-terminated string. The string will be then copied to
|
|
|
+ internal buffer, so it doesn't need to be valid after allocation call.
|
|
|
+ */
|
|
|
+ void* pUserData;
|
|
|
+} VmaAllocationCreateInfo;
|
|
|
+
|
|
|
+/**
|
|
|
+This algorithm tries to find a memory type that:
|
|
|
+
|
|
|
+- Is allowed by memoryTypeBits.
|
|
|
+- Contains all the flags from pAllocationCreateInfo->requiredFlags.
|
|
|
+- Matches intended usage.
|
|
|
+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
|
|
|
+
|
|
|
+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
|
|
|
+from this function or any other allocating function probably means that your
|
|
|
+device doesn't support any memory type with requested features for the specific
|
|
|
+type of resource you want to use it for. Please check parameters of your
|
|
|
+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
|
|
|
+*/
|
|
|
+VkResult vmaFindMemoryTypeIndex(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t memoryTypeBits,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ uint32_t* pMemoryTypeIndex);
|
|
|
+
|
|
|
+/// Flags to be passed as VmaPoolCreateInfo::flags.
|
|
|
+typedef enum VmaPoolCreateFlagBits {
|
|
|
+ /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
|
|
|
+
|
|
|
+ This is na optional optimization flag.
|
|
|
+
|
|
|
+ If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
|
|
|
+ vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
|
|
|
+ knows exact type of your allocations so it can handle Buffer-Image Granularity
|
|
|
+ in the optimal way.
|
|
|
+
|
|
|
+ If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
|
|
|
+ exact type of such allocations is not known, so allocator must be conservative
|
|
|
+ in handling Buffer-Image Granularity, which can lead to suboptimal allocation
|
|
|
+ (wasted memory). In that case, if you can make sure you always allocate only
|
|
|
+ buffers and linear images or only optimal images out of this pool, use this flag
|
|
|
+ to make allocator disregard Buffer-Image Granularity and so make allocations
|
|
|
+ more optimal.
|
|
|
+ */
|
|
|
+ VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
|
|
|
+
|
|
|
+ VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
|
+} VmaPoolCreateFlagBits;
|
|
|
+typedef VkFlags VmaPoolCreateFlags;
|
|
|
+
|
|
|
+/** \brief Describes parameter of created `VmaPool`.
|
|
|
+*/
|
|
|
+typedef struct VmaPoolCreateInfo {
|
|
|
+ /** \brief Vulkan memory type index to allocate this pool from.
|
|
|
+ */
|
|
|
+ uint32_t memoryTypeIndex;
|
|
|
+ /** \brief Use combination of `VmaPoolCreateFlagBits`.
|
|
|
+ */
|
|
|
+ VmaPoolCreateFlags flags;
|
|
|
+ /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes.
|
|
|
+
|
|
|
+ Optional. Leave 0 to use default.
|
|
|
+ */
|
|
|
+ VkDeviceSize blockSize;
|
|
|
+ /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
|
|
|
+
|
|
|
+ Set to 0 to have no preallocated blocks and let the pool be completely empty.
|
|
|
+ */
|
|
|
+ size_t minBlockCount;
|
|
|
+ /** \brief Maximum number of blocks that can be allocated in this pool.
|
|
|
+
|
|
|
+ Optional. Set to 0 to use `SIZE_MAX`, which means no limit.
|
|
|
+
|
|
|
+ Set to same value as minBlockCount to have fixed amount of memory allocated
|
|
|
+ throuout whole lifetime of this pool.
|
|
|
+ */
|
|
|
+ size_t maxBlockCount;
|
|
|
+ /** \brief Maximum number of additional frames that are in use at the same time as current frame.
|
|
|
+
|
|
|
+ This value is used only when you make allocations with
|
|
|
+ `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` flag. Such allocation cannot become
|
|
|
+ lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
|
|
|
+
|
|
|
+ For example, if you double-buffer your command buffers, so resources used for
|
|
|
+ rendering in previous frame may still be in use by the GPU at the moment you
|
|
|
+ allocate resources needed for the current frame, set this value to 1.
|
|
|
+
|
|
|
+ If you want to allow any allocations other than used in the current frame to
|
|
|
+ become lost, set this value to 0.
|
|
|
+ */
|
|
|
+ uint32_t frameInUseCount;
|
|
|
+} VmaPoolCreateInfo;
|
|
|
+
|
|
|
+/** \brief Describes parameter of existing `VmaPool`.
|
|
|
+*/
|
|
|
+typedef struct VmaPoolStats {
|
|
|
+ /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
|
|
|
+ */
|
|
|
+ VkDeviceSize size;
|
|
|
+ /** \brief Total number of bytes in the pool not used by any `VmaAllocation`.
|
|
|
+ */
|
|
|
+ VkDeviceSize unusedSize;
|
|
|
+ /** \brief Number of VmaAllocation objects created from this pool that were not destroyed or lost.
|
|
|
+ */
|
|
|
+ size_t allocationCount;
|
|
|
+ /** \brief Number of continuous memory ranges in the pool not used by any `VmaAllocation`.
|
|
|
+ */
|
|
|
+ size_t unusedRangeCount;
|
|
|
+ /** \brief Size of the largest continuous free memory region.
|
|
|
+
|
|
|
+ Making a new allocation of that size is not guaranteed to succeed because of
|
|
|
+ possible additional margin required to respect alignment and buffer/image
|
|
|
+ granularity.
|
|
|
+ */
|
|
|
+ VkDeviceSize unusedRangeSizeMax;
|
|
|
+} VmaPoolStats;
|
|
|
+
|
|
|
+/** \brief Allocates Vulkan device memory and creates `VmaPool` object.
|
|
|
+
|
|
|
+@param allocator Allocator object.
|
|
|
+@param pCreateInfo Parameters of pool to create.
|
|
|
+@param[out] pPool Handle to created pool.
|
|
|
+*/
|
|
|
+VkResult vmaCreatePool(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VmaPoolCreateInfo* pCreateInfo,
|
|
|
+ VmaPool* pPool);
|
|
|
+
|
|
|
+/** \brief Destroys VmaPool object and frees Vulkan device memory.
|
|
|
+*/
|
|
|
+void vmaDestroyPool(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaPool pool);
|
|
|
+
|
|
|
+/** \brief Retrieves statistics of existing VmaPool object.
|
|
|
+
|
|
|
+@param allocator Allocator object.
|
|
|
+@param pool Pool object.
|
|
|
+@param[out] pPoolStats Statistics of specified pool.
|
|
|
+*/
|
|
|
+void vmaGetPoolStats(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaPool pool,
|
|
|
+ VmaPoolStats* pPoolStats);
|
|
|
+
|
|
|
+/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
|
|
|
+
|
|
|
+@param allocator Allocator object.
|
|
|
+@param pool Pool.
|
|
|
+@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
|
|
|
+*/
|
|
|
+void vmaMakePoolAllocationsLost(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaPool pool,
|
|
|
+ size_t* pLostAllocationCount);
|
|
|
+
|
|
|
+VK_DEFINE_HANDLE(VmaAllocation)
|
|
|
+
|
|
|
+/** \brief Parameters of `VmaAllocation` objects, that can be retrieved using function vmaGetAllocationInfo().
|
|
|
+*/
|
|
|
+typedef struct VmaAllocationInfo {
|
|
|
+ /** \brief Memory type index that this allocation was allocated from.
|
|
|
+
|
|
|
+ It never changes.
|
|
|
+ */
|
|
|
+ uint32_t memoryType;
|
|
|
+ /** \brief Handle to Vulkan memory object.
|
|
|
+
|
|
|
+ Same memory object can be shared by multiple allocations.
|
|
|
+
|
|
|
+ It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
|
|
|
+
|
|
|
+ If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
|
|
|
+ */
|
|
|
+ VkDeviceMemory deviceMemory;
|
|
|
+ /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
|
|
|
+
|
|
|
+ It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
|
|
|
+ */
|
|
|
+ VkDeviceSize offset;
|
|
|
+ /** \brief Size of this allocation, in bytes.
|
|
|
+
|
|
|
+ It never changes, unless allocation is lost.
|
|
|
+ */
|
|
|
+ VkDeviceSize size;
|
|
|
+ /** \brief Pointer to the beginning of this allocation as mapped data.
|
|
|
+
|
|
|
+ If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
|
|
|
+ created with `VMA_ALLOCATION_CREATE_MAPPED_BIT` flag, this value null.
|
|
|
+
|
|
|
+ It can change after call to vmaMapMemory(), vmaUnmapMemory().
|
|
|
+ It can also change after call to vmaDefragment() if this allocation is passed to the function.
|
|
|
+ */
|
|
|
+ void* pMappedData;
|
|
|
+ /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
|
|
|
+
|
|
|
+ It can change after call to vmaSetAllocationUserData() for this allocation.
|
|
|
+ */
|
|
|
+ void* pUserData;
|
|
|
+} VmaAllocationInfo;
|
|
|
+
|
|
|
+/** \brief General purpose memory allocation.
|
|
|
+
|
|
|
+@param[out] pAllocation Handle to allocated memory.
|
|
|
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
+
|
|
|
+You should free the memory using vmaFreeMemory().
|
|
|
+
|
|
|
+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
|
|
|
+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
|
|
|
+*/
|
|
|
+VkResult vmaAllocateMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkMemoryRequirements* pVkMemoryRequirements,
|
|
|
+ const VmaAllocationCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+/**
|
|
|
+@param[out] pAllocation Handle to allocated memory.
|
|
|
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
+
|
|
|
+You should free the memory using vmaFreeMemory().
|
|
|
+*/
|
|
|
+VkResult vmaAllocateMemoryForBuffer(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkBuffer buffer,
|
|
|
+ const VmaAllocationCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+/// Function similar to vmaAllocateMemoryForBuffer().
|
|
|
+VkResult vmaAllocateMemoryForImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkImage image,
|
|
|
+ const VmaAllocationCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+/// Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
|
|
|
+void vmaFreeMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation);
|
|
|
+
|
|
|
+/// Returns current information about specified allocation.
|
|
|
+void vmaGetAllocationInfo(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+/** \brief Sets pUserData in given allocation to new value.
|
|
|
+
|
|
|
+If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
|
|
|
+pUserData must be either null, or pointer to a null-terminated string. The function
|
|
|
+makes local copy of the string and sets it as allocation's pUserData. String
|
|
|
+passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
|
|
|
+you can free it after this call. String previously pointed by allocation's
|
|
|
+pUserData is freed from memory.
|
|
|
+
|
|
|
+If the flag was not used, the value of pointer pUserData is just copied to
|
|
|
+allocation's pUserData. It is opaque, so you can use it however you want - e.g.
|
|
|
+as a pointer, ordinal number or some handle to you own data.
|
|
|
+*/
|
|
|
+void vmaSetAllocationUserData(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation,
|
|
|
+ void* pUserData);
|
|
|
+
|
|
|
+/** \brief Creates new allocation that is in lost state from the beginning.
|
|
|
+
|
|
|
+It can be useful if you need a dummy, non-null allocation.
|
|
|
+
|
|
|
+You still need to destroy created object using vmaFreeMemory().
|
|
|
+
|
|
|
+Returned allocation is not tied to any specific memory pool or memory type and
|
|
|
+not bound to any image or buffer. It has size = 0. It cannot be turned into
|
|
|
+a real, non-empty allocation.
|
|
|
+*/
|
|
|
+void vmaCreateLostAllocation(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation* pAllocation);
|
|
|
+
|
|
|
+/** \brief Maps memory represented by given allocation and returns pointer to it.
|
|
|
+
|
|
|
+Maps memory represented by given allocation to make it accessible to CPU code.
|
|
|
+When succeeded, `*ppData` contains pointer to first byte of this memory.
|
|
|
+If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
|
|
|
+correctly offseted to the beginning of region assigned to this particular
|
|
|
+allocation.
|
|
|
+
|
|
|
+Mapping is internally reference-counted and synchronized, so despite raw Vulkan
|
|
|
+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
|
|
|
+multiple times simultaneously, it is safe to call this function on allocations
|
|
|
+assigned to the same memory block. Actual Vulkan memory will be mapped on first
|
|
|
+mapping and unmapped on last unmapping.
|
|
|
+
|
|
|
+If the function succeeded, you must call vmaUnmapMemory() to unmap the
|
|
|
+allocation when mapping is no longer needed or before freeing the allocation, at
|
|
|
+the latest.
|
|
|
+
|
|
|
+It also safe to call this function multiple times on the same allocation. You
|
|
|
+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
|
|
|
+
|
|
|
+It is also safe to call this function on allocation created with
|
|
|
+`VMA_ALLOCATION_CREATE_MAPPED_BIT` flag. Its memory stays mapped all the time.
|
|
|
+You must still call vmaUnmapMemory() same number of times as you called
|
|
|
+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
|
|
|
+"0-th" mapping made automatically due to `VMA_ALLOCATION_CREATE_MAPPED_BIT` flag.
|
|
|
+
|
|
|
+This function fails when used on allocation made in memory type that is not
|
|
|
+`HOST_VISIBLE`.
|
|
|
+
|
|
|
+This function always fails when called for allocation that was created with
|
|
|
+`VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` flag. Such allocations cannot be
|
|
|
+mapped.
|
|
|
+*/
|
|
|
+VkResult vmaMapMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation,
|
|
|
+ void** ppData);
|
|
|
+
|
|
|
+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
|
|
|
+
|
|
|
+For details, see description of vmaMapMemory().
|
|
|
+*/
|
|
|
+void vmaUnmapMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation);
|
|
|
+
|
|
|
+/** \brief Optional configuration parameters to be passed to function vmaDefragment(). */
|
|
|
+typedef struct VmaDefragmentationInfo {
|
|
|
+ /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
|
|
|
+
|
|
|
+ Default is `VK_WHOLE_SIZE`, which means no limit.
|
|
|
+ */
|
|
|
+ VkDeviceSize maxBytesToMove;
|
|
|
+ /** \brief Maximum number of allocations that can be moved to different place.
|
|
|
+
|
|
|
+ Default is `UINT32_MAX`, which means no limit.
|
|
|
+ */
|
|
|
+ uint32_t maxAllocationsToMove;
|
|
|
+} VmaDefragmentationInfo;
|
|
|
+
|
|
|
+/** \brief Statistics returned by function vmaDefragment(). */
|
|
|
+typedef struct VmaDefragmentationStats {
|
|
|
+ /// Total number of bytes that have been copied while moving allocations to different places.
|
|
|
+ VkDeviceSize bytesMoved;
|
|
|
+ /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
|
|
|
+ VkDeviceSize bytesFreed;
|
|
|
+ /// Number of allocations that have been moved to different places.
|
|
|
+ uint32_t allocationsMoved;
|
|
|
+ /// Number of empty `VkDeviceMemory` objects that have been released to the system.
|
|
|
+ uint32_t deviceMemoryBlocksFreed;
|
|
|
+} VmaDefragmentationStats;
|
|
|
+
|
|
|
+/** \brief Compacts memory by moving allocations.
|
|
|
+
|
|
|
+@param pAllocations Array of allocations that can be moved during this compation.
|
|
|
+@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
|
|
|
+@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
|
|
|
+@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
|
|
|
+@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
|
|
|
+@return VK_SUCCESS if completed, VK_INCOMPLETE if succeeded but didn't make all possible optimizations because limits specified in pDefragmentationInfo have been reached, negative error code in case of error.
|
|
|
+
|
|
|
+This function works by moving allocations to different places (different
|
|
|
+`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
|
|
|
+usage. Only allocations that are in pAllocations array can be moved. All other
|
|
|
+allocations are considered nonmovable in this call. Basic rules:
|
|
|
+
|
|
|
+- Only allocations made in memory types that have
|
|
|
+ `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag can be compacted. You may pass other
|
|
|
+ allocations but it makes no sense - these will never be moved.
|
|
|
+- You may pass allocations made with `VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT` but
|
|
|
+ it makes no sense - they will never be moved.
|
|
|
+- Both allocations made with or without `VMA_ALLOCATION_CREATE_MAPPED_BIT`
|
|
|
+ flag can be compacted. If not persistently mapped, memory will be mapped
|
|
|
+ temporarily inside this function if needed.
|
|
|
+- You must not pass same `VmaAllocation` object multiple times in pAllocations array.
|
|
|
+
|
|
|
+The function also frees empty `VkDeviceMemory` blocks.
|
|
|
+
|
|
|
+After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
|
|
|
+VmaAllocationInfo::offset changes. You must query them again using
|
|
|
+vmaGetAllocationInfo() if you need them.
|
|
|
+
|
|
|
+If an allocation has been moved, data in memory is copied to new place
|
|
|
+automatically, but if it was bound to a buffer or an image, you must destroy
|
|
|
+that object yourself, create new one and bind it to the new memory pointed by
|
|
|
+the allocation. You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
|
|
|
+`vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(),
|
|
|
+vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage()! Example:
|
|
|
+
|
|
|
+\code
|
|
|
+VkDevice device = ...;
|
|
|
+VmaAllocator allocator = ...;
|
|
|
+std::vector<VkBuffer> buffers = ...;
|
|
|
+std::vector<VmaAllocation> allocations = ...;
|
|
|
+
|
|
|
+std::vector<VkBool32> allocationsChanged(allocations.size());
|
|
|
+vmaDefragment(allocator, allocations.data(), allocations.size(), allocationsChanged.data(), nullptr, nullptr);
|
|
|
+
|
|
|
+for(size_t i = 0; i < allocations.size(); ++i)
|
|
|
+{
|
|
|
+ if(allocationsChanged[i])
|
|
|
+ {
|
|
|
+ VmaAllocationInfo allocInfo;
|
|
|
+ vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
|
|
|
+
|
|
|
+ vkDestroyBuffer(device, buffers[i], nullptr);
|
|
|
+
|
|
|
+ VkBufferCreateInfo bufferInfo = ...;
|
|
|
+ vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
|
|
|
+
|
|
|
+ // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
|
|
|
+
|
|
|
+ vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);
|
|
|
+ }
|
|
|
+}
|
|
|
+\endcode
|
|
|
+
|
|
|
+Warning! This function is not correct according to Vulkan specification. Use it
|
|
|
+at your own risk. That's becuase Vulkan doesn't guarantee that memory
|
|
|
+requirements (size and alignment) for a new buffer or image are consistent. They
|
|
|
+may be different even for subsequent calls with the same parameters. It really
|
|
|
+does happen on some platforms, especially with images.
|
|
|
+
|
|
|
+This function may be time-consuming, so you shouldn't call it too often (like
|
|
|
+every frame or after every resource creation/destruction), but rater you can
|
|
|
+call it on special occasions (like when reloading a game level, when you just
|
|
|
+destroyed a lot of objects).
|
|
|
+*/
|
|
|
+VkResult vmaDefragment(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation* pAllocations,
|
|
|
+ size_t allocationCount,
|
|
|
+ VkBool32* pAllocationsChanged,
|
|
|
+ const VmaDefragmentationInfo *pDefragmentationInfo,
|
|
|
+ VmaDefragmentationStats* pDefragmentationStats);
|
|
|
+
|
|
|
+/**
|
|
|
+@param[out] pBuffer Buffer that was created.
|
|
|
+@param[out] pAllocation Allocation that was created.
|
|
|
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
+
|
|
|
+This function automatically:
|
|
|
+
|
|
|
+-# Creates buffer.
|
|
|
+-# Allocates appropriate memory for it.
|
|
|
+-# Binds the buffer with the memory.
|
|
|
+
|
|
|
+If any of these operations fail, buffer and allocation are not created,
|
|
|
+returned value is negative error code, *pBuffer and *pAllocation are null.
|
|
|
+
|
|
|
+If the function succeeded, you must destroy both buffer and allocation when you
|
|
|
+no longer need them using either convenience function vmaDestroyBuffer() or
|
|
|
+separately, using `vkDestroyBuffer()` and vmaFreeMemory().
|
|
|
+
|
|
|
+If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
|
|
|
+VK_KHR_dedicated_allocation extension is used internally to query driver whether
|
|
|
+it requires or prefers the new buffer to have dedicated allocation. If yes,
|
|
|
+and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
|
|
|
+and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
|
|
|
+allocation for this buffer, just like when using
|
|
|
+VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
|
+*/
|
|
|
+VkResult vmaCreateBuffer(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkBufferCreateInfo* pBufferCreateInfo,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ VkBuffer* pBuffer,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+/** \brief Destroys Vulkan buffer and frees allocated memory.
|
|
|
+
|
|
|
+This is just a convenience function equivalent to:
|
|
|
+
|
|
|
+\code
|
|
|
+vkDestroyBuffer(device, buffer, allocationCallbacks);
|
|
|
+vmaFreeMemory(allocator, allocation);
|
|
|
+\endcode
|
|
|
+
|
|
|
+It it safe to pass null as buffer and/or allocation.
|
|
|
+*/
|
|
|
+void vmaDestroyBuffer(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkBuffer buffer,
|
|
|
+ VmaAllocation allocation);
|
|
|
+
|
|
|
+/// Function similar to vmaCreateBuffer().
|
|
|
+VkResult vmaCreateImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkImageCreateInfo* pImageCreateInfo,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ VkImage* pImage,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+/** \brief Destroys Vulkan image and frees allocated memory.
|
|
|
+
|
|
|
+This is just a convenience function equivalent to:
|
|
|
+
|
|
|
+\code
|
|
|
+vkDestroyImage(device, image, allocationCallbacks);
|
|
|
+vmaFreeMemory(allocator, allocation);
|
|
|
+\endcode
|
|
|
+
|
|
|
+It it safe to pass null as image and/or allocation.
|
|
|
+*/
|
|
|
+void vmaDestroyImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkImage image,
|
|
|
+ VmaAllocation allocation);
|
|
|
+
|
|
|
+#ifdef __cplusplus
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
+
|
|
|
+// For Visual Studio IntelliSense.
|
|
|
+#ifdef __INTELLISENSE__
|
|
|
+#define VMA_IMPLEMENTATION
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifdef VMA_IMPLEMENTATION
|
|
|
+#undef VMA_IMPLEMENTATION
|
|
|
+
|
|
|
+#include <cstdint>
|
|
|
+#include <cstdlib>
|
|
|
+#include <cstring>
|
|
|
+
|
|
|
+/*******************************************************************************
|
|
|
+CONFIGURATION SECTION
|
|
|
+
|
|
|
+Define some of these macros before each #include of this header or change them
|
|
|
+here if you need other then default behavior depending on your environment.
|
|
|
+*/
|
|
|
+
|
|
|
+/*
|
|
|
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
|
|
|
+internally, like:
|
|
|
+
|
|
|
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
|
|
|
+
|
|
|
+Define to 0 if you are going to provide you own pointers to Vulkan functions via
|
|
|
+VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
|
+*/
|
|
|
+#ifndef VMA_STATIC_VULKAN_FUNCTIONS
|
|
|
+#define VMA_STATIC_VULKAN_FUNCTIONS 1
|
|
|
+#endif
|
|
|
+
|
|
|
+// Define this macro to 1 to make the library use STL containers instead of its own implementation.
|
|
|
+//#define VMA_USE_STL_CONTAINERS 1
|
|
|
+
|
|
|
+/* Set this macro to 1 to make the library including and using STL containers:
|
|
|
+std::pair, std::vector, std::list, std::unordered_map.
|
|
|
+
|
|
|
+Set it to 0 or undefined to make the library using its own implementation of
|
|
|
+the containers.
|
|
|
+*/
|
|
|
+#if VMA_USE_STL_CONTAINERS
|
|
|
+ #define VMA_USE_STL_VECTOR 1
|
|
|
+ #define VMA_USE_STL_UNORDERED_MAP 1
|
|
|
+ #define VMA_USE_STL_LIST 1
|
|
|
+#endif
|
|
|
+
|
|
|
+#if VMA_USE_STL_VECTOR
|
|
|
+ #include <vector>
|
|
|
+#endif
|
|
|
+
|
|
|
+#if VMA_USE_STL_UNORDERED_MAP
|
|
|
+ #include <unordered_map>
|
|
|
+#endif
|
|
|
+
|
|
|
+#if VMA_USE_STL_LIST
|
|
|
+ #include <list>
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+Following headers are used in this CONFIGURATION section only, so feel free to
|
|
|
+remove them if not needed.
|
|
|
+*/
|
|
|
+#include <cassert> // for assert
|
|
|
+#include <algorithm> // for min, max
|
|
|
+#include <mutex> // for std::mutex
|
|
|
+#include <atomic> // for std::atomic
|
|
|
+
|
|
|
+#if !defined(_WIN32)
|
|
|
+ #include <malloc.h> // for aligned_alloc()
|
|
|
+#endif
|
|
|
+
|
|
|
+// Normal assert to check for programmer's errors, especially in Debug configuration.
|
|
|
+#ifndef VMA_ASSERT
|
|
|
+ #ifdef _DEBUG
|
|
|
+ #define VMA_ASSERT(expr) assert(expr)
|
|
|
+ #else
|
|
|
+ #define VMA_ASSERT(expr)
|
|
|
+ #endif
|
|
|
+#endif
|
|
|
+
|
|
|
+// Assert that will be called very often, like inside data structures e.g. operator[].
|
|
|
+// Making it non-empty can make program slow.
|
|
|
+#ifndef VMA_HEAVY_ASSERT
|
|
|
+ #ifdef _DEBUG
|
|
|
+ #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
|
|
|
+ #else
|
|
|
+ #define VMA_HEAVY_ASSERT(expr)
|
|
|
+ #endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_NULL
|
|
|
+ // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
|
|
|
+ #define VMA_NULL nullptr
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_ALIGN_OF
|
|
|
+ #define VMA_ALIGN_OF(type) (__alignof(type))
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_SYSTEM_ALIGNED_MALLOC
|
|
|
+ #if defined(_WIN32)
|
|
|
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment)))
|
|
|
+ #else
|
|
|
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) ))
|
|
|
+ #endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_SYSTEM_FREE
|
|
|
+ #if defined(_WIN32)
|
|
|
+ #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr)
|
|
|
+ #else
|
|
|
+ #define VMA_SYSTEM_FREE(ptr) free(ptr)
|
|
|
+ #endif
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_MIN
|
|
|
+ #define VMA_MIN(v1, v2) (std::min((v1), (v2)))
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_MAX
|
|
|
+ #define VMA_MAX(v1, v2) (std::max((v1), (v2)))
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_SWAP
|
|
|
+ #define VMA_SWAP(v1, v2) std::swap((v1), (v2))
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_SORT
|
|
|
+ #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEBUG_LOG
|
|
|
+ #define VMA_DEBUG_LOG(format, ...)
|
|
|
+ /*
|
|
|
+ #define VMA_DEBUG_LOG(format, ...) do { \
|
|
|
+ printf(format, __VA_ARGS__); \
|
|
|
+ printf("\n"); \
|
|
|
+ } while(false)
|
|
|
+ */
|
|
|
+#endif
|
|
|
+
|
|
|
+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+ static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
|
|
|
+ {
|
|
|
+ snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
|
|
|
+ }
|
|
|
+ static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
|
|
|
+ {
|
|
|
+ snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
|
|
|
+ }
|
|
|
+ static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
|
|
|
+ {
|
|
|
+ snprintf(outStr, strLen, "%p", ptr);
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_MUTEX
|
|
|
+ class VmaMutex
|
|
|
+ {
|
|
|
+ public:
|
|
|
+ VmaMutex() { }
|
|
|
+ ~VmaMutex() { }
|
|
|
+ void Lock() { m_Mutex.lock(); }
|
|
|
+ void Unlock() { m_Mutex.unlock(); }
|
|
|
+ private:
|
|
|
+ std::mutex m_Mutex;
|
|
|
+ };
|
|
|
+ #define VMA_MUTEX VmaMutex
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+If providing your own implementation, you need to implement a subset of std::atomic:
|
|
|
+
|
|
|
+- Constructor(uint32_t desired)
|
|
|
+- uint32_t load() const
|
|
|
+- void store(uint32_t desired)
|
|
|
+- bool compare_exchange_weak(uint32_t& expected, uint32_t desired)
|
|
|
+*/
|
|
|
+#ifndef VMA_ATOMIC_UINT32
|
|
|
+ #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_BEST_FIT
|
|
|
+ /**
|
|
|
+ Main parameter for function assessing how good is a free suballocation for a new
|
|
|
+ allocation request.
|
|
|
+
|
|
|
+ - Set to 1 to use Best-Fit algorithm - prefer smaller blocks, as close to the
|
|
|
+ size of requested allocations as possible.
|
|
|
+ - Set to 0 to use Worst-Fit algorithm - prefer larger blocks, as large as
|
|
|
+ possible.
|
|
|
+
|
|
|
+ Experiments in special testing environment showed that Best-Fit algorithm is
|
|
|
+ better.
|
|
|
+ */
|
|
|
+ #define VMA_BEST_FIT (1)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
|
|
|
+ /**
|
|
|
+ Every allocation will have its own memory block.
|
|
|
+ Define to 1 for debugging purposes only.
|
|
|
+ */
|
|
|
+ #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEBUG_ALIGNMENT
|
|
|
+ /**
|
|
|
+ Minimum alignment of all suballocations, in bytes.
|
|
|
+ Set to more than 1 for debugging purposes only. Must be power of two.
|
|
|
+ */
|
|
|
+ #define VMA_DEBUG_ALIGNMENT (1)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEBUG_MARGIN
|
|
|
+ /**
|
|
|
+ Minimum margin between suballocations, in bytes.
|
|
|
+ Set nonzero for debugging purposes only.
|
|
|
+ */
|
|
|
+ #define VMA_DEBUG_MARGIN (0)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEBUG_GLOBAL_MUTEX
|
|
|
+ /**
|
|
|
+ Set this to 1 for debugging purposes only, to enable single mutex protecting all
|
|
|
+ entry calls to the library. Can be useful for debugging multithreading issues.
|
|
|
+ */
|
|
|
+ #define VMA_DEBUG_GLOBAL_MUTEX (0)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
|
|
|
+ /**
|
|
|
+ Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
|
|
|
+ Set to more than 1 for debugging purposes only. Must be power of two.
|
|
|
+ */
|
|
|
+ #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_SMALL_HEAP_MAX_SIZE
|
|
|
+ /// Maximum size of a memory heap in Vulkan to consider it "small".
|
|
|
+ #define VMA_SMALL_HEAP_MAX_SIZE (512 * 1024 * 1024)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
|
|
|
+ /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
|
|
|
+ #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256 * 1024 * 1024)
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE
|
|
|
+ /// Default size of a block allocated as single VkDeviceMemory from a "small" heap.
|
|
|
+ #define VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE (64 * 1024 * 1024)
|
|
|
+#endif
|
|
|
+
|
|
|
+static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
|
|
|
+
|
|
|
+/*******************************************************************************
|
|
|
+END OF CONFIGURATION
|
|
|
+*/
|
|
|
+
|
|
|
+static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
|
|
|
+ VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
|
|
|
+
|
|
|
+// Returns number of bits set to 1 in (v).
|
|
|
+static inline uint32_t VmaCountBitsSet(uint32_t v)
|
|
|
+{
|
|
|
+ uint32_t c = v - ((v >> 1) & 0x55555555);
|
|
|
+ c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
|
|
|
+ c = ((c >> 4) + c) & 0x0F0F0F0F;
|
|
|
+ c = ((c >> 8) + c) & 0x00FF00FF;
|
|
|
+ c = ((c >> 16) + c) & 0x0000FFFF;
|
|
|
+ return c;
|
|
|
+}
|
|
|
+
|
|
|
+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
|
|
|
+// Use types like uint32_t, uint64_t as T.
|
|
|
+template <typename T>
|
|
|
+static inline T VmaAlignUp(T val, T align)
|
|
|
+{
|
|
|
+ return (val + align - 1) / align * align;
|
|
|
+}
|
|
|
+
|
|
|
+// Division with mathematical rounding to nearest number.
|
|
|
+template <typename T>
|
|
|
+inline T VmaRoundDiv(T x, T y)
|
|
|
+{
|
|
|
+ return (x + (y / (T)2)) / y;
|
|
|
+}
|
|
|
+
|
|
|
+#ifndef VMA_SORT
|
|
|
+
|
|
|
+template<typename Iterator, typename Compare>
|
|
|
+Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
|
|
|
+{
|
|
|
+ Iterator centerValue = end; --centerValue;
|
|
|
+ Iterator insertIndex = beg;
|
|
|
+ for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
|
|
|
+ {
|
|
|
+ if(cmp(*memTypeIndex, *centerValue))
|
|
|
+ {
|
|
|
+ if(insertIndex != memTypeIndex)
|
|
|
+ {
|
|
|
+ VMA_SWAP(*memTypeIndex, *insertIndex);
|
|
|
+ }
|
|
|
+ ++insertIndex;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(insertIndex != centerValue)
|
|
|
+ {
|
|
|
+ VMA_SWAP(*insertIndex, *centerValue);
|
|
|
+ }
|
|
|
+ return insertIndex;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename Iterator, typename Compare>
|
|
|
+void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
|
|
|
+{
|
|
|
+ if(beg < end)
|
|
|
+ {
|
|
|
+ Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
|
|
|
+ VmaQuickSort<Iterator, Compare>(beg, it, cmp);
|
|
|
+ VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
|
|
|
+
|
|
|
+#endif // #ifndef VMA_SORT
|
|
|
+
|
|
|
+/*
|
|
|
+Returns true if two memory blocks occupy overlapping pages.
|
|
|
+ResourceA must be in less memory offset than ResourceB.
|
|
|
+
|
|
|
+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
|
|
|
+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
|
|
|
+*/
|
|
|
+static inline bool VmaBlocksOnSamePage(
|
|
|
+ VkDeviceSize resourceAOffset,
|
|
|
+ VkDeviceSize resourceASize,
|
|
|
+ VkDeviceSize resourceBOffset,
|
|
|
+ VkDeviceSize pageSize)
|
|
|
+{
|
|
|
+ VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
|
|
|
+ VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
|
|
|
+ VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
|
|
|
+ VkDeviceSize resourceBStart = resourceBOffset;
|
|
|
+ VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
|
|
|
+ return resourceAEndPage == resourceBStartPage;
|
|
|
+}
|
|
|
+
|
|
|
+enum VmaSuballocationType
|
|
|
+{
|
|
|
+ VMA_SUBALLOCATION_TYPE_FREE = 0,
|
|
|
+ VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
|
|
|
+ VMA_SUBALLOCATION_TYPE_BUFFER = 2,
|
|
|
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
|
|
|
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
|
|
|
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
|
|
|
+ VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+Returns true if given suballocation types could conflict and must respect
|
|
|
+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
|
|
|
+or linear image and another one is optimal image. If type is unknown, behave
|
|
|
+conservatively.
|
|
|
+*/
|
|
|
+static inline bool VmaIsBufferImageGranularityConflict(
|
|
|
+ VmaSuballocationType suballocType1,
|
|
|
+ VmaSuballocationType suballocType2)
|
|
|
+{
|
|
|
+ if(suballocType1 > suballocType2)
|
|
|
+ {
|
|
|
+ VMA_SWAP(suballocType1, suballocType2);
|
|
|
+ }
|
|
|
+
|
|
|
+ switch(suballocType1)
|
|
|
+ {
|
|
|
+ case VMA_SUBALLOCATION_TYPE_FREE:
|
|
|
+ return false;
|
|
|
+ case VMA_SUBALLOCATION_TYPE_UNKNOWN:
|
|
|
+ return true;
|
|
|
+ case VMA_SUBALLOCATION_TYPE_BUFFER:
|
|
|
+ return
|
|
|
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
|
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
|
+ case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
|
|
|
+ return
|
|
|
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
|
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
|
|
|
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
|
+ case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
|
|
|
+ return
|
|
|
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
|
+ case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
|
|
|
+ return false;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
|
|
|
+struct VmaMutexLock
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaMutexLock(VMA_MUTEX& mutex, bool useMutex) :
|
|
|
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
|
+ {
|
|
|
+ if(m_pMutex)
|
|
|
+ {
|
|
|
+ m_pMutex->Lock();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ~VmaMutexLock()
|
|
|
+ {
|
|
|
+ if(m_pMutex)
|
|
|
+ {
|
|
|
+ m_pMutex->Unlock();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+private:
|
|
|
+ VMA_MUTEX* m_pMutex;
|
|
|
+};
|
|
|
+
|
|
|
+#if VMA_DEBUG_GLOBAL_MUTEX
|
|
|
+ static VMA_MUTEX gDebugGlobalMutex;
|
|
|
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
|
|
|
+#else
|
|
|
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+#endif
|
|
|
+
|
|
|
+// Minimum size of a free suballocation to register it in the free suballocation collection.
|
|
|
+static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
|
|
|
+
|
|
|
+/*
|
|
|
+Performs binary search and returns iterator to first element that is greater or
|
|
|
+equal to (key), according to comparison (cmp).
|
|
|
+
|
|
|
+Cmp should return true if first argument is less than second argument.
|
|
|
+
|
|
|
+Returned value is the found element, if present in the collection or place where
|
|
|
+new element with value (key) should be inserted.
|
|
|
+*/
|
|
|
+template <typename IterT, typename KeyT, typename CmpT>
|
|
|
+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpT cmp)
|
|
|
+{
|
|
|
+ size_t down = 0, up = (end - beg);
|
|
|
+ while(down < up)
|
|
|
+ {
|
|
|
+ const size_t mid = (down + up) / 2;
|
|
|
+ if(cmp(*(beg+mid), key))
|
|
|
+ {
|
|
|
+ down = mid + 1;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ up = mid;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return beg + down;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// Memory allocation
|
|
|
+
|
|
|
+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
|
|
|
+{
|
|
|
+ if((pAllocationCallbacks != VMA_NULL) &&
|
|
|
+ (pAllocationCallbacks->pfnAllocation != VMA_NULL))
|
|
|
+ {
|
|
|
+ return (*pAllocationCallbacks->pfnAllocation)(
|
|
|
+ pAllocationCallbacks->pUserData,
|
|
|
+ size,
|
|
|
+ alignment,
|
|
|
+ VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
|
|
|
+{
|
|
|
+ if((pAllocationCallbacks != VMA_NULL) &&
|
|
|
+ (pAllocationCallbacks->pfnFree != VMA_NULL))
|
|
|
+ {
|
|
|
+ (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_SYSTEM_FREE(ptr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
|
+{
|
|
|
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
|
|
|
+{
|
|
|
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
|
+}
|
|
|
+
|
|
|
+#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
|
|
|
+
|
|
|
+#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
|
|
|
+{
|
|
|
+ ptr->~T();
|
|
|
+ VmaFree(pAllocationCallbacks, ptr);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
|
|
|
+{
|
|
|
+ if(ptr != VMA_NULL)
|
|
|
+ {
|
|
|
+ for(size_t i = count; i--; )
|
|
|
+ {
|
|
|
+ ptr[i].~T();
|
|
|
+ }
|
|
|
+ VmaFree(pAllocationCallbacks, ptr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// STL-compatible allocator.
|
|
|
+template<typename T>
|
|
|
+class VmaStlAllocator
|
|
|
+{
|
|
|
+public:
|
|
|
+ const VkAllocationCallbacks* const m_pCallbacks;
|
|
|
+ typedef T value_type;
|
|
|
+
|
|
|
+ VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
|
|
|
+ template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
|
|
|
+
|
|
|
+ T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
|
|
|
+ void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
|
|
|
+
|
|
|
+ template<typename U>
|
|
|
+ bool operator==(const VmaStlAllocator<U>& rhs) const
|
|
|
+ {
|
|
|
+ return m_pCallbacks == rhs.m_pCallbacks;
|
|
|
+ }
|
|
|
+ template<typename U>
|
|
|
+ bool operator!=(const VmaStlAllocator<U>& rhs) const
|
|
|
+ {
|
|
|
+ return m_pCallbacks != rhs.m_pCallbacks;
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
|
|
|
+};
|
|
|
+
|
|
|
+#if VMA_USE_STL_VECTOR
|
|
|
+
|
|
|
+#define VmaVector std::vector
|
|
|
+
|
|
|
+template<typename T, typename allocatorT>
|
|
|
+static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
|
|
|
+{
|
|
|
+ vec.insert(vec.begin() + index, item);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T, typename allocatorT>
|
|
|
+static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
|
|
|
+{
|
|
|
+ vec.erase(vec.begin() + index);
|
|
|
+}
|
|
|
+
|
|
|
+#else // #if VMA_USE_STL_VECTOR
|
|
|
+
|
|
|
+/* Class with interface compatible with subset of std::vector.
|
|
|
+T must be POD because constructors and destructors are not called and memcpy is
|
|
|
+used for these objects. */
|
|
|
+template<typename T, typename AllocatorT>
|
|
|
+class VmaVector
|
|
|
+{
|
|
|
+public:
|
|
|
+ typedef T value_type;
|
|
|
+
|
|
|
+ VmaVector(const AllocatorT& allocator) :
|
|
|
+ m_Allocator(allocator),
|
|
|
+ m_pArray(VMA_NULL),
|
|
|
+ m_Count(0),
|
|
|
+ m_Capacity(0)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaVector(size_t count, const AllocatorT& allocator) :
|
|
|
+ m_Allocator(allocator),
|
|
|
+ m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
|
|
|
+ m_Count(count),
|
|
|
+ m_Capacity(count)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaVector(const VmaVector<T, AllocatorT>& src) :
|
|
|
+ m_Allocator(src.m_Allocator),
|
|
|
+ m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
|
|
|
+ m_Count(src.m_Count),
|
|
|
+ m_Capacity(src.m_Count)
|
|
|
+ {
|
|
|
+ if(m_Count != 0)
|
|
|
+ {
|
|
|
+ memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ~VmaVector()
|
|
|
+ {
|
|
|
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
|
|
|
+ {
|
|
|
+ if(&rhs != this)
|
|
|
+ {
|
|
|
+ resize(rhs.m_Count);
|
|
|
+ if(m_Count != 0)
|
|
|
+ {
|
|
|
+ memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+
|
|
|
+ bool empty() const { return m_Count == 0; }
|
|
|
+ size_t size() const { return m_Count; }
|
|
|
+ T* data() { return m_pArray; }
|
|
|
+ const T* data() const { return m_pArray; }
|
|
|
+
|
|
|
+ T& operator[](size_t index)
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(index < m_Count);
|
|
|
+ return m_pArray[index];
|
|
|
+ }
|
|
|
+ const T& operator[](size_t index) const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(index < m_Count);
|
|
|
+ return m_pArray[index];
|
|
|
+ }
|
|
|
+
|
|
|
+ T& front()
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ return m_pArray[0];
|
|
|
+ }
|
|
|
+ const T& front() const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ return m_pArray[0];
|
|
|
+ }
|
|
|
+ T& back()
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ return m_pArray[m_Count - 1];
|
|
|
+ }
|
|
|
+ const T& back() const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ return m_pArray[m_Count - 1];
|
|
|
+ }
|
|
|
+
|
|
|
+ void reserve(size_t newCapacity, bool freeMemory = false)
|
|
|
+ {
|
|
|
+ newCapacity = VMA_MAX(newCapacity, m_Count);
|
|
|
+
|
|
|
+ if((newCapacity < m_Capacity) && !freeMemory)
|
|
|
+ {
|
|
|
+ newCapacity = m_Capacity;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(newCapacity != m_Capacity)
|
|
|
+ {
|
|
|
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
|
|
|
+ if(m_Count != 0)
|
|
|
+ {
|
|
|
+ memcpy(newArray, m_pArray, m_Count * sizeof(T));
|
|
|
+ }
|
|
|
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
|
+ m_Capacity = newCapacity;
|
|
|
+ m_pArray = newArray;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void resize(size_t newCount, bool freeMemory = false)
|
|
|
+ {
|
|
|
+ size_t newCapacity = m_Capacity;
|
|
|
+ if(newCount > m_Capacity)
|
|
|
+ {
|
|
|
+ newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
|
|
|
+ }
|
|
|
+ else if(freeMemory)
|
|
|
+ {
|
|
|
+ newCapacity = newCount;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(newCapacity != m_Capacity)
|
|
|
+ {
|
|
|
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
|
|
|
+ const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
|
|
|
+ if(elementsToCopy != 0)
|
|
|
+ {
|
|
|
+ memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
|
|
|
+ }
|
|
|
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
|
+ m_Capacity = newCapacity;
|
|
|
+ m_pArray = newArray;
|
|
|
+ }
|
|
|
+
|
|
|
+ m_Count = newCount;
|
|
|
+ }
|
|
|
+
|
|
|
+ void clear(bool freeMemory = false)
|
|
|
+ {
|
|
|
+ resize(0, freeMemory);
|
|
|
+ }
|
|
|
+
|
|
|
+ void insert(size_t index, const T& src)
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(index <= m_Count);
|
|
|
+ const size_t oldCount = size();
|
|
|
+ resize(oldCount + 1);
|
|
|
+ if(index < oldCount)
|
|
|
+ {
|
|
|
+ memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
|
|
|
+ }
|
|
|
+ m_pArray[index] = src;
|
|
|
+ }
|
|
|
+
|
|
|
+ void remove(size_t index)
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(index < m_Count);
|
|
|
+ const size_t oldCount = size();
|
|
|
+ if(index < oldCount - 1)
|
|
|
+ {
|
|
|
+ memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
|
|
|
+ }
|
|
|
+ resize(oldCount - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ void push_back(const T& src)
|
|
|
+ {
|
|
|
+ const size_t newIndex = size();
|
|
|
+ resize(newIndex + 1);
|
|
|
+ m_pArray[newIndex] = src;
|
|
|
+ }
|
|
|
+
|
|
|
+ void pop_back()
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ resize(size() - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ void push_front(const T& src)
|
|
|
+ {
|
|
|
+ insert(0, src);
|
|
|
+ }
|
|
|
+
|
|
|
+ void pop_front()
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ remove(0);
|
|
|
+ }
|
|
|
+
|
|
|
+ typedef T* iterator;
|
|
|
+
|
|
|
+ iterator begin() { return m_pArray; }
|
|
|
+ iterator end() { return m_pArray + m_Count; }
|
|
|
+
|
|
|
+private:
|
|
|
+ AllocatorT m_Allocator;
|
|
|
+ T* m_pArray;
|
|
|
+ size_t m_Count;
|
|
|
+ size_t m_Capacity;
|
|
|
+};
|
|
|
+
|
|
|
+template<typename T, typename allocatorT>
|
|
|
+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
|
|
|
+{
|
|
|
+ vec.insert(index, item);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T, typename allocatorT>
|
|
|
+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
|
|
|
+{
|
|
|
+ vec.remove(index);
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_USE_STL_VECTOR
|
|
|
+
|
|
|
+template<typename CmpLess, typename VectorT>
|
|
|
+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
|
|
|
+{
|
|
|
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
|
+ vector.data(),
|
|
|
+ vector.data() + vector.size(),
|
|
|
+ value,
|
|
|
+ CmpLess()) - vector.data();
|
|
|
+ VmaVectorInsert(vector, indexToInsert, value);
|
|
|
+ return indexToInsert;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename CmpLess, typename VectorT>
|
|
|
+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
|
|
|
+{
|
|
|
+ CmpLess comparator;
|
|
|
+ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
|
|
|
+ vector.begin(),
|
|
|
+ vector.end(),
|
|
|
+ value,
|
|
|
+ comparator);
|
|
|
+ if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
|
|
|
+ {
|
|
|
+ size_t indexToRemove = it - vector.begin();
|
|
|
+ VmaVectorRemove(vector, indexToRemove);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename CmpLess, typename VectorT>
|
|
|
+size_t VmaVectorFindSorted(const VectorT& vector, const typename VectorT::value_type& value)
|
|
|
+{
|
|
|
+ CmpLess comparator;
|
|
|
+ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
|
|
|
+ vector.data(),
|
|
|
+ vector.data() + vector.size(),
|
|
|
+ value,
|
|
|
+ comparator);
|
|
|
+ if(it != vector.size() && !comparator(*it, value) && !comparator(value, *it))
|
|
|
+ {
|
|
|
+ return it - vector.begin();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return vector.size();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// class VmaPoolAllocator
|
|
|
+
|
|
|
+/*
|
|
|
+Allocator for objects of type T using a list of arrays (pools) to speed up
|
|
|
+allocation. Number of elements that can be allocated is not bounded because
|
|
|
+allocator can create multiple blocks.
|
|
|
+*/
|
|
|
+template<typename T>
|
|
|
+class VmaPoolAllocator
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock);
|
|
|
+ ~VmaPoolAllocator();
|
|
|
+ void Clear();
|
|
|
+ T* Alloc();
|
|
|
+ void Free(T* ptr);
|
|
|
+
|
|
|
+private:
|
|
|
+ union Item
|
|
|
+ {
|
|
|
+ uint32_t NextFreeIndex;
|
|
|
+ T Value;
|
|
|
+ };
|
|
|
+
|
|
|
+ struct ItemBlock
|
|
|
+ {
|
|
|
+ Item* pItems;
|
|
|
+ uint32_t FirstFreeIndex;
|
|
|
+ };
|
|
|
+
|
|
|
+ const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
|
+ size_t m_ItemsPerBlock;
|
|
|
+ VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
|
|
|
+
|
|
|
+ ItemBlock& CreateNewBlock();
|
|
|
+};
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) :
|
|
|
+ m_pAllocationCallbacks(pAllocationCallbacks),
|
|
|
+ m_ItemsPerBlock(itemsPerBlock),
|
|
|
+ m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
|
|
|
+{
|
|
|
+ VMA_ASSERT(itemsPerBlock > 0);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaPoolAllocator<T>::~VmaPoolAllocator()
|
|
|
+{
|
|
|
+ Clear();
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+void VmaPoolAllocator<T>::Clear()
|
|
|
+{
|
|
|
+ for(size_t i = m_ItemBlocks.size(); i--; )
|
|
|
+ vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock);
|
|
|
+ m_ItemBlocks.clear();
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+T* VmaPoolAllocator<T>::Alloc()
|
|
|
+{
|
|
|
+ for(size_t i = m_ItemBlocks.size(); i--; )
|
|
|
+ {
|
|
|
+ ItemBlock& block = m_ItemBlocks[i];
|
|
|
+ // This block has some free items: Use first one.
|
|
|
+ if(block.FirstFreeIndex != UINT32_MAX)
|
|
|
+ {
|
|
|
+ Item* const pItem = &block.pItems[block.FirstFreeIndex];
|
|
|
+ block.FirstFreeIndex = pItem->NextFreeIndex;
|
|
|
+ return &pItem->Value;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // No block has free item: Create new one and use it.
|
|
|
+ ItemBlock& newBlock = CreateNewBlock();
|
|
|
+ Item* const pItem = &newBlock.pItems[0];
|
|
|
+ newBlock.FirstFreeIndex = pItem->NextFreeIndex;
|
|
|
+ return &pItem->Value;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+void VmaPoolAllocator<T>::Free(T* ptr)
|
|
|
+{
|
|
|
+ // Search all memory blocks to find ptr.
|
|
|
+ for(size_t i = 0; i < m_ItemBlocks.size(); ++i)
|
|
|
+ {
|
|
|
+ ItemBlock& block = m_ItemBlocks[i];
|
|
|
+
|
|
|
+ // Casting to union.
|
|
|
+ Item* pItemPtr;
|
|
|
+ memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
|
|
|
+
|
|
|
+ // Check if pItemPtr is in address range of this block.
|
|
|
+ if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock))
|
|
|
+ {
|
|
|
+ const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
|
|
|
+ pItemPtr->NextFreeIndex = block.FirstFreeIndex;
|
|
|
+ block.FirstFreeIndex = index;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
|
|
|
+{
|
|
|
+ ItemBlock newBlock = {
|
|
|
+ vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 };
|
|
|
+
|
|
|
+ m_ItemBlocks.push_back(newBlock);
|
|
|
+
|
|
|
+ // Setup singly-linked list of all free items in this block.
|
|
|
+ for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i)
|
|
|
+ newBlock.pItems[i].NextFreeIndex = i + 1;
|
|
|
+ newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX;
|
|
|
+ return m_ItemBlocks.back();
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// class VmaRawList, VmaList
|
|
|
+
|
|
|
+#if VMA_USE_STL_LIST
|
|
|
+
|
|
|
+#define VmaList std::list
|
|
|
+
|
|
|
+#else // #if VMA_USE_STL_LIST
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+struct VmaListItem
|
|
|
+{
|
|
|
+ VmaListItem* pPrev;
|
|
|
+ VmaListItem* pNext;
|
|
|
+ T Value;
|
|
|
+};
|
|
|
+
|
|
|
+// Doubly linked list.
|
|
|
+template<typename T>
|
|
|
+class VmaRawList
|
|
|
+{
|
|
|
+public:
|
|
|
+ typedef VmaListItem<T> ItemType;
|
|
|
+
|
|
|
+ VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
|
|
|
+ ~VmaRawList();
|
|
|
+ void Clear();
|
|
|
+
|
|
|
+ size_t GetCount() const { return m_Count; }
|
|
|
+ bool IsEmpty() const { return m_Count == 0; }
|
|
|
+
|
|
|
+ ItemType* Front() { return m_pFront; }
|
|
|
+ const ItemType* Front() const { return m_pFront; }
|
|
|
+ ItemType* Back() { return m_pBack; }
|
|
|
+ const ItemType* Back() const { return m_pBack; }
|
|
|
+
|
|
|
+ ItemType* PushBack();
|
|
|
+ ItemType* PushFront();
|
|
|
+ ItemType* PushBack(const T& value);
|
|
|
+ ItemType* PushFront(const T& value);
|
|
|
+ void PopBack();
|
|
|
+ void PopFront();
|
|
|
+
|
|
|
+ // Item can be null - it means PushBack.
|
|
|
+ ItemType* InsertBefore(ItemType* pItem);
|
|
|
+ // Item can be null - it means PushFront.
|
|
|
+ ItemType* InsertAfter(ItemType* pItem);
|
|
|
+
|
|
|
+ ItemType* InsertBefore(ItemType* pItem, const T& value);
|
|
|
+ ItemType* InsertAfter(ItemType* pItem, const T& value);
|
|
|
+
|
|
|
+ void Remove(ItemType* pItem);
|
|
|
+
|
|
|
+private:
|
|
|
+ const VkAllocationCallbacks* const m_pAllocationCallbacks;
|
|
|
+ VmaPoolAllocator<ItemType> m_ItemAllocator;
|
|
|
+ ItemType* m_pFront;
|
|
|
+ ItemType* m_pBack;
|
|
|
+ size_t m_Count;
|
|
|
+
|
|
|
+ // Declared not defined, to block copy constructor and assignment operator.
|
|
|
+ VmaRawList(const VmaRawList<T>& src);
|
|
|
+ VmaRawList<T>& operator=(const VmaRawList<T>& rhs);
|
|
|
+};
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
|
+ m_pAllocationCallbacks(pAllocationCallbacks),
|
|
|
+ m_ItemAllocator(pAllocationCallbacks, 128),
|
|
|
+ m_pFront(VMA_NULL),
|
|
|
+ m_pBack(VMA_NULL),
|
|
|
+ m_Count(0)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaRawList<T>::~VmaRawList()
|
|
|
+{
|
|
|
+ // Intentionally not calling Clear, because that would be unnecessary
|
|
|
+ // computations to return all items to m_ItemAllocator as free.
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+void VmaRawList<T>::Clear()
|
|
|
+{
|
|
|
+ if(IsEmpty() == false)
|
|
|
+ {
|
|
|
+ ItemType* pItem = m_pBack;
|
|
|
+ while(pItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ ItemType* const pPrevItem = pItem->pPrev;
|
|
|
+ m_ItemAllocator.Free(pItem);
|
|
|
+ pItem = pPrevItem;
|
|
|
+ }
|
|
|
+ m_pFront = VMA_NULL;
|
|
|
+ m_pBack = VMA_NULL;
|
|
|
+ m_Count = 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::PushBack()
|
|
|
+{
|
|
|
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
|
+ pNewItem->pNext = VMA_NULL;
|
|
|
+ if(IsEmpty())
|
|
|
+ {
|
|
|
+ pNewItem->pPrev = VMA_NULL;
|
|
|
+ m_pFront = pNewItem;
|
|
|
+ m_pBack = pNewItem;
|
|
|
+ m_Count = 1;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pNewItem->pPrev = m_pBack;
|
|
|
+ m_pBack->pNext = pNewItem;
|
|
|
+ m_pBack = pNewItem;
|
|
|
+ ++m_Count;
|
|
|
+ }
|
|
|
+ return pNewItem;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::PushFront()
|
|
|
+{
|
|
|
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
|
+ pNewItem->pPrev = VMA_NULL;
|
|
|
+ if(IsEmpty())
|
|
|
+ {
|
|
|
+ pNewItem->pNext = VMA_NULL;
|
|
|
+ m_pFront = pNewItem;
|
|
|
+ m_pBack = pNewItem;
|
|
|
+ m_Count = 1;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pNewItem->pNext = m_pFront;
|
|
|
+ m_pFront->pPrev = pNewItem;
|
|
|
+ m_pFront = pNewItem;
|
|
|
+ ++m_Count;
|
|
|
+ }
|
|
|
+ return pNewItem;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
|
|
|
+{
|
|
|
+ ItemType* const pNewItem = PushBack();
|
|
|
+ pNewItem->Value = value;
|
|
|
+ return pNewItem;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
|
|
|
+{
|
|
|
+ ItemType* const pNewItem = PushFront();
|
|
|
+ pNewItem->Value = value;
|
|
|
+ return pNewItem;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+void VmaRawList<T>::PopBack()
|
|
|
+{
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ ItemType* const pBackItem = m_pBack;
|
|
|
+ ItemType* const pPrevItem = pBackItem->pPrev;
|
|
|
+ if(pPrevItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ pPrevItem->pNext = VMA_NULL;
|
|
|
+ }
|
|
|
+ m_pBack = pPrevItem;
|
|
|
+ m_ItemAllocator.Free(pBackItem);
|
|
|
+ --m_Count;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+void VmaRawList<T>::PopFront()
|
|
|
+{
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+ ItemType* const pFrontItem = m_pFront;
|
|
|
+ ItemType* const pNextItem = pFrontItem->pNext;
|
|
|
+ if(pNextItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ pNextItem->pPrev = VMA_NULL;
|
|
|
+ }
|
|
|
+ m_pFront = pNextItem;
|
|
|
+ m_ItemAllocator.Free(pFrontItem);
|
|
|
+ --m_Count;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+void VmaRawList<T>::Remove(ItemType* pItem)
|
|
|
+{
|
|
|
+ VMA_HEAVY_ASSERT(pItem != VMA_NULL);
|
|
|
+ VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
+
|
|
|
+ if(pItem->pPrev != VMA_NULL)
|
|
|
+ {
|
|
|
+ pItem->pPrev->pNext = pItem->pNext;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
|
+ m_pFront = pItem->pNext;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(pItem->pNext != VMA_NULL)
|
|
|
+ {
|
|
|
+ pItem->pNext->pPrev = pItem->pPrev;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
|
+ m_pBack = pItem->pPrev;
|
|
|
+ }
|
|
|
+
|
|
|
+ m_ItemAllocator.Free(pItem);
|
|
|
+ --m_Count;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
|
|
|
+{
|
|
|
+ if(pItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ ItemType* const prevItem = pItem->pPrev;
|
|
|
+ ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
|
+ newItem->pPrev = prevItem;
|
|
|
+ newItem->pNext = pItem;
|
|
|
+ pItem->pPrev = newItem;
|
|
|
+ if(prevItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ prevItem->pNext = newItem;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
|
+ m_pFront = newItem;
|
|
|
+ }
|
|
|
+ ++m_Count;
|
|
|
+ return newItem;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return PushBack();
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
|
|
|
+{
|
|
|
+ if(pItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ ItemType* const nextItem = pItem->pNext;
|
|
|
+ ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
|
+ newItem->pNext = nextItem;
|
|
|
+ newItem->pPrev = pItem;
|
|
|
+ pItem->pNext = newItem;
|
|
|
+ if(nextItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ nextItem->pPrev = newItem;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
|
+ m_pBack = newItem;
|
|
|
+ }
|
|
|
+ ++m_Count;
|
|
|
+ return newItem;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return PushFront();
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
|
|
|
+{
|
|
|
+ ItemType* const newItem = InsertBefore(pItem);
|
|
|
+ newItem->Value = value;
|
|
|
+ return newItem;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
|
|
|
+{
|
|
|
+ ItemType* const newItem = InsertAfter(pItem);
|
|
|
+ newItem->Value = value;
|
|
|
+ return newItem;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T, typename AllocatorT>
|
|
|
+class VmaList
|
|
|
+{
|
|
|
+public:
|
|
|
+ class iterator
|
|
|
+ {
|
|
|
+ public:
|
|
|
+ iterator() :
|
|
|
+ m_pList(VMA_NULL),
|
|
|
+ m_pItem(VMA_NULL)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ T& operator*() const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
|
+ return m_pItem->Value;
|
|
|
+ }
|
|
|
+ T* operator->() const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
|
+ return &m_pItem->Value;
|
|
|
+ }
|
|
|
+
|
|
|
+ iterator& operator++()
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
|
+ m_pItem = m_pItem->pNext;
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+ iterator& operator--()
|
|
|
+ {
|
|
|
+ if(m_pItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ m_pItem = m_pItem->pPrev;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(!m_pList.IsEmpty());
|
|
|
+ m_pItem = m_pList->Back();
|
|
|
+ }
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+
|
|
|
+ iterator operator++(int)
|
|
|
+ {
|
|
|
+ iterator result = *this;
|
|
|
+ ++*this;
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ iterator operator--(int)
|
|
|
+ {
|
|
|
+ iterator result = *this;
|
|
|
+ --*this;
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ bool operator==(const iterator& rhs) const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
|
+ return m_pItem == rhs.m_pItem;
|
|
|
+ }
|
|
|
+ bool operator!=(const iterator& rhs) const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
|
+ return m_pItem != rhs.m_pItem;
|
|
|
+ }
|
|
|
+
|
|
|
+ private:
|
|
|
+ VmaRawList<T>* m_pList;
|
|
|
+ VmaListItem<T>* m_pItem;
|
|
|
+
|
|
|
+ iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
|
|
|
+ m_pList(pList),
|
|
|
+ m_pItem(pItem)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ friend class VmaList<T, AllocatorT>;
|
|
|
+ };
|
|
|
+
|
|
|
+ class const_iterator
|
|
|
+ {
|
|
|
+ public:
|
|
|
+ const_iterator() :
|
|
|
+ m_pList(VMA_NULL),
|
|
|
+ m_pItem(VMA_NULL)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ const_iterator(const iterator& src) :
|
|
|
+ m_pList(src.m_pList),
|
|
|
+ m_pItem(src.m_pItem)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ const T& operator*() const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
|
+ return m_pItem->Value;
|
|
|
+ }
|
|
|
+ const T* operator->() const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
|
+ return &m_pItem->Value;
|
|
|
+ }
|
|
|
+
|
|
|
+ const_iterator& operator++()
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
|
+ m_pItem = m_pItem->pNext;
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+ const_iterator& operator--()
|
|
|
+ {
|
|
|
+ if(m_pItem != VMA_NULL)
|
|
|
+ {
|
|
|
+ m_pItem = m_pItem->pPrev;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
|
+ m_pItem = m_pList->Back();
|
|
|
+ }
|
|
|
+ return *this;
|
|
|
+ }
|
|
|
+
|
|
|
+ const_iterator operator++(int)
|
|
|
+ {
|
|
|
+ const_iterator result = *this;
|
|
|
+ ++*this;
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ const_iterator operator--(int)
|
|
|
+ {
|
|
|
+ const_iterator result = *this;
|
|
|
+ --*this;
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ bool operator==(const const_iterator& rhs) const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
|
+ return m_pItem == rhs.m_pItem;
|
|
|
+ }
|
|
|
+ bool operator!=(const const_iterator& rhs) const
|
|
|
+ {
|
|
|
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
|
+ return m_pItem != rhs.m_pItem;
|
|
|
+ }
|
|
|
+
|
|
|
+ private:
|
|
|
+ const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
|
|
|
+ m_pList(pList),
|
|
|
+ m_pItem(pItem)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ const VmaRawList<T>* m_pList;
|
|
|
+ const VmaListItem<T>* m_pItem;
|
|
|
+
|
|
|
+ friend class VmaList<T, AllocatorT>;
|
|
|
+ };
|
|
|
+
|
|
|
+ VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
|
|
|
+
|
|
|
+ bool empty() const { return m_RawList.IsEmpty(); }
|
|
|
+ size_t size() const { return m_RawList.GetCount(); }
|
|
|
+
|
|
|
+ iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
|
|
|
+ iterator end() { return iterator(&m_RawList, VMA_NULL); }
|
|
|
+
|
|
|
+ const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
|
|
|
+ const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
|
|
|
+
|
|
|
+ void clear() { m_RawList.Clear(); }
|
|
|
+ void push_back(const T& value) { m_RawList.PushBack(value); }
|
|
|
+ void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
|
|
|
+ iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
|
|
|
+
|
|
|
+private:
|
|
|
+ VmaRawList<T> m_RawList;
|
|
|
+};
|
|
|
+
|
|
|
+#endif // #if VMA_USE_STL_LIST
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// class VmaMap
|
|
|
+
|
|
|
+// Unused in this version.
|
|
|
+#if 0
|
|
|
+
|
|
|
+#if VMA_USE_STL_UNORDERED_MAP
|
|
|
+
|
|
|
+#define VmaPair std::pair
|
|
|
+
|
|
|
+#define VMA_MAP_TYPE(KeyT, ValueT) \
|
|
|
+ std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
|
|
|
+
|
|
|
+#else // #if VMA_USE_STL_UNORDERED_MAP
|
|
|
+
|
|
|
+template<typename T1, typename T2>
|
|
|
+struct VmaPair
|
|
|
+{
|
|
|
+ T1 first;
|
|
|
+ T2 second;
|
|
|
+
|
|
|
+ VmaPair() : first(), second() { }
|
|
|
+ VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
|
|
|
+};
|
|
|
+
|
|
|
+/* Class compatible with subset of interface of std::unordered_map.
|
|
|
+KeyT, ValueT must be POD because they will be stored in VmaVector.
|
|
|
+*/
|
|
|
+template<typename KeyT, typename ValueT>
|
|
|
+class VmaMap
|
|
|
+{
|
|
|
+public:
|
|
|
+ typedef VmaPair<KeyT, ValueT> PairType;
|
|
|
+ typedef PairType* iterator;
|
|
|
+
|
|
|
+ VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
|
|
|
+
|
|
|
+ iterator begin() { return m_Vector.begin(); }
|
|
|
+ iterator end() { return m_Vector.end(); }
|
|
|
+
|
|
|
+ void insert(const PairType& pair);
|
|
|
+ iterator find(const KeyT& key);
|
|
|
+ void erase(iterator it);
|
|
|
+
|
|
|
+private:
|
|
|
+ VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
|
|
|
+};
|
|
|
+
|
|
|
+#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
|
|
|
+
|
|
|
+template<typename FirstT, typename SecondT>
|
|
|
+struct VmaPairFirstLess
|
|
|
+{
|
|
|
+ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
|
|
|
+ {
|
|
|
+ return lhs.first < rhs.first;
|
|
|
+ }
|
|
|
+ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
|
|
|
+ {
|
|
|
+ return lhs.first < rhsFirst;
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+template<typename KeyT, typename ValueT>
|
|
|
+void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
|
|
|
+{
|
|
|
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
|
+ m_Vector.data(),
|
|
|
+ m_Vector.data() + m_Vector.size(),
|
|
|
+ pair,
|
|
|
+ VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
|
|
|
+ VmaVectorInsert(m_Vector, indexToInsert, pair);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename KeyT, typename ValueT>
|
|
|
+VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
|
|
|
+{
|
|
|
+ PairType* it = VmaBinaryFindFirstNotLess(
|
|
|
+ m_Vector.data(),
|
|
|
+ m_Vector.data() + m_Vector.size(),
|
|
|
+ key,
|
|
|
+ VmaPairFirstLess<KeyT, ValueT>());
|
|
|
+ if((it != m_Vector.end()) && (it->first == key))
|
|
|
+ {
|
|
|
+ return it;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return m_Vector.end();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template<typename KeyT, typename ValueT>
|
|
|
+void VmaMap<KeyT, ValueT>::erase(iterator it)
|
|
|
+{
|
|
|
+ VmaVectorRemove(m_Vector, it - m_Vector.begin());
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_USE_STL_UNORDERED_MAP
|
|
|
+
|
|
|
+#endif // #if 0
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+class VmaDeviceMemoryBlock;
|
|
|
+
|
|
|
+struct VmaAllocation_T
|
|
|
+{
|
|
|
+private:
|
|
|
+ static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
|
|
|
+
|
|
|
+ enum FLAGS
|
|
|
+ {
|
|
|
+ FLAG_USER_DATA_STRING = 0x01,
|
|
|
+ };
|
|
|
+
|
|
|
+public:
|
|
|
+ enum ALLOCATION_TYPE
|
|
|
+ {
|
|
|
+ ALLOCATION_TYPE_NONE,
|
|
|
+ ALLOCATION_TYPE_BLOCK,
|
|
|
+ ALLOCATION_TYPE_DEDICATED,
|
|
|
+ };
|
|
|
+
|
|
|
+ VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :
|
|
|
+ m_Alignment(1),
|
|
|
+ m_Size(0),
|
|
|
+ m_pUserData(VMA_NULL),
|
|
|
+ m_LastUseFrameIndex(currentFrameIndex),
|
|
|
+ m_Type((uint8_t)ALLOCATION_TYPE_NONE),
|
|
|
+ m_SuballocationType((uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN),
|
|
|
+ m_MapCount(0),
|
|
|
+ m_Flags(userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ ~VmaAllocation_T()
|
|
|
+ {
|
|
|
+ VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
|
|
|
+
|
|
|
+ // Check if owned string was freed.
|
|
|
+ VMA_ASSERT(m_pUserData == VMA_NULL);
|
|
|
+ }
|
|
|
+
|
|
|
+ void InitBlockAllocation(
|
|
|
+ VmaPool hPool,
|
|
|
+ VmaDeviceMemoryBlock* block,
|
|
|
+ VkDeviceSize offset,
|
|
|
+ VkDeviceSize alignment,
|
|
|
+ VkDeviceSize size,
|
|
|
+ VmaSuballocationType suballocationType,
|
|
|
+ bool mapped,
|
|
|
+ bool canBecomeLost)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
|
+ VMA_ASSERT(block != VMA_NULL);
|
|
|
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
|
|
|
+ m_Alignment = alignment;
|
|
|
+ m_Size = size;
|
|
|
+ m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
|
|
|
+ m_SuballocationType = (uint8_t)suballocationType;
|
|
|
+ m_BlockAllocation.m_hPool = hPool;
|
|
|
+ m_BlockAllocation.m_Block = block;
|
|
|
+ m_BlockAllocation.m_Offset = offset;
|
|
|
+ m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
|
|
|
+ }
|
|
|
+
|
|
|
+ void InitLost()
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
|
+ VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
|
|
|
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
|
|
|
+ m_BlockAllocation.m_hPool = VK_NULL_HANDLE;
|
|
|
+ m_BlockAllocation.m_Block = VMA_NULL;
|
|
|
+ m_BlockAllocation.m_Offset = 0;
|
|
|
+ m_BlockAllocation.m_CanBecomeLost = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ void ChangeBlockAllocation(
|
|
|
+ VmaDeviceMemoryBlock* block,
|
|
|
+ VkDeviceSize offset)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(block != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
|
+ m_BlockAllocation.m_Block = block;
|
|
|
+ m_BlockAllocation.m_Offset = offset;
|
|
|
+ }
|
|
|
+
|
|
|
+ // pMappedData not null means allocation is created with MAPPED flag.
|
|
|
+ void InitDedicatedAllocation(
|
|
|
+ uint32_t memoryTypeIndex,
|
|
|
+ VkDeviceMemory hMemory,
|
|
|
+ VmaSuballocationType suballocationType,
|
|
|
+ void* pMappedData,
|
|
|
+ VkDeviceSize size)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
|
+ VMA_ASSERT(hMemory != VK_NULL_HANDLE);
|
|
|
+ m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
|
|
|
+ m_Alignment = 0;
|
|
|
+ m_Size = size;
|
|
|
+ m_SuballocationType = (uint8_t)suballocationType;
|
|
|
+ m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
|
|
|
+ m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex;
|
|
|
+ m_DedicatedAllocation.m_hMemory = hMemory;
|
|
|
+ m_DedicatedAllocation.m_pMappedData = pMappedData;
|
|
|
+ }
|
|
|
+
|
|
|
+ ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
|
|
|
+ VkDeviceSize GetAlignment() const { return m_Alignment; }
|
|
|
+ VkDeviceSize GetSize() const { return m_Size; }
|
|
|
+ bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
|
|
|
+ void* GetUserData() const { return m_pUserData; }
|
|
|
+ void SetUserData(VmaAllocator hAllocator, void* pUserData);
|
|
|
+ VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
|
|
|
+
|
|
|
+ VmaDeviceMemoryBlock* GetBlock() const
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
|
+ return m_BlockAllocation.m_Block;
|
|
|
+ }
|
|
|
+ VkDeviceSize GetOffset() const;
|
|
|
+ VkDeviceMemory GetMemory() const;
|
|
|
+ uint32_t GetMemoryTypeIndex() const;
|
|
|
+ bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
|
|
|
+ void* GetMappedData() const;
|
|
|
+ bool CanBecomeLost() const;
|
|
|
+ VmaPool GetPool() const;
|
|
|
+
|
|
|
+ uint32_t GetLastUseFrameIndex() const
|
|
|
+ {
|
|
|
+ return m_LastUseFrameIndex.load();
|
|
|
+ }
|
|
|
+ bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
|
|
|
+ {
|
|
|
+ return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
|
|
|
+ makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
|
|
|
+ - Else, returns false.
|
|
|
+
|
|
|
+ If hAllocation is already lost, assert - you should not call it then.
|
|
|
+ If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
|
|
|
+ */
|
|
|
+ bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
|
|
|
+
|
|
|
+ void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
|
|
|
+ outInfo.blockCount = 1;
|
|
|
+ outInfo.allocationCount = 1;
|
|
|
+ outInfo.unusedRangeCount = 0;
|
|
|
+ outInfo.usedBytes = m_Size;
|
|
|
+ outInfo.unusedBytes = 0;
|
|
|
+ outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
|
|
|
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
|
|
|
+ outInfo.unusedRangeSizeMax = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ void BlockAllocMap();
|
|
|
+ void BlockAllocUnmap();
|
|
|
+ VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
|
|
|
+ void DedicatedAllocUnmap(VmaAllocator hAllocator);
|
|
|
+
|
|
|
+private:
|
|
|
+ VkDeviceSize m_Alignment;
|
|
|
+ VkDeviceSize m_Size;
|
|
|
+ void* m_pUserData;
|
|
|
+ VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
|
|
|
+ uint8_t m_Type; // ALLOCATION_TYPE
|
|
|
+ uint8_t m_SuballocationType; // VmaSuballocationType
|
|
|
+ // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
|
|
|
+ // Bits with mask 0x7F, used only when ALLOCATION_TYPE_DEDICATED, are reference counter for vmaMapMemory()/vmaUnmapMemory().
|
|
|
+ uint8_t m_MapCount;
|
|
|
+ uint8_t m_Flags; // enum FLAGS
|
|
|
+
|
|
|
+ // Allocation out of VmaDeviceMemoryBlock.
|
|
|
+ struct BlockAllocation
|
|
|
+ {
|
|
|
+ VmaPool m_hPool; // Null if belongs to general memory.
|
|
|
+ VmaDeviceMemoryBlock* m_Block;
|
|
|
+ VkDeviceSize m_Offset;
|
|
|
+ bool m_CanBecomeLost;
|
|
|
+ };
|
|
|
+
|
|
|
+ // Allocation for an object that has its own private VkDeviceMemory.
|
|
|
+ struct DedicatedAllocation
|
|
|
+ {
|
|
|
+ uint32_t m_MemoryTypeIndex;
|
|
|
+ VkDeviceMemory m_hMemory;
|
|
|
+ void* m_pMappedData; // Not null means memory is mapped.
|
|
|
+ };
|
|
|
+
|
|
|
+ union
|
|
|
+ {
|
|
|
+ // Allocation out of VmaDeviceMemoryBlock.
|
|
|
+ BlockAllocation m_BlockAllocation;
|
|
|
+ // Allocation for an object that has its own private VkDeviceMemory.
|
|
|
+ DedicatedAllocation m_DedicatedAllocation;
|
|
|
+ };
|
|
|
+
|
|
|
+ void FreeUserDataString(VmaAllocator hAllocator);
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
|
|
|
+allocated memory block or free.
|
|
|
+*/
|
|
|
+struct VmaSuballocation
|
|
|
+{
|
|
|
+ VkDeviceSize offset;
|
|
|
+ VkDeviceSize size;
|
|
|
+ VmaAllocation hAllocation;
|
|
|
+ VmaSuballocationType type;
|
|
|
+};
|
|
|
+
|
|
|
+typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
|
|
|
+
|
|
|
+// Cost of one additional allocation lost, as equivalent in bytes.
|
|
|
+static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
|
|
|
+
|
|
|
+/*
|
|
|
+Parameters of planned allocation inside a VmaDeviceMemoryBlock.
|
|
|
+
|
|
|
+If canMakeOtherLost was false:
|
|
|
+- item points to a FREE suballocation.
|
|
|
+- itemsToMakeLostCount is 0.
|
|
|
+
|
|
|
+If canMakeOtherLost was true:
|
|
|
+- item points to first of sequence of suballocations, which are either FREE,
|
|
|
+ or point to VmaAllocations that can become lost.
|
|
|
+- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
|
|
|
+ the requested allocation to succeed.
|
|
|
+*/
|
|
|
+struct VmaAllocationRequest
|
|
|
+{
|
|
|
+ VkDeviceSize offset;
|
|
|
+ VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
|
|
|
+ VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
|
|
|
+ VmaSuballocationList::iterator item;
|
|
|
+ size_t itemsToMakeLostCount;
|
|
|
+
|
|
|
+ VkDeviceSize CalcCost() const
|
|
|
+ {
|
|
|
+ return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+Data structure used for bookkeeping of allocations and unused ranges of memory
|
|
|
+in a single VkDeviceMemory block.
|
|
|
+*/
|
|
|
+class VmaBlockMetadata
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaBlockMetadata(VmaAllocator hAllocator);
|
|
|
+ ~VmaBlockMetadata();
|
|
|
+ void Init(VkDeviceSize size);
|
|
|
+
|
|
|
+ // Validates all data structures inside this object. If not valid, returns false.
|
|
|
+ bool Validate() const;
|
|
|
+ VkDeviceSize GetSize() const { return m_Size; }
|
|
|
+ size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
|
|
|
+ VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
|
|
|
+ VkDeviceSize GetUnusedRangeSizeMax() const;
|
|
|
+ // Returns true if this block is empty - contains only single free suballocation.
|
|
|
+ bool IsEmpty() const;
|
|
|
+
|
|
|
+ void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
|
|
|
+ void AddPoolStats(VmaPoolStats& inoutStats) const;
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+ void PrintDetailedMap(class VmaJsonWriter& json) const;
|
|
|
+#endif
|
|
|
+
|
|
|
+ // Creates trivial request for case when block is empty.
|
|
|
+ void CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest);
|
|
|
+
|
|
|
+ // Tries to find a place for suballocation with given parameters inside this block.
|
|
|
+ // If succeeded, fills pAllocationRequest and returns true.
|
|
|
+ // If failed, returns false.
|
|
|
+ bool CreateAllocationRequest(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ VkDeviceSize bufferImageGranularity,
|
|
|
+ VkDeviceSize allocSize,
|
|
|
+ VkDeviceSize allocAlignment,
|
|
|
+ VmaSuballocationType allocType,
|
|
|
+ bool canMakeOtherLost,
|
|
|
+ VmaAllocationRequest* pAllocationRequest);
|
|
|
+
|
|
|
+ bool MakeRequestedAllocationsLost(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ VmaAllocationRequest* pAllocationRequest);
|
|
|
+
|
|
|
+ uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
|
|
|
+
|
|
|
+ // Makes actual allocation based on request. Request must already be checked and valid.
|
|
|
+ void Alloc(
|
|
|
+ const VmaAllocationRequest& request,
|
|
|
+ VmaSuballocationType type,
|
|
|
+ VkDeviceSize allocSize,
|
|
|
+ VmaAllocation hAllocation);
|
|
|
+
|
|
|
+ // Frees suballocation assigned to given memory region.
|
|
|
+ void Free(const VmaAllocation allocation);
|
|
|
+
|
|
|
+private:
|
|
|
+ VkDeviceSize m_Size;
|
|
|
+ uint32_t m_FreeCount;
|
|
|
+ VkDeviceSize m_SumFreeSize;
|
|
|
+ VmaSuballocationList m_Suballocations;
|
|
|
+ // Suballocations that are free and have size greater than certain threshold.
|
|
|
+ // Sorted by size, ascending.
|
|
|
+ VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
|
|
|
+
|
|
|
+ bool ValidateFreeSuballocationList() const;
|
|
|
+
|
|
|
+ // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
|
|
|
+ // If yes, fills pOffset and returns true. If no, returns false.
|
|
|
+ bool CheckAllocation(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ VkDeviceSize bufferImageGranularity,
|
|
|
+ VkDeviceSize allocSize,
|
|
|
+ VkDeviceSize allocAlignment,
|
|
|
+ VmaSuballocationType allocType,
|
|
|
+ VmaSuballocationList::const_iterator suballocItem,
|
|
|
+ bool canMakeOtherLost,
|
|
|
+ VkDeviceSize* pOffset,
|
|
|
+ size_t* itemsToMakeLostCount,
|
|
|
+ VkDeviceSize* pSumFreeSize,
|
|
|
+ VkDeviceSize* pSumItemSize) const;
|
|
|
+ // Given free suballocation, it merges it with following one, which must also be free.
|
|
|
+ void MergeFreeWithNext(VmaSuballocationList::iterator item);
|
|
|
+ // Releases given suballocation, making it free.
|
|
|
+ // Merges it with adjacent free suballocations if applicable.
|
|
|
+ // Returns iterator to new free suballocation at this place.
|
|
|
+ VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
|
|
|
+ // Given free suballocation, it inserts it into sorted list of
|
|
|
+ // m_FreeSuballocationsBySize if it's suitable.
|
|
|
+ void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
|
|
|
+ // Given free suballocation, it removes it from sorted list of
|
|
|
+ // m_FreeSuballocationsBySize if it's suitable.
|
|
|
+ void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
|
|
|
+};
|
|
|
+
|
|
|
+// Helper class that represents mapped memory. Synchronized internally.
|
|
|
+class VmaDeviceMemoryMapping
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaDeviceMemoryMapping();
|
|
|
+ ~VmaDeviceMemoryMapping();
|
|
|
+
|
|
|
+ void* GetMappedData() const { return m_pMappedData; }
|
|
|
+
|
|
|
+ // ppData can be null.
|
|
|
+ VkResult Map(VmaAllocator hAllocator, VkDeviceMemory hMemory, void **ppData);
|
|
|
+ void Unmap(VmaAllocator hAllocator, VkDeviceMemory hMemory);
|
|
|
+
|
|
|
+private:
|
|
|
+ VMA_MUTEX m_Mutex;
|
|
|
+ uint32_t m_MapCount;
|
|
|
+ void* m_pMappedData;
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+Represents a single block of device memory (`VkDeviceMemory`) with all the
|
|
|
+data about its regions (aka suballocations, `VmaAllocation`), assigned and free.
|
|
|
+
|
|
|
+Thread-safety: This class must be externally synchronized.
|
|
|
+*/
|
|
|
+class VmaDeviceMemoryBlock
|
|
|
+{
|
|
|
+public:
|
|
|
+ uint32_t m_MemoryTypeIndex;
|
|
|
+ VkDeviceMemory m_hMemory;
|
|
|
+ VmaDeviceMemoryMapping m_Mapping;
|
|
|
+ VmaBlockMetadata m_Metadata;
|
|
|
+
|
|
|
+ VmaDeviceMemoryBlock(VmaAllocator hAllocator);
|
|
|
+
|
|
|
+ ~VmaDeviceMemoryBlock()
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Always call after construction.
|
|
|
+ void Init(
|
|
|
+ uint32_t newMemoryTypeIndex,
|
|
|
+ VkDeviceMemory newMemory,
|
|
|
+ VkDeviceSize newSize);
|
|
|
+ // Always call before destruction.
|
|
|
+ void Destroy(VmaAllocator allocator);
|
|
|
+
|
|
|
+ // Validates all data structures inside this object. If not valid, returns false.
|
|
|
+ bool Validate() const;
|
|
|
+
|
|
|
+ // ppData can be null.
|
|
|
+ VkResult Map(VmaAllocator hAllocator, void** ppData);
|
|
|
+ void Unmap(VmaAllocator hAllocator);
|
|
|
+};
|
|
|
+
|
|
|
+struct VmaPointerLess
|
|
|
+{
|
|
|
+ bool operator()(const void* lhs, const void* rhs) const
|
|
|
+ {
|
|
|
+ return lhs < rhs;
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+class VmaDefragmentator;
|
|
|
+
|
|
|
+/*
|
|
|
+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
|
|
|
+Vulkan memory type.
|
|
|
+
|
|
|
+Synchronized internally with a mutex.
|
|
|
+*/
|
|
|
+struct VmaBlockVector
|
|
|
+{
|
|
|
+ VmaBlockVector(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ uint32_t memoryTypeIndex,
|
|
|
+ VkDeviceSize preferredBlockSize,
|
|
|
+ size_t minBlockCount,
|
|
|
+ size_t maxBlockCount,
|
|
|
+ VkDeviceSize bufferImageGranularity,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ bool isCustomPool);
|
|
|
+ ~VmaBlockVector();
|
|
|
+
|
|
|
+ VkResult CreateMinBlocks();
|
|
|
+
|
|
|
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
|
+ VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
|
|
|
+ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
|
|
|
+ uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
|
|
|
+
|
|
|
+ void GetPoolStats(VmaPoolStats* pStats);
|
|
|
+
|
|
|
+ bool IsEmpty() const { return m_Blocks.empty(); }
|
|
|
+
|
|
|
+ VkResult Allocate(
|
|
|
+ VmaPool hCurrentPool,
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ const VkMemoryRequirements& vkMemReq,
|
|
|
+ const VmaAllocationCreateInfo& createInfo,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation);
|
|
|
+
|
|
|
+ void Free(
|
|
|
+ VmaAllocation hAllocation);
|
|
|
+
|
|
|
+ // Adds statistics of this BlockVector to pStats.
|
|
|
+ void AddStats(VmaStats* pStats);
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+ void PrintDetailedMap(class VmaJsonWriter& json);
|
|
|
+#endif
|
|
|
+
|
|
|
+ void MakePoolAllocationsLost(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ size_t* pLostAllocationCount);
|
|
|
+
|
|
|
+ VmaDefragmentator* EnsureDefragmentator(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ uint32_t currentFrameIndex);
|
|
|
+
|
|
|
+ VkResult Defragment(
|
|
|
+ VmaDefragmentationStats* pDefragmentationStats,
|
|
|
+ VkDeviceSize& maxBytesToMove,
|
|
|
+ uint32_t& maxAllocationsToMove);
|
|
|
+
|
|
|
+ void DestroyDefragmentator();
|
|
|
+
|
|
|
+private:
|
|
|
+ friend class VmaDefragmentator;
|
|
|
+
|
|
|
+ const VmaAllocator m_hAllocator;
|
|
|
+ const uint32_t m_MemoryTypeIndex;
|
|
|
+ const VkDeviceSize m_PreferredBlockSize;
|
|
|
+ const size_t m_MinBlockCount;
|
|
|
+ const size_t m_MaxBlockCount;
|
|
|
+ const VkDeviceSize m_BufferImageGranularity;
|
|
|
+ const uint32_t m_FrameInUseCount;
|
|
|
+ const bool m_IsCustomPool;
|
|
|
+ VMA_MUTEX m_Mutex;
|
|
|
+ // Incrementally sorted by sumFreeSize, ascending.
|
|
|
+ VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
|
|
|
+ /* There can be at most one allocation that is completely empty - a
|
|
|
+ hysteresis to avoid pessimistic case of alternating creation and destruction
|
|
|
+ of a VkDeviceMemory. */
|
|
|
+ bool m_HasEmptyBlock;
|
|
|
+ VmaDefragmentator* m_pDefragmentator;
|
|
|
+
|
|
|
+ // Finds and removes given block from vector.
|
|
|
+ void Remove(VmaDeviceMemoryBlock* pBlock);
|
|
|
+
|
|
|
+ // Performs single step in sorting m_Blocks. They may not be fully sorted
|
|
|
+ // after this call.
|
|
|
+ void IncrementallySortBlocks();
|
|
|
+
|
|
|
+ VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
|
|
|
+};
|
|
|
+
|
|
|
+struct VmaPool_T
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaBlockVector m_BlockVector;
|
|
|
+
|
|
|
+ // Takes ownership.
|
|
|
+ VmaPool_T(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ const VmaPoolCreateInfo& createInfo);
|
|
|
+ ~VmaPool_T();
|
|
|
+
|
|
|
+ VmaBlockVector& GetBlockVector() { return m_BlockVector; }
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+ //void PrintDetailedMap(class VmaStringBuilder& sb);
|
|
|
+#endif
|
|
|
+};
|
|
|
+
|
|
|
+class VmaDefragmentator
|
|
|
+{
|
|
|
+ const VmaAllocator m_hAllocator;
|
|
|
+ VmaBlockVector* const m_pBlockVector;
|
|
|
+ uint32_t m_CurrentFrameIndex;
|
|
|
+ VkDeviceSize m_BytesMoved;
|
|
|
+ uint32_t m_AllocationsMoved;
|
|
|
+
|
|
|
+ struct AllocationInfo
|
|
|
+ {
|
|
|
+ VmaAllocation m_hAllocation;
|
|
|
+ VkBool32* m_pChanged;
|
|
|
+
|
|
|
+ AllocationInfo() :
|
|
|
+ m_hAllocation(VK_NULL_HANDLE),
|
|
|
+ m_pChanged(VMA_NULL)
|
|
|
+ {
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ struct AllocationInfoSizeGreater
|
|
|
+ {
|
|
|
+ bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
|
|
|
+ {
|
|
|
+ return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // Used between AddAllocation and Defragment.
|
|
|
+ VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
|
|
|
+
|
|
|
+ struct BlockInfo
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* m_pBlock;
|
|
|
+ bool m_HasNonMovableAllocations;
|
|
|
+ VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
|
|
|
+
|
|
|
+ BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
|
+ m_pBlock(VMA_NULL),
|
|
|
+ m_HasNonMovableAllocations(true),
|
|
|
+ m_Allocations(pAllocationCallbacks),
|
|
|
+ m_pMappedDataForDefragmentation(VMA_NULL)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ void CalcHasNonMovableAllocations()
|
|
|
+ {
|
|
|
+ const size_t blockAllocCount = m_pBlock->m_Metadata.GetAllocationCount();
|
|
|
+ const size_t defragmentAllocCount = m_Allocations.size();
|
|
|
+ m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
|
|
|
+ }
|
|
|
+
|
|
|
+ void SortAllocationsBySizeDescecnding()
|
|
|
+ {
|
|
|
+ VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
|
|
|
+ }
|
|
|
+
|
|
|
+ VkResult EnsureMapping(VmaAllocator hAllocator, void** ppMappedData);
|
|
|
+ void Unmap(VmaAllocator hAllocator);
|
|
|
+
|
|
|
+ private:
|
|
|
+ // Not null if mapped for defragmentation only, not originally mapped.
|
|
|
+ void* m_pMappedDataForDefragmentation;
|
|
|
+ };
|
|
|
+
|
|
|
+ struct BlockPointerLess
|
|
|
+ {
|
|
|
+ bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
|
|
|
+ {
|
|
|
+ return pLhsBlockInfo->m_pBlock < pRhsBlock;
|
|
|
+ }
|
|
|
+ bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
|
|
|
+ {
|
|
|
+ return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ // 1. Blocks with some non-movable allocations go first.
|
|
|
+ // 2. Blocks with smaller sumFreeSize go first.
|
|
|
+ struct BlockInfoCompareMoveDestination
|
|
|
+ {
|
|
|
+ bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
|
|
|
+ {
|
|
|
+ if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(pLhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize())
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
|
|
|
+ BlockInfoVector m_Blocks;
|
|
|
+
|
|
|
+ VkResult DefragmentRound(
|
|
|
+ VkDeviceSize maxBytesToMove,
|
|
|
+ uint32_t maxAllocationsToMove);
|
|
|
+
|
|
|
+ static bool MoveMakesSense(
|
|
|
+ size_t dstBlockIndex, VkDeviceSize dstOffset,
|
|
|
+ size_t srcBlockIndex, VkDeviceSize srcOffset);
|
|
|
+
|
|
|
+public:
|
|
|
+ VmaDefragmentator(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ VmaBlockVector* pBlockVector,
|
|
|
+ uint32_t currentFrameIndex);
|
|
|
+
|
|
|
+ ~VmaDefragmentator();
|
|
|
+
|
|
|
+ VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
|
|
|
+ uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
|
|
|
+
|
|
|
+ void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
|
|
|
+
|
|
|
+ VkResult Defragment(
|
|
|
+ VkDeviceSize maxBytesToMove,
|
|
|
+ uint32_t maxAllocationsToMove);
|
|
|
+};
|
|
|
+
|
|
|
+// Main allocator object.
|
|
|
+struct VmaAllocator_T
|
|
|
+{
|
|
|
+ bool m_UseMutex;
|
|
|
+ bool m_UseKhrDedicatedAllocation;
|
|
|
+ VkDevice m_hDevice;
|
|
|
+ bool m_AllocationCallbacksSpecified;
|
|
|
+ VkAllocationCallbacks m_AllocationCallbacks;
|
|
|
+ VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
|
|
|
+
|
|
|
+ // Number of bytes free out of limit, or VK_WHOLE_SIZE if not limit for that heap.
|
|
|
+ VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];
|
|
|
+ VMA_MUTEX m_HeapSizeLimitMutex;
|
|
|
+
|
|
|
+ VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
|
|
|
+ VkPhysicalDeviceMemoryProperties m_MemProps;
|
|
|
+
|
|
|
+ // Default pools.
|
|
|
+ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
|
|
|
+
|
|
|
+ // Each vector is sorted by memory (handle value).
|
|
|
+ typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
|
|
|
+ AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
|
|
|
+ VMA_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
|
|
|
+
|
|
|
+ VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
|
|
|
+ ~VmaAllocator_T();
|
|
|
+
|
|
|
+ const VkAllocationCallbacks* GetAllocationCallbacks() const
|
|
|
+ {
|
|
|
+ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
|
|
|
+ }
|
|
|
+ const VmaVulkanFunctions& GetVulkanFunctions() const
|
|
|
+ {
|
|
|
+ return m_VulkanFunctions;
|
|
|
+ }
|
|
|
+
|
|
|
+ VkDeviceSize GetBufferImageGranularity() const
|
|
|
+ {
|
|
|
+ return VMA_MAX(
|
|
|
+ static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
|
|
|
+ m_PhysicalDeviceProperties.limits.bufferImageGranularity);
|
|
|
+ }
|
|
|
+
|
|
|
+ uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
|
|
|
+ uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
|
|
|
+
|
|
|
+ uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
|
|
|
+ {
|
|
|
+ VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
|
|
|
+ return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
|
|
|
+ }
|
|
|
+
|
|
|
+ void GetBufferMemoryRequirements(
|
|
|
+ VkBuffer hBuffer,
|
|
|
+ VkMemoryRequirements& memReq,
|
|
|
+ bool& requiresDedicatedAllocation,
|
|
|
+ bool& prefersDedicatedAllocation) const;
|
|
|
+ void GetImageMemoryRequirements(
|
|
|
+ VkImage hImage,
|
|
|
+ VkMemoryRequirements& memReq,
|
|
|
+ bool& requiresDedicatedAllocation,
|
|
|
+ bool& prefersDedicatedAllocation) const;
|
|
|
+
|
|
|
+ // Main allocation function.
|
|
|
+ VkResult AllocateMemory(
|
|
|
+ const VkMemoryRequirements& vkMemReq,
|
|
|
+ bool requiresDedicatedAllocation,
|
|
|
+ bool prefersDedicatedAllocation,
|
|
|
+ VkBuffer dedicatedBuffer,
|
|
|
+ VkImage dedicatedImage,
|
|
|
+ const VmaAllocationCreateInfo& createInfo,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation);
|
|
|
+
|
|
|
+ // Main deallocation function.
|
|
|
+ void FreeMemory(const VmaAllocation allocation);
|
|
|
+
|
|
|
+ void CalculateStats(VmaStats* pStats);
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+ void PrintDetailedMap(class VmaJsonWriter& json);
|
|
|
+#endif
|
|
|
+
|
|
|
+ VkResult Defragment(
|
|
|
+ VmaAllocation* pAllocations,
|
|
|
+ size_t allocationCount,
|
|
|
+ VkBool32* pAllocationsChanged,
|
|
|
+ const VmaDefragmentationInfo* pDefragmentationInfo,
|
|
|
+ VmaDefragmentationStats* pDefragmentationStats);
|
|
|
+
|
|
|
+ void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
|
|
|
+
|
|
|
+ VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
|
|
|
+ void DestroyPool(VmaPool pool);
|
|
|
+ void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
|
|
|
+
|
|
|
+ void SetCurrentFrameIndex(uint32_t frameIndex);
|
|
|
+
|
|
|
+ void MakePoolAllocationsLost(
|
|
|
+ VmaPool hPool,
|
|
|
+ size_t* pLostAllocationCount);
|
|
|
+
|
|
|
+ void CreateLostAllocation(VmaAllocation* pAllocation);
|
|
|
+
|
|
|
+ VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
|
|
|
+ void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
|
|
|
+
|
|
|
+ VkResult Map(VmaAllocation hAllocation, void** ppData);
|
|
|
+ void Unmap(VmaAllocation hAllocation);
|
|
|
+
|
|
|
+private:
|
|
|
+ VkDeviceSize m_PreferredLargeHeapBlockSize;
|
|
|
+ VkDeviceSize m_PreferredSmallHeapBlockSize;
|
|
|
+
|
|
|
+ VkPhysicalDevice m_PhysicalDevice;
|
|
|
+ VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
|
|
|
+
|
|
|
+ VMA_MUTEX m_PoolsMutex;
|
|
|
+ // Protected by m_PoolsMutex. Sorted by pointer value.
|
|
|
+ VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
|
|
|
+
|
|
|
+ VmaVulkanFunctions m_VulkanFunctions;
|
|
|
+
|
|
|
+ void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
|
|
|
+
|
|
|
+ VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
|
|
|
+
|
|
|
+ VkResult AllocateMemoryOfType(
|
|
|
+ const VkMemoryRequirements& vkMemReq,
|
|
|
+ bool dedicatedAllocation,
|
|
|
+ VkBuffer dedicatedBuffer,
|
|
|
+ VkImage dedicatedImage,
|
|
|
+ const VmaAllocationCreateInfo& createInfo,
|
|
|
+ uint32_t memTypeIndex,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation);
|
|
|
+
|
|
|
+ // Allocates and registers new VkDeviceMemory specifically for single allocation.
|
|
|
+ VkResult AllocateDedicatedMemory(
|
|
|
+ VkDeviceSize size,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ uint32_t memTypeIndex,
|
|
|
+ bool map,
|
|
|
+ bool isUserDataString,
|
|
|
+ void* pUserData,
|
|
|
+ VkBuffer dedicatedBuffer,
|
|
|
+ VkImage dedicatedImage,
|
|
|
+ VmaAllocation* pAllocation);
|
|
|
+
|
|
|
+ // Tries to free pMemory as Dedicated Memory. Returns true if found and freed.
|
|
|
+ void FreeDedicatedMemory(VmaAllocation allocation);
|
|
|
+};
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// Memory allocation #2 after VmaAllocator_T definition
|
|
|
+
|
|
|
+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
|
|
|
+{
|
|
|
+ return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
|
|
|
+}
|
|
|
+
|
|
|
+static void VmaFree(VmaAllocator hAllocator, void* ptr)
|
|
|
+{
|
|
|
+ VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static T* VmaAllocate(VmaAllocator hAllocator)
|
|
|
+{
|
|
|
+ return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
|
|
|
+{
|
|
|
+ return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static void vma_delete(VmaAllocator hAllocator, T* ptr)
|
|
|
+{
|
|
|
+ if(ptr != VMA_NULL)
|
|
|
+ {
|
|
|
+ ptr->~T();
|
|
|
+ VmaFree(hAllocator, ptr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template<typename T>
|
|
|
+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
|
|
|
+{
|
|
|
+ if(ptr != VMA_NULL)
|
|
|
+ {
|
|
|
+ for(size_t i = count; i--; )
|
|
|
+ ptr[i].~T();
|
|
|
+ VmaFree(hAllocator, ptr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// VmaStringBuilder
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+class VmaStringBuilder
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
|
|
|
+ size_t GetLength() const { return m_Data.size(); }
|
|
|
+ const char* GetData() const { return m_Data.data(); }
|
|
|
+
|
|
|
+ void Add(char ch) { m_Data.push_back(ch); }
|
|
|
+ void Add(const char* pStr);
|
|
|
+ void AddNewLine() { Add('\n'); }
|
|
|
+ void AddNumber(uint32_t num);
|
|
|
+ void AddNumber(uint64_t num);
|
|
|
+ void AddPointer(const void* ptr);
|
|
|
+
|
|
|
+private:
|
|
|
+ VmaVector< char, VmaStlAllocator<char> > m_Data;
|
|
|
+};
|
|
|
+
|
|
|
+void VmaStringBuilder::Add(const char* pStr)
|
|
|
+{
|
|
|
+ const size_t strLen = strlen(pStr);
|
|
|
+ if(strLen > 0)
|
|
|
+ {
|
|
|
+ const size_t oldCount = m_Data.size();
|
|
|
+ m_Data.resize(oldCount + strLen);
|
|
|
+ memcpy(m_Data.data() + oldCount, pStr, strLen);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaStringBuilder::AddNumber(uint32_t num)
|
|
|
+{
|
|
|
+ char buf[11];
|
|
|
+ VmaUint32ToStr(buf, sizeof(buf), num);
|
|
|
+ Add(buf);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaStringBuilder::AddNumber(uint64_t num)
|
|
|
+{
|
|
|
+ char buf[21];
|
|
|
+ VmaUint64ToStr(buf, sizeof(buf), num);
|
|
|
+ Add(buf);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaStringBuilder::AddPointer(const void* ptr)
|
|
|
+{
|
|
|
+ char buf[21];
|
|
|
+ VmaPtrToStr(buf, sizeof(buf), ptr);
|
|
|
+ Add(buf);
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// VmaJsonWriter
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+class VmaJsonWriter
|
|
|
+{
|
|
|
+public:
|
|
|
+ VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
|
|
|
+ ~VmaJsonWriter();
|
|
|
+
|
|
|
+ void BeginObject(bool singleLine = false);
|
|
|
+ void EndObject();
|
|
|
+
|
|
|
+ void BeginArray(bool singleLine = false);
|
|
|
+ void EndArray();
|
|
|
+
|
|
|
+ void WriteString(const char* pStr);
|
|
|
+ void BeginString(const char* pStr = VMA_NULL);
|
|
|
+ void ContinueString(const char* pStr);
|
|
|
+ void ContinueString(uint32_t n);
|
|
|
+ void ContinueString(uint64_t n);
|
|
|
+ void ContinueString_Pointer(const void* ptr);
|
|
|
+ void EndString(const char* pStr = VMA_NULL);
|
|
|
+
|
|
|
+ void WriteNumber(uint32_t n);
|
|
|
+ void WriteNumber(uint64_t n);
|
|
|
+ void WriteBool(bool b);
|
|
|
+ void WriteNull();
|
|
|
+
|
|
|
+private:
|
|
|
+ static const char* const INDENT;
|
|
|
+
|
|
|
+ enum COLLECTION_TYPE
|
|
|
+ {
|
|
|
+ COLLECTION_TYPE_OBJECT,
|
|
|
+ COLLECTION_TYPE_ARRAY,
|
|
|
+ };
|
|
|
+ struct StackItem
|
|
|
+ {
|
|
|
+ COLLECTION_TYPE type;
|
|
|
+ uint32_t valueCount;
|
|
|
+ bool singleLineMode;
|
|
|
+ };
|
|
|
+
|
|
|
+ VmaStringBuilder& m_SB;
|
|
|
+ VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
|
|
|
+ bool m_InsideString;
|
|
|
+
|
|
|
+ void BeginValue(bool isString);
|
|
|
+ void WriteIndent(bool oneLess = false);
|
|
|
+};
|
|
|
+
|
|
|
+const char* const VmaJsonWriter::INDENT = " ";
|
|
|
+
|
|
|
+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
|
|
|
+ m_SB(sb),
|
|
|
+ m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
|
|
|
+ m_InsideString(false)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+VmaJsonWriter::~VmaJsonWriter()
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+ VMA_ASSERT(m_Stack.empty());
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::BeginObject(bool singleLine)
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+
|
|
|
+ BeginValue(false);
|
|
|
+ m_SB.Add('{');
|
|
|
+
|
|
|
+ StackItem item;
|
|
|
+ item.type = COLLECTION_TYPE_OBJECT;
|
|
|
+ item.valueCount = 0;
|
|
|
+ item.singleLineMode = singleLine;
|
|
|
+ m_Stack.push_back(item);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::EndObject()
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+
|
|
|
+ WriteIndent(true);
|
|
|
+ m_SB.Add('}');
|
|
|
+
|
|
|
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
|
|
|
+ m_Stack.pop_back();
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::BeginArray(bool singleLine)
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+
|
|
|
+ BeginValue(false);
|
|
|
+ m_SB.Add('[');
|
|
|
+
|
|
|
+ StackItem item;
|
|
|
+ item.type = COLLECTION_TYPE_ARRAY;
|
|
|
+ item.valueCount = 0;
|
|
|
+ item.singleLineMode = singleLine;
|
|
|
+ m_Stack.push_back(item);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::EndArray()
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+
|
|
|
+ WriteIndent(true);
|
|
|
+ m_SB.Add(']');
|
|
|
+
|
|
|
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
|
|
|
+ m_Stack.pop_back();
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::WriteString(const char* pStr)
|
|
|
+{
|
|
|
+ BeginString(pStr);
|
|
|
+ EndString();
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::BeginString(const char* pStr)
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+
|
|
|
+ BeginValue(true);
|
|
|
+ m_SB.Add('"');
|
|
|
+ m_InsideString = true;
|
|
|
+ if(pStr != VMA_NULL && pStr[0] != '\0')
|
|
|
+ {
|
|
|
+ ContinueString(pStr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::ContinueString(const char* pStr)
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_InsideString);
|
|
|
+
|
|
|
+ const size_t strLen = strlen(pStr);
|
|
|
+ for(size_t i = 0; i < strLen; ++i)
|
|
|
+ {
|
|
|
+ char ch = pStr[i];
|
|
|
+ if(ch == '\'')
|
|
|
+ {
|
|
|
+ m_SB.Add("\\\\");
|
|
|
+ }
|
|
|
+ else if(ch == '"')
|
|
|
+ {
|
|
|
+ m_SB.Add("\\\"");
|
|
|
+ }
|
|
|
+ else if(ch >= 32)
|
|
|
+ {
|
|
|
+ m_SB.Add(ch);
|
|
|
+ }
|
|
|
+ else switch(ch)
|
|
|
+ {
|
|
|
+ case '\b':
|
|
|
+ m_SB.Add("\\b");
|
|
|
+ break;
|
|
|
+ case '\f':
|
|
|
+ m_SB.Add("\\f");
|
|
|
+ break;
|
|
|
+ case '\n':
|
|
|
+ m_SB.Add("\\n");
|
|
|
+ break;
|
|
|
+ case '\r':
|
|
|
+ m_SB.Add("\\r");
|
|
|
+ break;
|
|
|
+ case '\t':
|
|
|
+ m_SB.Add("\\t");
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0 && "Character not currently supported.");
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::ContinueString(uint32_t n)
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_InsideString);
|
|
|
+ m_SB.AddNumber(n);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::ContinueString(uint64_t n)
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_InsideString);
|
|
|
+ m_SB.AddNumber(n);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_InsideString);
|
|
|
+ m_SB.AddPointer(ptr);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::EndString(const char* pStr)
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_InsideString);
|
|
|
+ if(pStr != VMA_NULL && pStr[0] != '\0')
|
|
|
+ {
|
|
|
+ ContinueString(pStr);
|
|
|
+ }
|
|
|
+ m_SB.Add('"');
|
|
|
+ m_InsideString = false;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::WriteNumber(uint32_t n)
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+ BeginValue(false);
|
|
|
+ m_SB.AddNumber(n);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::WriteNumber(uint64_t n)
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+ BeginValue(false);
|
|
|
+ m_SB.AddNumber(n);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::WriteBool(bool b)
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+ BeginValue(false);
|
|
|
+ m_SB.Add(b ? "true" : "false");
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::WriteNull()
|
|
|
+{
|
|
|
+ VMA_ASSERT(!m_InsideString);
|
|
|
+ BeginValue(false);
|
|
|
+ m_SB.Add("null");
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::BeginValue(bool isString)
|
|
|
+{
|
|
|
+ if(!m_Stack.empty())
|
|
|
+ {
|
|
|
+ StackItem& currItem = m_Stack.back();
|
|
|
+ if(currItem.type == COLLECTION_TYPE_OBJECT &&
|
|
|
+ currItem.valueCount % 2 == 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(isString);
|
|
|
+ }
|
|
|
+
|
|
|
+ if(currItem.type == COLLECTION_TYPE_OBJECT &&
|
|
|
+ currItem.valueCount % 2 != 0)
|
|
|
+ {
|
|
|
+ m_SB.Add(": ");
|
|
|
+ }
|
|
|
+ else if(currItem.valueCount > 0)
|
|
|
+ {
|
|
|
+ m_SB.Add(", ");
|
|
|
+ WriteIndent();
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ WriteIndent();
|
|
|
+ }
|
|
|
+ ++currItem.valueCount;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaJsonWriter::WriteIndent(bool oneLess)
|
|
|
+{
|
|
|
+ if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
|
|
|
+ {
|
|
|
+ m_SB.AddNewLine();
|
|
|
+
|
|
|
+ size_t count = m_Stack.size();
|
|
|
+ if(count > 0 && oneLess)
|
|
|
+ {
|
|
|
+ --count;
|
|
|
+ }
|
|
|
+ for(size_t i = 0; i < count; ++i)
|
|
|
+ {
|
|
|
+ m_SB.Add(INDENT);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
|
|
|
+{
|
|
|
+ if(IsUserDataString())
|
|
|
+ {
|
|
|
+ VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
|
|
|
+
|
|
|
+ FreeUserDataString(hAllocator);
|
|
|
+
|
|
|
+ if(pUserData != VMA_NULL)
|
|
|
+ {
|
|
|
+ const char* const newStrSrc = (char*)pUserData;
|
|
|
+ const size_t newStrLen = strlen(newStrSrc);
|
|
|
+ char* const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1);
|
|
|
+ memcpy(newStrDst, newStrSrc, newStrLen + 1);
|
|
|
+ m_pUserData = newStrDst;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ m_pUserData = pUserData;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkDeviceSize VmaAllocation_T::GetOffset() const
|
|
|
+{
|
|
|
+ switch(m_Type)
|
|
|
+ {
|
|
|
+ case ALLOCATION_TYPE_BLOCK:
|
|
|
+ return m_BlockAllocation.m_Offset;
|
|
|
+ case ALLOCATION_TYPE_DEDICATED:
|
|
|
+ return 0;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkDeviceMemory VmaAllocation_T::GetMemory() const
|
|
|
+{
|
|
|
+ switch(m_Type)
|
|
|
+ {
|
|
|
+ case ALLOCATION_TYPE_BLOCK:
|
|
|
+ return m_BlockAllocation.m_Block->m_hMemory;
|
|
|
+ case ALLOCATION_TYPE_DEDICATED:
|
|
|
+ return m_DedicatedAllocation.m_hMemory;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return VK_NULL_HANDLE;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+uint32_t VmaAllocation_T::GetMemoryTypeIndex() const
|
|
|
+{
|
|
|
+ switch(m_Type)
|
|
|
+ {
|
|
|
+ case ALLOCATION_TYPE_BLOCK:
|
|
|
+ return m_BlockAllocation.m_Block->m_MemoryTypeIndex;
|
|
|
+ case ALLOCATION_TYPE_DEDICATED:
|
|
|
+ return m_DedicatedAllocation.m_MemoryTypeIndex;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return UINT32_MAX;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void* VmaAllocation_T::GetMappedData() const
|
|
|
+{
|
|
|
+ switch(m_Type)
|
|
|
+ {
|
|
|
+ case ALLOCATION_TYPE_BLOCK:
|
|
|
+ if(m_MapCount != 0)
|
|
|
+ {
|
|
|
+ void* pBlockData = m_BlockAllocation.m_Block->m_Mapping.GetMappedData();
|
|
|
+ VMA_ASSERT(pBlockData != VMA_NULL);
|
|
|
+ return (char*)pBlockData + m_BlockAllocation.m_Offset;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return VMA_NULL;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case ALLOCATION_TYPE_DEDICATED:
|
|
|
+ VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
|
|
|
+ return m_DedicatedAllocation.m_pMappedData;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return VMA_NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaAllocation_T::CanBecomeLost() const
|
|
|
+{
|
|
|
+ switch(m_Type)
|
|
|
+ {
|
|
|
+ case ALLOCATION_TYPE_BLOCK:
|
|
|
+ return m_BlockAllocation.m_CanBecomeLost;
|
|
|
+ case ALLOCATION_TYPE_DEDICATED:
|
|
|
+ return false;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VmaPool VmaAllocation_T::GetPool() const
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
|
+ return m_BlockAllocation.m_hPool;
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
|
|
|
+{
|
|
|
+ VMA_ASSERT(CanBecomeLost());
|
|
|
+
|
|
|
+ /*
|
|
|
+ Warning: This is a carefully designed algorithm.
|
|
|
+ Do not modify unless you really know what you're doing :)
|
|
|
+ */
|
|
|
+ uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
|
|
|
+ for(;;)
|
|
|
+ {
|
|
|
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ else // Last use time earlier than current time.
|
|
|
+ {
|
|
|
+ if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
|
|
|
+ {
|
|
|
+ // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
|
|
|
+ // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
|
|
|
+{
|
|
|
+ VMA_ASSERT(IsUserDataString());
|
|
|
+ if(m_pUserData != VMA_NULL)
|
|
|
+ {
|
|
|
+ char* const oldStr = (char*)m_pUserData;
|
|
|
+ const size_t oldStrLen = strlen(oldStr);
|
|
|
+ vma_delete_array(hAllocator, oldStr, oldStrLen + 1);
|
|
|
+ m_pUserData = VMA_NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocation_T::BlockAllocMap()
|
|
|
+{
|
|
|
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
|
|
|
+
|
|
|
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
|
|
|
+ {
|
|
|
+ ++m_MapCount;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocation_T::BlockAllocUnmap()
|
|
|
+{
|
|
|
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
|
|
|
+
|
|
|
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
|
|
|
+ {
|
|
|
+ --m_MapCount;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
|
|
|
+{
|
|
|
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
|
|
|
+
|
|
|
+ if(m_MapCount != 0)
|
|
|
+ {
|
|
|
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
|
|
|
+ *ppData = m_DedicatedAllocation.m_pMappedData;
|
|
|
+ ++m_MapCount;
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
|
|
|
+ return VK_ERROR_MEMORY_MAP_FAILED;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
|
|
|
+ hAllocator->m_hDevice,
|
|
|
+ m_DedicatedAllocation.m_hMemory,
|
|
|
+ 0, // offset
|
|
|
+ VK_WHOLE_SIZE,
|
|
|
+ 0, // flags
|
|
|
+ ppData);
|
|
|
+ if(result == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ m_DedicatedAllocation.m_pMappedData = *ppData;
|
|
|
+ m_MapCount = 1;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
|
|
|
+{
|
|
|
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
|
|
|
+
|
|
|
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
|
|
|
+ {
|
|
|
+ --m_MapCount;
|
|
|
+ if(m_MapCount == 0)
|
|
|
+ {
|
|
|
+ m_DedicatedAllocation.m_pMappedData = VMA_NULL;
|
|
|
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
|
|
|
+ hAllocator->m_hDevice,
|
|
|
+ m_DedicatedAllocation.m_hMemory);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+// Correspond to values of enum VmaSuballocationType.
|
|
|
+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
|
|
|
+ "FREE",
|
|
|
+ "UNKNOWN",
|
|
|
+ "BUFFER",
|
|
|
+ "IMAGE_UNKNOWN",
|
|
|
+ "IMAGE_LINEAR",
|
|
|
+ "IMAGE_OPTIMAL",
|
|
|
+};
|
|
|
+
|
|
|
+static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
|
|
|
+{
|
|
|
+ json.BeginObject();
|
|
|
+
|
|
|
+ json.WriteString("Blocks");
|
|
|
+ json.WriteNumber(stat.blockCount);
|
|
|
+
|
|
|
+ json.WriteString("Allocations");
|
|
|
+ json.WriteNumber(stat.allocationCount);
|
|
|
+
|
|
|
+ json.WriteString("UnusedRanges");
|
|
|
+ json.WriteNumber(stat.unusedRangeCount);
|
|
|
+
|
|
|
+ json.WriteString("UsedBytes");
|
|
|
+ json.WriteNumber(stat.usedBytes);
|
|
|
+
|
|
|
+ json.WriteString("UnusedBytes");
|
|
|
+ json.WriteNumber(stat.unusedBytes);
|
|
|
+
|
|
|
+ if(stat.allocationCount > 1)
|
|
|
+ {
|
|
|
+ json.WriteString("AllocationSize");
|
|
|
+ json.BeginObject(true);
|
|
|
+ json.WriteString("Min");
|
|
|
+ json.WriteNumber(stat.allocationSizeMin);
|
|
|
+ json.WriteString("Avg");
|
|
|
+ json.WriteNumber(stat.allocationSizeAvg);
|
|
|
+ json.WriteString("Max");
|
|
|
+ json.WriteNumber(stat.allocationSizeMax);
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ if(stat.unusedRangeCount > 1)
|
|
|
+ {
|
|
|
+ json.WriteString("UnusedRangeSize");
|
|
|
+ json.BeginObject(true);
|
|
|
+ json.WriteString("Min");
|
|
|
+ json.WriteNumber(stat.unusedRangeSizeMin);
|
|
|
+ json.WriteString("Avg");
|
|
|
+ json.WriteNumber(stat.unusedRangeSizeAvg);
|
|
|
+ json.WriteString("Max");
|
|
|
+ json.WriteNumber(stat.unusedRangeSizeMax);
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+struct VmaSuballocationItemSizeLess
|
|
|
+{
|
|
|
+ bool operator()(
|
|
|
+ const VmaSuballocationList::iterator lhs,
|
|
|
+ const VmaSuballocationList::iterator rhs) const
|
|
|
+ {
|
|
|
+ return lhs->size < rhs->size;
|
|
|
+ }
|
|
|
+ bool operator()(
|
|
|
+ const VmaSuballocationList::iterator lhs,
|
|
|
+ VkDeviceSize rhsSize) const
|
|
|
+ {
|
|
|
+ return lhs->size < rhsSize;
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// class VmaBlockMetadata
|
|
|
+
|
|
|
+VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
|
|
|
+ m_Size(0),
|
|
|
+ m_FreeCount(0),
|
|
|
+ m_SumFreeSize(0),
|
|
|
+ m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
|
|
|
+ m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+VmaBlockMetadata::~VmaBlockMetadata()
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::Init(VkDeviceSize size)
|
|
|
+{
|
|
|
+ m_Size = size;
|
|
|
+ m_FreeCount = 1;
|
|
|
+ m_SumFreeSize = size;
|
|
|
+
|
|
|
+ VmaSuballocation suballoc = {};
|
|
|
+ suballoc.offset = 0;
|
|
|
+ suballoc.size = size;
|
|
|
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
+ suballoc.hAllocation = VK_NULL_HANDLE;
|
|
|
+
|
|
|
+ m_Suballocations.push_back(suballoc);
|
|
|
+ VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
|
|
|
+ --suballocItem;
|
|
|
+ m_FreeSuballocationsBySize.push_back(suballocItem);
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaBlockMetadata::Validate() const
|
|
|
+{
|
|
|
+ if(m_Suballocations.empty())
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Expected offset of new suballocation as calculates from previous ones.
|
|
|
+ VkDeviceSize calculatedOffset = 0;
|
|
|
+ // Expected number of free suballocations as calculated from traversing their list.
|
|
|
+ uint32_t calculatedFreeCount = 0;
|
|
|
+ // Expected sum size of free suballocations as calculated from traversing their list.
|
|
|
+ VkDeviceSize calculatedSumFreeSize = 0;
|
|
|
+ // Expected number of free suballocations that should be registered in
|
|
|
+ // m_FreeSuballocationsBySize calculated from traversing their list.
|
|
|
+ size_t freeSuballocationsToRegister = 0;
|
|
|
+ // True if previous visisted suballocation was free.
|
|
|
+ bool prevFree = false;
|
|
|
+
|
|
|
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
|
|
|
+ suballocItem != m_Suballocations.cend();
|
|
|
+ ++suballocItem)
|
|
|
+ {
|
|
|
+ const VmaSuballocation& subAlloc = *suballocItem;
|
|
|
+
|
|
|
+ // Actual offset of this suballocation doesn't match expected one.
|
|
|
+ if(subAlloc.offset != calculatedOffset)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+ // Two adjacent free suballocations are invalid. They should be merged.
|
|
|
+ if(prevFree && currFree)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ prevFree = currFree;
|
|
|
+
|
|
|
+ if(currFree != (subAlloc.hAllocation == VK_NULL_HANDLE))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(currFree)
|
|
|
+ {
|
|
|
+ calculatedSumFreeSize += subAlloc.size;
|
|
|
+ ++calculatedFreeCount;
|
|
|
+ if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
|
+ {
|
|
|
+ ++freeSuballocationsToRegister;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ calculatedOffset += subAlloc.size;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
|
|
|
+ // match expected one.
|
|
|
+ if(m_FreeSuballocationsBySize.size() != freeSuballocationsToRegister)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ VkDeviceSize lastSize = 0;
|
|
|
+ for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
|
|
|
+ {
|
|
|
+ VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
|
|
|
+
|
|
|
+ // Only free suballocations can be registered in m_FreeSuballocationsBySize.
|
|
|
+ if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ // They must be sorted by size ascending.
|
|
|
+ if(suballocItem->size < lastSize)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ lastSize = suballocItem->size;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check if totals match calculacted values.
|
|
|
+ return
|
|
|
+ ValidateFreeSuballocationList() &&
|
|
|
+ (calculatedOffset == m_Size) &&
|
|
|
+ (calculatedSumFreeSize == m_SumFreeSize) &&
|
|
|
+ (calculatedFreeCount == m_FreeCount);
|
|
|
+}
|
|
|
+
|
|
|
+VkDeviceSize VmaBlockMetadata::GetUnusedRangeSizeMax() const
|
|
|
+{
|
|
|
+ if(!m_FreeSuballocationsBySize.empty())
|
|
|
+ {
|
|
|
+ return m_FreeSuballocationsBySize.back()->size;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaBlockMetadata::IsEmpty() const
|
|
|
+{
|
|
|
+ return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
|
|
|
+{
|
|
|
+ outInfo.blockCount = 1;
|
|
|
+
|
|
|
+ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
|
|
|
+ outInfo.allocationCount = rangeCount - m_FreeCount;
|
|
|
+ outInfo.unusedRangeCount = m_FreeCount;
|
|
|
+
|
|
|
+ outInfo.unusedBytes = m_SumFreeSize;
|
|
|
+ outInfo.usedBytes = m_Size - outInfo.unusedBytes;
|
|
|
+
|
|
|
+ outInfo.allocationSizeMin = UINT64_MAX;
|
|
|
+ outInfo.allocationSizeMax = 0;
|
|
|
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
|
|
|
+ outInfo.unusedRangeSizeMax = 0;
|
|
|
+
|
|
|
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
|
|
|
+ suballocItem != m_Suballocations.cend();
|
|
|
+ ++suballocItem)
|
|
|
+ {
|
|
|
+ const VmaSuballocation& suballoc = *suballocItem;
|
|
|
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
|
|
|
+ outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
|
|
|
+ outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::AddPoolStats(VmaPoolStats& inoutStats) const
|
|
|
+{
|
|
|
+ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
|
|
|
+
|
|
|
+ inoutStats.size += m_Size;
|
|
|
+ inoutStats.unusedSize += m_SumFreeSize;
|
|
|
+ inoutStats.allocationCount += rangeCount - m_FreeCount;
|
|
|
+ inoutStats.unusedRangeCount += m_FreeCount;
|
|
|
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
|
|
|
+}
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+void VmaBlockMetadata::PrintDetailedMap(class VmaJsonWriter& json) const
|
|
|
+{
|
|
|
+ json.BeginObject();
|
|
|
+
|
|
|
+ json.WriteString("TotalBytes");
|
|
|
+ json.WriteNumber(m_Size);
|
|
|
+
|
|
|
+ json.WriteString("UnusedBytes");
|
|
|
+ json.WriteNumber(m_SumFreeSize);
|
|
|
+
|
|
|
+ json.WriteString("Allocations");
|
|
|
+ json.WriteNumber(m_Suballocations.size() - m_FreeCount);
|
|
|
+
|
|
|
+ json.WriteString("UnusedRanges");
|
|
|
+ json.WriteNumber(m_FreeCount);
|
|
|
+
|
|
|
+ json.WriteString("Suballocations");
|
|
|
+ json.BeginArray();
|
|
|
+ size_t i = 0;
|
|
|
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
|
|
|
+ suballocItem != m_Suballocations.cend();
|
|
|
+ ++suballocItem, ++i)
|
|
|
+ {
|
|
|
+ json.BeginObject(true);
|
|
|
+
|
|
|
+ json.WriteString("Type");
|
|
|
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[suballocItem->type]);
|
|
|
+
|
|
|
+ json.WriteString("Size");
|
|
|
+ json.WriteNumber(suballocItem->size);
|
|
|
+
|
|
|
+ json.WriteString("Offset");
|
|
|
+ json.WriteNumber(suballocItem->offset);
|
|
|
+
|
|
|
+ if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ const void* pUserData = suballocItem->hAllocation->GetUserData();
|
|
|
+ if(pUserData != VMA_NULL)
|
|
|
+ {
|
|
|
+ json.WriteString("UserData");
|
|
|
+ if(suballocItem->hAllocation->IsUserDataString())
|
|
|
+ {
|
|
|
+ json.WriteString((const char*)pUserData);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ json.BeginString();
|
|
|
+ json.ContinueString_Pointer(pUserData);
|
|
|
+ json.EndString();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+ json.EndArray();
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+/*
|
|
|
+How many suitable free suballocations to analyze before choosing best one.
|
|
|
+- Set to 1 to use First-Fit algorithm - first suitable free suballocation will
|
|
|
+ be chosen.
|
|
|
+- Set to UINT32_MAX to use Best-Fit/Worst-Fit algorithm - all suitable free
|
|
|
+ suballocations will be analized and best one will be chosen.
|
|
|
+- Any other value is also acceptable.
|
|
|
+*/
|
|
|
+//static const uint32_t MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK = 8;
|
|
|
+
|
|
|
+void VmaBlockMetadata::CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest)
|
|
|
+{
|
|
|
+ VMA_ASSERT(IsEmpty());
|
|
|
+ pAllocationRequest->offset = 0;
|
|
|
+ pAllocationRequest->sumFreeSize = m_SumFreeSize;
|
|
|
+ pAllocationRequest->sumItemSize = 0;
|
|
|
+ pAllocationRequest->item = m_Suballocations.begin();
|
|
|
+ pAllocationRequest->itemsToMakeLostCount = 0;
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaBlockMetadata::CreateAllocationRequest(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ VkDeviceSize bufferImageGranularity,
|
|
|
+ VkDeviceSize allocSize,
|
|
|
+ VkDeviceSize allocAlignment,
|
|
|
+ VmaSuballocationType allocType,
|
|
|
+ bool canMakeOtherLost,
|
|
|
+ VmaAllocationRequest* pAllocationRequest)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocSize > 0);
|
|
|
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+ VMA_ASSERT(pAllocationRequest != VMA_NULL);
|
|
|
+ VMA_HEAVY_ASSERT(Validate());
|
|
|
+
|
|
|
+ // There is not enough total free space in this block to fullfill the request: Early return.
|
|
|
+ if(canMakeOtherLost == false && m_SumFreeSize < allocSize)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // New algorithm, efficiently searching freeSuballocationsBySize.
|
|
|
+ const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
|
|
|
+ if(freeSuballocCount > 0)
|
|
|
+ {
|
|
|
+ if(VMA_BEST_FIT)
|
|
|
+ {
|
|
|
+ // Find first free suballocation with size not less than allocSize.
|
|
|
+ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
|
+ m_FreeSuballocationsBySize.data(),
|
|
|
+ m_FreeSuballocationsBySize.data() + freeSuballocCount,
|
|
|
+ allocSize,
|
|
|
+ VmaSuballocationItemSizeLess());
|
|
|
+ size_t index = it - m_FreeSuballocationsBySize.data();
|
|
|
+ for(; index < freeSuballocCount; ++index)
|
|
|
+ {
|
|
|
+ if(CheckAllocation(
|
|
|
+ currentFrameIndex,
|
|
|
+ frameInUseCount,
|
|
|
+ bufferImageGranularity,
|
|
|
+ allocSize,
|
|
|
+ allocAlignment,
|
|
|
+ allocType,
|
|
|
+ m_FreeSuballocationsBySize[index],
|
|
|
+ false, // canMakeOtherLost
|
|
|
+ &pAllocationRequest->offset,
|
|
|
+ &pAllocationRequest->itemsToMakeLostCount,
|
|
|
+ &pAllocationRequest->sumFreeSize,
|
|
|
+ &pAllocationRequest->sumItemSize))
|
|
|
+ {
|
|
|
+ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Search staring from biggest suballocations.
|
|
|
+ for(size_t index = freeSuballocCount; index--; )
|
|
|
+ {
|
|
|
+ if(CheckAllocation(
|
|
|
+ currentFrameIndex,
|
|
|
+ frameInUseCount,
|
|
|
+ bufferImageGranularity,
|
|
|
+ allocSize,
|
|
|
+ allocAlignment,
|
|
|
+ allocType,
|
|
|
+ m_FreeSuballocationsBySize[index],
|
|
|
+ false, // canMakeOtherLost
|
|
|
+ &pAllocationRequest->offset,
|
|
|
+ &pAllocationRequest->itemsToMakeLostCount,
|
|
|
+ &pAllocationRequest->sumFreeSize,
|
|
|
+ &pAllocationRequest->sumItemSize))
|
|
|
+ {
|
|
|
+ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(canMakeOtherLost)
|
|
|
+ {
|
|
|
+ // Brute-force algorithm. TODO: Come up with something better.
|
|
|
+
|
|
|
+ pAllocationRequest->sumFreeSize = VK_WHOLE_SIZE;
|
|
|
+ pAllocationRequest->sumItemSize = VK_WHOLE_SIZE;
|
|
|
+
|
|
|
+ VmaAllocationRequest tmpAllocRequest = {};
|
|
|
+ for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
|
|
|
+ suballocIt != m_Suballocations.end();
|
|
|
+ ++suballocIt)
|
|
|
+ {
|
|
|
+ if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
|
|
|
+ suballocIt->hAllocation->CanBecomeLost())
|
|
|
+ {
|
|
|
+ if(CheckAllocation(
|
|
|
+ currentFrameIndex,
|
|
|
+ frameInUseCount,
|
|
|
+ bufferImageGranularity,
|
|
|
+ allocSize,
|
|
|
+ allocAlignment,
|
|
|
+ allocType,
|
|
|
+ suballocIt,
|
|
|
+ canMakeOtherLost,
|
|
|
+ &tmpAllocRequest.offset,
|
|
|
+ &tmpAllocRequest.itemsToMakeLostCount,
|
|
|
+ &tmpAllocRequest.sumFreeSize,
|
|
|
+ &tmpAllocRequest.sumItemSize))
|
|
|
+ {
|
|
|
+ tmpAllocRequest.item = suballocIt;
|
|
|
+
|
|
|
+ if(tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
|
|
|
+ {
|
|
|
+ *pAllocationRequest = tmpAllocRequest;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(pAllocationRequest->sumItemSize != VK_WHOLE_SIZE)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaBlockMetadata::MakeRequestedAllocationsLost(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ VmaAllocationRequest* pAllocationRequest)
|
|
|
+{
|
|
|
+ while(pAllocationRequest->itemsToMakeLostCount > 0)
|
|
|
+ {
|
|
|
+ if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ ++pAllocationRequest->item;
|
|
|
+ }
|
|
|
+ VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
|
|
|
+ VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
|
|
|
+ VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
|
|
|
+ if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
|
|
|
+ {
|
|
|
+ pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
|
|
|
+ --pAllocationRequest->itemsToMakeLostCount;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ VMA_HEAVY_ASSERT(Validate());
|
|
|
+ VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
|
|
|
+ VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+uint32_t VmaBlockMetadata::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
|
|
|
+{
|
|
|
+ uint32_t lostAllocationCount = 0;
|
|
|
+ for(VmaSuballocationList::iterator it = m_Suballocations.begin();
|
|
|
+ it != m_Suballocations.end();
|
|
|
+ ++it)
|
|
|
+ {
|
|
|
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
|
|
|
+ it->hAllocation->CanBecomeLost() &&
|
|
|
+ it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
|
|
|
+ {
|
|
|
+ it = FreeSuballocation(it);
|
|
|
+ ++lostAllocationCount;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return lostAllocationCount;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::Alloc(
|
|
|
+ const VmaAllocationRequest& request,
|
|
|
+ VmaSuballocationType type,
|
|
|
+ VkDeviceSize allocSize,
|
|
|
+ VmaAllocation hAllocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(request.item != m_Suballocations.end());
|
|
|
+ VmaSuballocation& suballoc = *request.item;
|
|
|
+ // Given suballocation is a free block.
|
|
|
+ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+ // Given offset is inside this suballocation.
|
|
|
+ VMA_ASSERT(request.offset >= suballoc.offset);
|
|
|
+ const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
|
|
|
+ VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
|
|
|
+ const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
|
|
|
+
|
|
|
+ // Unregister this free suballocation from m_FreeSuballocationsBySize and update
|
|
|
+ // it to become used.
|
|
|
+ UnregisterFreeSuballocation(request.item);
|
|
|
+
|
|
|
+ suballoc.offset = request.offset;
|
|
|
+ suballoc.size = allocSize;
|
|
|
+ suballoc.type = type;
|
|
|
+ suballoc.hAllocation = hAllocation;
|
|
|
+
|
|
|
+ // If there are any free bytes remaining at the end, insert new free suballocation after current one.
|
|
|
+ if(paddingEnd)
|
|
|
+ {
|
|
|
+ VmaSuballocation paddingSuballoc = {};
|
|
|
+ paddingSuballoc.offset = request.offset + allocSize;
|
|
|
+ paddingSuballoc.size = paddingEnd;
|
|
|
+ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
+ VmaSuballocationList::iterator next = request.item;
|
|
|
+ ++next;
|
|
|
+ const VmaSuballocationList::iterator paddingEndItem =
|
|
|
+ m_Suballocations.insert(next, paddingSuballoc);
|
|
|
+ RegisterFreeSuballocation(paddingEndItem);
|
|
|
+ }
|
|
|
+
|
|
|
+ // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
|
|
|
+ if(paddingBegin)
|
|
|
+ {
|
|
|
+ VmaSuballocation paddingSuballoc = {};
|
|
|
+ paddingSuballoc.offset = request.offset - paddingBegin;
|
|
|
+ paddingSuballoc.size = paddingBegin;
|
|
|
+ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
+ const VmaSuballocationList::iterator paddingBeginItem =
|
|
|
+ m_Suballocations.insert(request.item, paddingSuballoc);
|
|
|
+ RegisterFreeSuballocation(paddingBeginItem);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update totals.
|
|
|
+ m_FreeCount = m_FreeCount - 1;
|
|
|
+ if(paddingBegin > 0)
|
|
|
+ {
|
|
|
+ ++m_FreeCount;
|
|
|
+ }
|
|
|
+ if(paddingEnd > 0)
|
|
|
+ {
|
|
|
+ ++m_FreeCount;
|
|
|
+ }
|
|
|
+ m_SumFreeSize -= allocSize;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::Free(const VmaAllocation allocation)
|
|
|
+{
|
|
|
+ for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
|
|
|
+ suballocItem != m_Suballocations.end();
|
|
|
+ ++suballocItem)
|
|
|
+ {
|
|
|
+ VmaSuballocation& suballoc = *suballocItem;
|
|
|
+ if(suballoc.hAllocation == allocation)
|
|
|
+ {
|
|
|
+ FreeSuballocation(suballocItem);
|
|
|
+ VMA_HEAVY_ASSERT(Validate());
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ VMA_ASSERT(0 && "Not found!");
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaBlockMetadata::ValidateFreeSuballocationList() const
|
|
|
+{
|
|
|
+ VkDeviceSize lastSize = 0;
|
|
|
+ for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
|
|
|
+ {
|
|
|
+ const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
|
|
|
+
|
|
|
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(it->size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(it->size < lastSize)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ lastSize = it->size;
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaBlockMetadata::CheckAllocation(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ VkDeviceSize bufferImageGranularity,
|
|
|
+ VkDeviceSize allocSize,
|
|
|
+ VkDeviceSize allocAlignment,
|
|
|
+ VmaSuballocationType allocType,
|
|
|
+ VmaSuballocationList::const_iterator suballocItem,
|
|
|
+ bool canMakeOtherLost,
|
|
|
+ VkDeviceSize* pOffset,
|
|
|
+ size_t* itemsToMakeLostCount,
|
|
|
+ VkDeviceSize* pSumFreeSize,
|
|
|
+ VkDeviceSize* pSumItemSize) const
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocSize > 0);
|
|
|
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+ VMA_ASSERT(suballocItem != m_Suballocations.cend());
|
|
|
+ VMA_ASSERT(pOffset != VMA_NULL);
|
|
|
+
|
|
|
+ *itemsToMakeLostCount = 0;
|
|
|
+ *pSumFreeSize = 0;
|
|
|
+ *pSumItemSize = 0;
|
|
|
+
|
|
|
+ if(canMakeOtherLost)
|
|
|
+ {
|
|
|
+ if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ *pSumFreeSize = suballocItem->size;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if(suballocItem->hAllocation->CanBecomeLost() &&
|
|
|
+ suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
|
+ {
|
|
|
+ ++*itemsToMakeLostCount;
|
|
|
+ *pSumItemSize = suballocItem->size;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Remaining size is too small for this request: Early return.
|
|
|
+ if(m_Size - suballocItem->offset < allocSize)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Start from offset equal to beginning of this suballocation.
|
|
|
+ *pOffset = suballocItem->offset;
|
|
|
+
|
|
|
+ // Apply VMA_DEBUG_MARGIN at the beginning.
|
|
|
+ if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
|
|
|
+ {
|
|
|
+ *pOffset += VMA_DEBUG_MARGIN;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Apply alignment.
|
|
|
+ const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
|
|
|
+ *pOffset = VmaAlignUp(*pOffset, alignment);
|
|
|
+
|
|
|
+ // Check previous suballocations for BufferImageGranularity conflicts.
|
|
|
+ // Make bigger alignment if necessary.
|
|
|
+ if(bufferImageGranularity > 1)
|
|
|
+ {
|
|
|
+ bool bufferImageGranularityConflict = false;
|
|
|
+ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
|
|
|
+ while(prevSuballocItem != m_Suballocations.cbegin())
|
|
|
+ {
|
|
|
+ --prevSuballocItem;
|
|
|
+ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
|
|
|
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
|
|
|
+ {
|
|
|
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
|
+ {
|
|
|
+ bufferImageGranularityConflict = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ // Already on previous page.
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if(bufferImageGranularityConflict)
|
|
|
+ {
|
|
|
+ *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Now that we have final *pOffset, check if we are past suballocItem.
|
|
|
+ // If yes, return false - this function should be called for another suballocItem as starting point.
|
|
|
+ if(*pOffset >= suballocItem->offset + suballocItem->size)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Calculate padding at the beginning based on current offset.
|
|
|
+ const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
|
|
|
+
|
|
|
+ // Calculate required margin at the end if this is not last suballocation.
|
|
|
+ VmaSuballocationList::const_iterator next = suballocItem;
|
|
|
+ ++next;
|
|
|
+ const VkDeviceSize requiredEndMargin =
|
|
|
+ (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
|
|
|
+
|
|
|
+ const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
|
|
|
+ // Another early return check.
|
|
|
+ if(suballocItem->offset + totalSize > m_Size)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Advance lastSuballocItem until desired size is reached.
|
|
|
+ // Update itemsToMakeLostCount.
|
|
|
+ VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
|
|
|
+ if(totalSize > suballocItem->size)
|
|
|
+ {
|
|
|
+ VkDeviceSize remainingSize = totalSize - suballocItem->size;
|
|
|
+ while(remainingSize > 0)
|
|
|
+ {
|
|
|
+ ++lastSuballocItem;
|
|
|
+ if(lastSuballocItem == m_Suballocations.cend())
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ *pSumFreeSize += lastSuballocItem->size;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
|
|
|
+ if(lastSuballocItem->hAllocation->CanBecomeLost() &&
|
|
|
+ lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
|
+ {
|
|
|
+ ++*itemsToMakeLostCount;
|
|
|
+ *pSumItemSize += lastSuballocItem->size;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ remainingSize = (lastSuballocItem->size < remainingSize) ?
|
|
|
+ remainingSize - lastSuballocItem->size : 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check next suballocations for BufferImageGranularity conflicts.
|
|
|
+ // If conflict exists, we must mark more allocations lost or fail.
|
|
|
+ if(bufferImageGranularity > 1)
|
|
|
+ {
|
|
|
+ VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
|
|
|
+ ++nextSuballocItem;
|
|
|
+ while(nextSuballocItem != m_Suballocations.cend())
|
|
|
+ {
|
|
|
+ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
|
|
|
+ if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
|
+ {
|
|
|
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
|
+ {
|
|
|
+ VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
|
|
|
+ if(nextSuballoc.hAllocation->CanBecomeLost() &&
|
|
|
+ nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
|
+ {
|
|
|
+ ++*itemsToMakeLostCount;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Already on next page.
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++nextSuballocItem;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ const VmaSuballocation& suballoc = *suballocItem;
|
|
|
+ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+
|
|
|
+ *pSumFreeSize = suballoc.size;
|
|
|
+
|
|
|
+ // Size of this suballocation is too small for this request: Early return.
|
|
|
+ if(suballoc.size < allocSize)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Start from offset equal to beginning of this suballocation.
|
|
|
+ *pOffset = suballoc.offset;
|
|
|
+
|
|
|
+ // Apply VMA_DEBUG_MARGIN at the beginning.
|
|
|
+ if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
|
|
|
+ {
|
|
|
+ *pOffset += VMA_DEBUG_MARGIN;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Apply alignment.
|
|
|
+ const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
|
|
|
+ *pOffset = VmaAlignUp(*pOffset, alignment);
|
|
|
+
|
|
|
+ // Check previous suballocations for BufferImageGranularity conflicts.
|
|
|
+ // Make bigger alignment if necessary.
|
|
|
+ if(bufferImageGranularity > 1)
|
|
|
+ {
|
|
|
+ bool bufferImageGranularityConflict = false;
|
|
|
+ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
|
|
|
+ while(prevSuballocItem != m_Suballocations.cbegin())
|
|
|
+ {
|
|
|
+ --prevSuballocItem;
|
|
|
+ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
|
|
|
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
|
|
|
+ {
|
|
|
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
|
+ {
|
|
|
+ bufferImageGranularityConflict = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ // Already on previous page.
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if(bufferImageGranularityConflict)
|
|
|
+ {
|
|
|
+ *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Calculate padding at the beginning based on current offset.
|
|
|
+ const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
|
|
|
+
|
|
|
+ // Calculate required margin at the end if this is not last suballocation.
|
|
|
+ VmaSuballocationList::const_iterator next = suballocItem;
|
|
|
+ ++next;
|
|
|
+ const VkDeviceSize requiredEndMargin =
|
|
|
+ (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
|
|
|
+
|
|
|
+ // Fail if requested size plus margin before and after is bigger than size of this suballocation.
|
|
|
+ if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check next suballocations for BufferImageGranularity conflicts.
|
|
|
+ // If conflict exists, allocation cannot be made here.
|
|
|
+ if(bufferImageGranularity > 1)
|
|
|
+ {
|
|
|
+ VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
|
|
|
+ ++nextSuballocItem;
|
|
|
+ while(nextSuballocItem != m_Suballocations.cend())
|
|
|
+ {
|
|
|
+ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
|
|
|
+ if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
|
+ {
|
|
|
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Already on next page.
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++nextSuballocItem;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // All tests passed: Success. pOffset is already filled.
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::MergeFreeWithNext(VmaSuballocationList::iterator item)
|
|
|
+{
|
|
|
+ VMA_ASSERT(item != m_Suballocations.end());
|
|
|
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+
|
|
|
+ VmaSuballocationList::iterator nextItem = item;
|
|
|
+ ++nextItem;
|
|
|
+ VMA_ASSERT(nextItem != m_Suballocations.end());
|
|
|
+ VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+
|
|
|
+ item->size += nextItem->size;
|
|
|
+ --m_FreeCount;
|
|
|
+ m_Suballocations.erase(nextItem);
|
|
|
+}
|
|
|
+
|
|
|
+VmaSuballocationList::iterator VmaBlockMetadata::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
|
|
|
+{
|
|
|
+ // Change this suballocation to be marked as free.
|
|
|
+ VmaSuballocation& suballoc = *suballocItem;
|
|
|
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
+ suballoc.hAllocation = VK_NULL_HANDLE;
|
|
|
+
|
|
|
+ // Update totals.
|
|
|
+ ++m_FreeCount;
|
|
|
+ m_SumFreeSize += suballoc.size;
|
|
|
+
|
|
|
+ // Merge with previous and/or next suballocation if it's also free.
|
|
|
+ bool mergeWithNext = false;
|
|
|
+ bool mergeWithPrev = false;
|
|
|
+
|
|
|
+ VmaSuballocationList::iterator nextItem = suballocItem;
|
|
|
+ ++nextItem;
|
|
|
+ if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
|
|
|
+ {
|
|
|
+ mergeWithNext = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaSuballocationList::iterator prevItem = suballocItem;
|
|
|
+ if(suballocItem != m_Suballocations.begin())
|
|
|
+ {
|
|
|
+ --prevItem;
|
|
|
+ if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
|
+ {
|
|
|
+ mergeWithPrev = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(mergeWithNext)
|
|
|
+ {
|
|
|
+ UnregisterFreeSuballocation(nextItem);
|
|
|
+ MergeFreeWithNext(suballocItem);
|
|
|
+ }
|
|
|
+
|
|
|
+ if(mergeWithPrev)
|
|
|
+ {
|
|
|
+ UnregisterFreeSuballocation(prevItem);
|
|
|
+ MergeFreeWithNext(prevItem);
|
|
|
+ RegisterFreeSuballocation(prevItem);
|
|
|
+ return prevItem;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ RegisterFreeSuballocation(suballocItem);
|
|
|
+ return suballocItem;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockMetadata::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
|
|
|
+{
|
|
|
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+ VMA_ASSERT(item->size > 0);
|
|
|
+
|
|
|
+ // You may want to enable this validation at the beginning or at the end of
|
|
|
+ // this function, depending on what do you want to check.
|
|
|
+ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
|
+
|
|
|
+ if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
|
+ {
|
|
|
+ if(m_FreeSuballocationsBySize.empty())
|
|
|
+ {
|
|
|
+ m_FreeSuballocationsBySize.push_back(item);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void VmaBlockMetadata::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
|
|
|
+{
|
|
|
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
+ VMA_ASSERT(item->size > 0);
|
|
|
+
|
|
|
+ // You may want to enable this validation at the beginning or at the end of
|
|
|
+ // this function, depending on what do you want to check.
|
|
|
+ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
|
+
|
|
|
+ if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
|
|
|
+ {
|
|
|
+ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
|
+ m_FreeSuballocationsBySize.data(),
|
|
|
+ m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
|
|
|
+ item,
|
|
|
+ VmaSuballocationItemSizeLess());
|
|
|
+ for(size_t index = it - m_FreeSuballocationsBySize.data();
|
|
|
+ index < m_FreeSuballocationsBySize.size();
|
|
|
+ ++index)
|
|
|
+ {
|
|
|
+ if(m_FreeSuballocationsBySize[index] == item)
|
|
|
+ {
|
|
|
+ VmaVectorRemove(m_FreeSuballocationsBySize, index);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
|
|
|
+ }
|
|
|
+ VMA_ASSERT(0 && "Not found.");
|
|
|
+ }
|
|
|
+
|
|
|
+ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// class VmaDeviceMemoryMapping
|
|
|
+
|
|
|
+VmaDeviceMemoryMapping::VmaDeviceMemoryMapping() :
|
|
|
+ m_MapCount(0),
|
|
|
+ m_pMappedData(VMA_NULL)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+VmaDeviceMemoryMapping::~VmaDeviceMemoryMapping()
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaDeviceMemoryMapping::Map(VmaAllocator hAllocator, VkDeviceMemory hMemory, void **ppData)
|
|
|
+{
|
|
|
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
|
|
|
+ if(m_MapCount != 0)
|
|
|
+ {
|
|
|
+ ++m_MapCount;
|
|
|
+ VMA_ASSERT(m_pMappedData != VMA_NULL);
|
|
|
+ if(ppData != VMA_NULL)
|
|
|
+ {
|
|
|
+ *ppData = m_pMappedData;
|
|
|
+ }
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
|
|
|
+ hAllocator->m_hDevice,
|
|
|
+ hMemory,
|
|
|
+ 0, // offset
|
|
|
+ VK_WHOLE_SIZE,
|
|
|
+ 0, // flags
|
|
|
+ &m_pMappedData);
|
|
|
+ if(result == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ if(ppData != VMA_NULL)
|
|
|
+ {
|
|
|
+ *ppData = m_pMappedData;
|
|
|
+ }
|
|
|
+ m_MapCount = 1;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaDeviceMemoryMapping::Unmap(VmaAllocator hAllocator, VkDeviceMemory hMemory)
|
|
|
+{
|
|
|
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
|
|
|
+ if(m_MapCount != 0)
|
|
|
+ {
|
|
|
+ if(--m_MapCount == 0)
|
|
|
+ {
|
|
|
+ m_pMappedData = VMA_NULL;
|
|
|
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, hMemory);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// class VmaDeviceMemoryBlock
|
|
|
+
|
|
|
+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
|
|
|
+ m_MemoryTypeIndex(UINT32_MAX),
|
|
|
+ m_hMemory(VK_NULL_HANDLE),
|
|
|
+ m_Metadata(hAllocator)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+void VmaDeviceMemoryBlock::Init(
|
|
|
+ uint32_t newMemoryTypeIndex,
|
|
|
+ VkDeviceMemory newMemory,
|
|
|
+ VkDeviceSize newSize)
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
|
+
|
|
|
+ m_MemoryTypeIndex = newMemoryTypeIndex;
|
|
|
+ m_hMemory = newMemory;
|
|
|
+
|
|
|
+ m_Metadata.Init(newSize);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
|
|
|
+{
|
|
|
+ // This is the most important assert in the entire library.
|
|
|
+ // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
|
|
|
+ VMA_ASSERT(m_Metadata.IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
|
|
|
+
|
|
|
+ VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
|
|
|
+ allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_Metadata.GetSize(), m_hMemory);
|
|
|
+ m_hMemory = VK_NULL_HANDLE;
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaDeviceMemoryBlock::Validate() const
|
|
|
+{
|
|
|
+ if((m_hMemory == VK_NULL_HANDLE) ||
|
|
|
+ (m_Metadata.GetSize() == 0))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return m_Metadata.Validate();
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, void** ppData)
|
|
|
+{
|
|
|
+ return m_Mapping.Map(hAllocator, m_hMemory, ppData);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator)
|
|
|
+{
|
|
|
+ m_Mapping.Unmap(hAllocator, m_hMemory);
|
|
|
+}
|
|
|
+
|
|
|
+static void InitStatInfo(VmaStatInfo& outInfo)
|
|
|
+{
|
|
|
+ memset(&outInfo, 0, sizeof(outInfo));
|
|
|
+ outInfo.allocationSizeMin = UINT64_MAX;
|
|
|
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
|
|
|
+}
|
|
|
+
|
|
|
+// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
|
|
|
+static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
|
|
|
+{
|
|
|
+ inoutInfo.blockCount += srcInfo.blockCount;
|
|
|
+ inoutInfo.allocationCount += srcInfo.allocationCount;
|
|
|
+ inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
|
|
|
+ inoutInfo.usedBytes += srcInfo.usedBytes;
|
|
|
+ inoutInfo.unusedBytes += srcInfo.unusedBytes;
|
|
|
+ inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
|
|
|
+ inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
|
|
|
+ inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
|
|
|
+ inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
|
|
|
+}
|
|
|
+
|
|
|
+static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
|
|
|
+{
|
|
|
+ inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
|
|
|
+ VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
|
|
|
+ inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
|
|
|
+ VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
|
|
|
+}
|
|
|
+
|
|
|
+VmaPool_T::VmaPool_T(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ const VmaPoolCreateInfo& createInfo) :
|
|
|
+ m_BlockVector(
|
|
|
+ hAllocator,
|
|
|
+ createInfo.memoryTypeIndex,
|
|
|
+ createInfo.blockSize,
|
|
|
+ createInfo.minBlockCount,
|
|
|
+ createInfo.maxBlockCount,
|
|
|
+ (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
|
|
|
+ createInfo.frameInUseCount,
|
|
|
+ true) // isCustomPool
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+VmaPool_T::~VmaPool_T()
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+VmaBlockVector::VmaBlockVector(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ uint32_t memoryTypeIndex,
|
|
|
+ VkDeviceSize preferredBlockSize,
|
|
|
+ size_t minBlockCount,
|
|
|
+ size_t maxBlockCount,
|
|
|
+ VkDeviceSize bufferImageGranularity,
|
|
|
+ uint32_t frameInUseCount,
|
|
|
+ bool isCustomPool) :
|
|
|
+ m_hAllocator(hAllocator),
|
|
|
+ m_MemoryTypeIndex(memoryTypeIndex),
|
|
|
+ m_PreferredBlockSize(preferredBlockSize),
|
|
|
+ m_MinBlockCount(minBlockCount),
|
|
|
+ m_MaxBlockCount(maxBlockCount),
|
|
|
+ m_BufferImageGranularity(bufferImageGranularity),
|
|
|
+ m_FrameInUseCount(frameInUseCount),
|
|
|
+ m_IsCustomPool(isCustomPool),
|
|
|
+ m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
|
|
|
+ m_HasEmptyBlock(false),
|
|
|
+ m_pDefragmentator(VMA_NULL)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+VmaBlockVector::~VmaBlockVector()
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_pDefragmentator == VMA_NULL);
|
|
|
+
|
|
|
+ for(size_t i = m_Blocks.size(); i--; )
|
|
|
+ {
|
|
|
+ m_Blocks[i]->Destroy(m_hAllocator);
|
|
|
+ vma_delete(m_hAllocator, m_Blocks[i]);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaBlockVector::CreateMinBlocks()
|
|
|
+{
|
|
|
+ for(size_t i = 0; i < m_MinBlockCount; ++i)
|
|
|
+ {
|
|
|
+ VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return VK_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
|
|
|
+{
|
|
|
+ pStats->size = 0;
|
|
|
+ pStats->unusedSize = 0;
|
|
|
+ pStats->allocationCount = 0;
|
|
|
+ pStats->unusedRangeCount = 0;
|
|
|
+ pStats->unusedRangeSizeMax = 0;
|
|
|
+
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
|
+ {
|
|
|
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
|
+ VMA_ASSERT(pBlock);
|
|
|
+ VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
+ pBlock->m_Metadata.AddPoolStats(*pStats);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
|
|
|
+
|
|
|
+VkResult VmaBlockVector::Allocate(
|
|
|
+ VmaPool hCurrentPool,
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ const VkMemoryRequirements& vkMemReq,
|
|
|
+ const VmaAllocationCreateInfo& createInfo,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
|
|
|
+ const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
|
|
|
+
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ // 1. Search existing allocations. Try to allocate without making other allocations lost.
|
|
|
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
|
|
+ for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
|
+ VMA_ASSERT(pCurrBlock);
|
|
|
+ VmaAllocationRequest currRequest = {};
|
|
|
+ if(pCurrBlock->m_Metadata.CreateAllocationRequest(
|
|
|
+ currentFrameIndex,
|
|
|
+ m_FrameInUseCount,
|
|
|
+ m_BufferImageGranularity,
|
|
|
+ vkMemReq.size,
|
|
|
+ vkMemReq.alignment,
|
|
|
+ suballocType,
|
|
|
+ false, // canMakeOtherLost
|
|
|
+ &currRequest))
|
|
|
+ {
|
|
|
+ // Allocate from pCurrBlock.
|
|
|
+ VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
|
|
|
+
|
|
|
+ if(mapped)
|
|
|
+ {
|
|
|
+ VkResult res = pCurrBlock->Map(m_hAllocator, nullptr);
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // We no longer have an empty Allocation.
|
|
|
+ if(pCurrBlock->m_Metadata.IsEmpty())
|
|
|
+ {
|
|
|
+ m_HasEmptyBlock = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
|
|
|
+ pCurrBlock->m_Metadata.Alloc(currRequest, suballocType, vkMemReq.size, *pAllocation);
|
|
|
+ (*pAllocation)->InitBlockAllocation(
|
|
|
+ hCurrentPool,
|
|
|
+ pCurrBlock,
|
|
|
+ currRequest.offset,
|
|
|
+ vkMemReq.alignment,
|
|
|
+ vkMemReq.size,
|
|
|
+ suballocType,
|
|
|
+ mapped,
|
|
|
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
|
|
+ VMA_HEAVY_ASSERT(pCurrBlock->Validate());
|
|
|
+ VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
|
|
|
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ const bool canCreateNewBlock =
|
|
|
+ ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
|
|
|
+ (m_Blocks.size() < m_MaxBlockCount);
|
|
|
+
|
|
|
+ // 2. Try to create new block.
|
|
|
+ if(canCreateNewBlock)
|
|
|
+ {
|
|
|
+ // 2.1. Start with full preferredBlockSize.
|
|
|
+ VkDeviceSize blockSize = m_PreferredBlockSize;
|
|
|
+ size_t newBlockIndex = 0;
|
|
|
+ VkResult res = CreateBlock(blockSize, &newBlockIndex);
|
|
|
+ // Allocating blocks of other sizes is allowed only in default pools.
|
|
|
+ // In custom pools block size is fixed.
|
|
|
+ if(res < 0 && m_IsCustomPool == false)
|
|
|
+ {
|
|
|
+ // 2.2. Try half the size.
|
|
|
+ blockSize /= 2;
|
|
|
+ if(blockSize >= vkMemReq.size)
|
|
|
+ {
|
|
|
+ res = CreateBlock(blockSize, &newBlockIndex);
|
|
|
+ if(res < 0)
|
|
|
+ {
|
|
|
+ // 2.3. Try quarter the size.
|
|
|
+ blockSize /= 2;
|
|
|
+ if(blockSize >= vkMemReq.size)
|
|
|
+ {
|
|
|
+ res = CreateBlock(blockSize, &newBlockIndex);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
|
|
|
+ VMA_ASSERT(pBlock->m_Metadata.GetSize() >= vkMemReq.size);
|
|
|
+
|
|
|
+ if(mapped)
|
|
|
+ {
|
|
|
+ res = pBlock->Map(m_hAllocator, nullptr);
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.
|
|
|
+ VmaAllocationRequest allocRequest;
|
|
|
+ pBlock->m_Metadata.CreateFirstAllocationRequest(&allocRequest);
|
|
|
+ *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
|
|
|
+ pBlock->m_Metadata.Alloc(allocRequest, suballocType, vkMemReq.size, *pAllocation);
|
|
|
+ (*pAllocation)->InitBlockAllocation(
|
|
|
+ hCurrentPool,
|
|
|
+ pBlock,
|
|
|
+ allocRequest.offset,
|
|
|
+ vkMemReq.alignment,
|
|
|
+ vkMemReq.size,
|
|
|
+ suballocType,
|
|
|
+ mapped,
|
|
|
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
|
|
+ VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
+ VMA_DEBUG_LOG(" Created new allocation Size=%llu", allocInfo.allocationSize);
|
|
|
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ const bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
|
|
|
+
|
|
|
+ // 3. Try to allocate from existing blocks with making other allocations lost.
|
|
|
+ if(canMakeOtherLost)
|
|
|
+ {
|
|
|
+ uint32_t tryIndex = 0;
|
|
|
+ for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
|
|
|
+ VmaAllocationRequest bestRequest = {};
|
|
|
+ VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
|
|
|
+
|
|
|
+ // 1. Search existing allocations.
|
|
|
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
|
|
+ for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
|
+ VMA_ASSERT(pCurrBlock);
|
|
|
+ VmaAllocationRequest currRequest = {};
|
|
|
+ if(pCurrBlock->m_Metadata.CreateAllocationRequest(
|
|
|
+ currentFrameIndex,
|
|
|
+ m_FrameInUseCount,
|
|
|
+ m_BufferImageGranularity,
|
|
|
+ vkMemReq.size,
|
|
|
+ vkMemReq.alignment,
|
|
|
+ suballocType,
|
|
|
+ canMakeOtherLost,
|
|
|
+ &currRequest))
|
|
|
+ {
|
|
|
+ const VkDeviceSize currRequestCost = currRequest.CalcCost();
|
|
|
+ if(pBestRequestBlock == VMA_NULL ||
|
|
|
+ currRequestCost < bestRequestCost)
|
|
|
+ {
|
|
|
+ pBestRequestBlock = pCurrBlock;
|
|
|
+ bestRequest = currRequest;
|
|
|
+ bestRequestCost = currRequestCost;
|
|
|
+
|
|
|
+ if(bestRequestCost == 0)
|
|
|
+ {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(pBestRequestBlock != VMA_NULL)
|
|
|
+ {
|
|
|
+ if(mapped)
|
|
|
+ {
|
|
|
+ VkResult res = pBestRequestBlock->Map(m_hAllocator, nullptr);
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(pBestRequestBlock->m_Metadata.MakeRequestedAllocationsLost(
|
|
|
+ currentFrameIndex,
|
|
|
+ m_FrameInUseCount,
|
|
|
+ &bestRequest))
|
|
|
+ {
|
|
|
+ // We no longer have an empty Allocation.
|
|
|
+ if(pBestRequestBlock->m_Metadata.IsEmpty())
|
|
|
+ {
|
|
|
+ m_HasEmptyBlock = false;
|
|
|
+ }
|
|
|
+ // Allocate from this pBlock.
|
|
|
+ *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
|
|
|
+ pBestRequestBlock->m_Metadata.Alloc(bestRequest, suballocType, vkMemReq.size, *pAllocation);
|
|
|
+ (*pAllocation)->InitBlockAllocation(
|
|
|
+ hCurrentPool,
|
|
|
+ pBestRequestBlock,
|
|
|
+ bestRequest.offset,
|
|
|
+ vkMemReq.alignment,
|
|
|
+ vkMemReq.size,
|
|
|
+ suballocType,
|
|
|
+ mapped,
|
|
|
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
|
|
+ VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
+ VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
|
|
|
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ // else: Some allocations must have been touched while we are here. Next try.
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Could not find place in any of the blocks - break outer loop.
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* Maximum number of tries exceeded - a very unlike event when many other
|
|
|
+ threads are simultaneously touching allocations making it impossible to make
|
|
|
+ lost at the same time as we try to allocate. */
|
|
|
+ if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
|
|
|
+ {
|
|
|
+ return VK_ERROR_TOO_MANY_OBJECTS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::Free(
|
|
|
+ VmaAllocation hAllocation)
|
|
|
+{
|
|
|
+ VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
|
|
|
+
|
|
|
+ // Scope for lock.
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
|
|
|
+
|
|
|
+ if(hAllocation->IsPersistentMap())
|
|
|
+ {
|
|
|
+ pBlock->m_Mapping.Unmap(m_hAllocator, pBlock->m_hMemory);
|
|
|
+ }
|
|
|
+
|
|
|
+ pBlock->m_Metadata.Free(hAllocation);
|
|
|
+ VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", memTypeIndex);
|
|
|
+
|
|
|
+ // pBlock became empty after this deallocation.
|
|
|
+ if(pBlock->m_Metadata.IsEmpty())
|
|
|
+ {
|
|
|
+ // Already has empty Allocation. We don't want to have two, so delete this one.
|
|
|
+ if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount)
|
|
|
+ {
|
|
|
+ pBlockToDelete = pBlock;
|
|
|
+ Remove(pBlock);
|
|
|
+ }
|
|
|
+ // We now have first empty Allocation.
|
|
|
+ else
|
|
|
+ {
|
|
|
+ m_HasEmptyBlock = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // pBlock didn't become empty, but we have another empty block - find and free that one.
|
|
|
+ // (This is optional, heuristics.)
|
|
|
+ else if(m_HasEmptyBlock)
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
|
|
|
+ if(pLastBlock->m_Metadata.IsEmpty() && m_Blocks.size() > m_MinBlockCount)
|
|
|
+ {
|
|
|
+ pBlockToDelete = pLastBlock;
|
|
|
+ m_Blocks.pop_back();
|
|
|
+ m_HasEmptyBlock = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ IncrementallySortBlocks();
|
|
|
+ }
|
|
|
+
|
|
|
+ // Destruction of a free Allocation. Deferred until this point, outside of mutex
|
|
|
+ // lock, for performance reason.
|
|
|
+ if(pBlockToDelete != VMA_NULL)
|
|
|
+ {
|
|
|
+ VMA_DEBUG_LOG(" Deleted empty allocation");
|
|
|
+ pBlockToDelete->Destroy(m_hAllocator);
|
|
|
+ vma_delete(m_hAllocator, pBlockToDelete);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
|
|
|
+{
|
|
|
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
|
+ {
|
|
|
+ if(m_Blocks[blockIndex] == pBlock)
|
|
|
+ {
|
|
|
+ VmaVectorRemove(m_Blocks, blockIndex);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ VMA_ASSERT(0);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::IncrementallySortBlocks()
|
|
|
+{
|
|
|
+ // Bubble sort only until first swap.
|
|
|
+ for(size_t i = 1; i < m_Blocks.size(); ++i)
|
|
|
+ {
|
|
|
+ if(m_Blocks[i - 1]->m_Metadata.GetSumFreeSize() > m_Blocks[i]->m_Metadata.GetSumFreeSize())
|
|
|
+ {
|
|
|
+ VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
|
|
|
+{
|
|
|
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
|
+ allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
|
|
|
+ allocInfo.allocationSize = blockSize;
|
|
|
+ VkDeviceMemory mem = VK_NULL_HANDLE;
|
|
|
+ VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
|
|
|
+ if(res < 0)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ // New VkDeviceMemory successfully created.
|
|
|
+
|
|
|
+ // Create new Allocation for it.
|
|
|
+ VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
|
|
|
+ pBlock->Init(
|
|
|
+ m_MemoryTypeIndex,
|
|
|
+ mem,
|
|
|
+ allocInfo.allocationSize);
|
|
|
+
|
|
|
+ m_Blocks.push_back(pBlock);
|
|
|
+ if(pNewBlockIndex != VMA_NULL)
|
|
|
+ {
|
|
|
+ *pNewBlockIndex = m_Blocks.size() - 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ return VK_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
|
|
|
+{
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ json.BeginObject();
|
|
|
+
|
|
|
+ if(m_IsCustomPool)
|
|
|
+ {
|
|
|
+ json.WriteString("MemoryTypeIndex");
|
|
|
+ json.WriteNumber(m_MemoryTypeIndex);
|
|
|
+
|
|
|
+ json.WriteString("BlockSize");
|
|
|
+ json.WriteNumber(m_PreferredBlockSize);
|
|
|
+
|
|
|
+ json.WriteString("BlockCount");
|
|
|
+ json.BeginObject(true);
|
|
|
+ if(m_MinBlockCount > 0)
|
|
|
+ {
|
|
|
+ json.WriteString("Min");
|
|
|
+ json.WriteNumber(m_MinBlockCount);
|
|
|
+ }
|
|
|
+ if(m_MaxBlockCount < SIZE_MAX)
|
|
|
+ {
|
|
|
+ json.WriteString("Max");
|
|
|
+ json.WriteNumber(m_MaxBlockCount);
|
|
|
+ }
|
|
|
+ json.WriteString("Cur");
|
|
|
+ json.WriteNumber(m_Blocks.size());
|
|
|
+ json.EndObject();
|
|
|
+
|
|
|
+ if(m_FrameInUseCount > 0)
|
|
|
+ {
|
|
|
+ json.WriteString("FrameInUseCount");
|
|
|
+ json.WriteNumber(m_FrameInUseCount);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ json.WriteString("PreferredBlockSize");
|
|
|
+ json.WriteNumber(m_PreferredBlockSize);
|
|
|
+ }
|
|
|
+
|
|
|
+ json.WriteString("Blocks");
|
|
|
+ json.BeginArray();
|
|
|
+ for(size_t i = 0; i < m_Blocks.size(); ++i)
|
|
|
+ {
|
|
|
+ m_Blocks[i]->m_Metadata.PrintDetailedMap(json);
|
|
|
+ }
|
|
|
+ json.EndArray();
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+VmaDefragmentator* VmaBlockVector::EnsureDefragmentator(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ uint32_t currentFrameIndex)
|
|
|
+{
|
|
|
+ if(m_pDefragmentator == VMA_NULL)
|
|
|
+ {
|
|
|
+ m_pDefragmentator = vma_new(m_hAllocator, VmaDefragmentator)(
|
|
|
+ hAllocator,
|
|
|
+ this,
|
|
|
+ currentFrameIndex);
|
|
|
+ }
|
|
|
+
|
|
|
+ return m_pDefragmentator;
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaBlockVector::Defragment(
|
|
|
+ VmaDefragmentationStats* pDefragmentationStats,
|
|
|
+ VkDeviceSize& maxBytesToMove,
|
|
|
+ uint32_t& maxAllocationsToMove)
|
|
|
+{
|
|
|
+ if(m_pDefragmentator == VMA_NULL)
|
|
|
+ {
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ // Defragment.
|
|
|
+ VkResult result = m_pDefragmentator->Defragment(maxBytesToMove, maxAllocationsToMove);
|
|
|
+
|
|
|
+ // Accumulate statistics.
|
|
|
+ if(pDefragmentationStats != VMA_NULL)
|
|
|
+ {
|
|
|
+ const VkDeviceSize bytesMoved = m_pDefragmentator->GetBytesMoved();
|
|
|
+ const uint32_t allocationsMoved = m_pDefragmentator->GetAllocationsMoved();
|
|
|
+ pDefragmentationStats->bytesMoved += bytesMoved;
|
|
|
+ pDefragmentationStats->allocationsMoved += allocationsMoved;
|
|
|
+ VMA_ASSERT(bytesMoved <= maxBytesToMove);
|
|
|
+ VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
|
|
|
+ maxBytesToMove -= bytesMoved;
|
|
|
+ maxAllocationsToMove -= allocationsMoved;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Free empty blocks.
|
|
|
+ m_HasEmptyBlock = false;
|
|
|
+ for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
|
|
+ if(pBlock->m_Metadata.IsEmpty())
|
|
|
+ {
|
|
|
+ if(m_Blocks.size() > m_MinBlockCount)
|
|
|
+ {
|
|
|
+ if(pDefragmentationStats != VMA_NULL)
|
|
|
+ {
|
|
|
+ ++pDefragmentationStats->deviceMemoryBlocksFreed;
|
|
|
+ pDefragmentationStats->bytesFreed += pBlock->m_Metadata.GetSize();
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaVectorRemove(m_Blocks, blockIndex);
|
|
|
+ pBlock->Destroy(m_hAllocator);
|
|
|
+ vma_delete(m_hAllocator, pBlock);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ m_HasEmptyBlock = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::DestroyDefragmentator()
|
|
|
+{
|
|
|
+ if(m_pDefragmentator != VMA_NULL)
|
|
|
+ {
|
|
|
+ vma_delete(m_hAllocator, m_pDefragmentator);
|
|
|
+ m_pDefragmentator = VMA_NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::MakePoolAllocationsLost(
|
|
|
+ uint32_t currentFrameIndex,
|
|
|
+ size_t* pLostAllocationCount)
|
|
|
+{
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
|
+ VMA_ASSERT(pBlock);
|
|
|
+ pBlock->m_Metadata.MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaBlockVector::AddStats(VmaStats* pStats)
|
|
|
+{
|
|
|
+ const uint32_t memTypeIndex = m_MemoryTypeIndex;
|
|
|
+ const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
|
+
|
|
|
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
+
|
|
|
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
|
+ {
|
|
|
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
|
+ VMA_ASSERT(pBlock);
|
|
|
+ VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
+ VmaStatInfo allocationStatInfo;
|
|
|
+ pBlock->m_Metadata.CalcAllocationStatInfo(allocationStatInfo);
|
|
|
+ VmaAddStatInfo(pStats->total, allocationStatInfo);
|
|
|
+ VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
|
|
|
+ VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// VmaDefragmentator members definition
|
|
|
+
|
|
|
+VmaDefragmentator::VmaDefragmentator(
|
|
|
+ VmaAllocator hAllocator,
|
|
|
+ VmaBlockVector* pBlockVector,
|
|
|
+ uint32_t currentFrameIndex) :
|
|
|
+ m_hAllocator(hAllocator),
|
|
|
+ m_pBlockVector(pBlockVector),
|
|
|
+ m_CurrentFrameIndex(currentFrameIndex),
|
|
|
+ m_BytesMoved(0),
|
|
|
+ m_AllocationsMoved(0),
|
|
|
+ m_Allocations(VmaStlAllocator<AllocationInfo>(hAllocator->GetAllocationCallbacks())),
|
|
|
+ m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+VmaDefragmentator::~VmaDefragmentator()
|
|
|
+{
|
|
|
+ for(size_t i = m_Blocks.size(); i--; )
|
|
|
+ {
|
|
|
+ vma_delete(m_hAllocator, m_Blocks[i]);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaDefragmentator::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
|
|
|
+{
|
|
|
+ AllocationInfo allocInfo;
|
|
|
+ allocInfo.m_hAllocation = hAlloc;
|
|
|
+ allocInfo.m_pChanged = pChanged;
|
|
|
+ m_Allocations.push_back(allocInfo);
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaDefragmentator::BlockInfo::EnsureMapping(VmaAllocator hAllocator, void** ppMappedData)
|
|
|
+{
|
|
|
+ // It has already been mapped for defragmentation.
|
|
|
+ if(m_pMappedDataForDefragmentation)
|
|
|
+ {
|
|
|
+ *ppMappedData = m_pMappedDataForDefragmentation;
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ // It is originally mapped.
|
|
|
+ if(m_pBlock->m_Mapping.GetMappedData())
|
|
|
+ {
|
|
|
+ *ppMappedData = m_pBlock->m_Mapping.GetMappedData();
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Map on first usage.
|
|
|
+ VkResult res = m_pBlock->Map(hAllocator, &m_pMappedDataForDefragmentation);
|
|
|
+ *ppMappedData = m_pMappedDataForDefragmentation;
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaDefragmentator::BlockInfo::Unmap(VmaAllocator hAllocator)
|
|
|
+{
|
|
|
+ if(m_pMappedDataForDefragmentation != VMA_NULL)
|
|
|
+ {
|
|
|
+ m_pBlock->Unmap(hAllocator);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaDefragmentator::DefragmentRound(
|
|
|
+ VkDeviceSize maxBytesToMove,
|
|
|
+ uint32_t maxAllocationsToMove)
|
|
|
+{
|
|
|
+ if(m_Blocks.empty())
|
|
|
+ {
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ size_t srcBlockIndex = m_Blocks.size() - 1;
|
|
|
+ size_t srcAllocIndex = SIZE_MAX;
|
|
|
+ for(;;)
|
|
|
+ {
|
|
|
+ // 1. Find next allocation to move.
|
|
|
+ // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
|
|
|
+ // 1.2. Then start from last to first m_Allocations - they are sorted from largest to smallest.
|
|
|
+ while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
|
|
|
+ {
|
|
|
+ if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
|
|
|
+ {
|
|
|
+ // Finished: no more allocations to process.
|
|
|
+ if(srcBlockIndex == 0)
|
|
|
+ {
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ --srcBlockIndex;
|
|
|
+ srcAllocIndex = SIZE_MAX;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
|
|
|
+ AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
|
|
|
+
|
|
|
+ const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
|
|
|
+ const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
|
|
|
+ const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
|
|
|
+ const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
|
|
|
+
|
|
|
+ // 2. Try to find new place for this allocation in preceding or current block.
|
|
|
+ for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
|
|
|
+ {
|
|
|
+ BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
|
|
|
+ VmaAllocationRequest dstAllocRequest;
|
|
|
+ if(pDstBlockInfo->m_pBlock->m_Metadata.CreateAllocationRequest(
|
|
|
+ m_CurrentFrameIndex,
|
|
|
+ m_pBlockVector->GetFrameInUseCount(),
|
|
|
+ m_pBlockVector->GetBufferImageGranularity(),
|
|
|
+ size,
|
|
|
+ alignment,
|
|
|
+ suballocType,
|
|
|
+ false, // canMakeOtherLost
|
|
|
+ &dstAllocRequest) &&
|
|
|
+ MoveMakesSense(
|
|
|
+ dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
|
|
|
+ {
|
|
|
+ VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
|
|
|
+
|
|
|
+ // Reached limit on number of allocations or bytes to move.
|
|
|
+ if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
|
|
|
+ (m_BytesMoved + size > maxBytesToMove))
|
|
|
+ {
|
|
|
+ return VK_INCOMPLETE;
|
|
|
+ }
|
|
|
+
|
|
|
+ void* pDstMappedData = VMA_NULL;
|
|
|
+ VkResult res = pDstBlockInfo->EnsureMapping(m_hAllocator, &pDstMappedData);
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ void* pSrcMappedData = VMA_NULL;
|
|
|
+ res = pSrcBlockInfo->EnsureMapping(m_hAllocator, &pSrcMappedData);
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
|
|
|
+ memcpy(
|
|
|
+ reinterpret_cast<char*>(pDstMappedData) + dstAllocRequest.offset,
|
|
|
+ reinterpret_cast<char*>(pSrcMappedData) + srcOffset,
|
|
|
+ static_cast<size_t>(size));
|
|
|
+
|
|
|
+ pDstBlockInfo->m_pBlock->m_Metadata.Alloc(dstAllocRequest, suballocType, size, allocInfo.m_hAllocation);
|
|
|
+ pSrcBlockInfo->m_pBlock->m_Metadata.Free(allocInfo.m_hAllocation);
|
|
|
+
|
|
|
+ allocInfo.m_hAllocation->ChangeBlockAllocation(pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
|
|
|
+
|
|
|
+ if(allocInfo.m_pChanged != VMA_NULL)
|
|
|
+ {
|
|
|
+ *allocInfo.m_pChanged = VK_TRUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ ++m_AllocationsMoved;
|
|
|
+ m_BytesMoved += size;
|
|
|
+
|
|
|
+ VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
|
|
|
+
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
|
|
|
+
|
|
|
+ if(srcAllocIndex > 0)
|
|
|
+ {
|
|
|
+ --srcAllocIndex;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if(srcBlockIndex > 0)
|
|
|
+ {
|
|
|
+ --srcBlockIndex;
|
|
|
+ srcAllocIndex = SIZE_MAX;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaDefragmentator::Defragment(
|
|
|
+ VkDeviceSize maxBytesToMove,
|
|
|
+ uint32_t maxAllocationsToMove)
|
|
|
+{
|
|
|
+ if(m_Allocations.empty())
|
|
|
+ {
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Create block info for each block.
|
|
|
+ const size_t blockCount = m_pBlockVector->m_Blocks.size();
|
|
|
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
|
+ {
|
|
|
+ BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
|
|
|
+ pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
|
|
|
+ m_Blocks.push_back(pBlockInfo);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sort them by m_pBlock pointer value.
|
|
|
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
|
|
|
+
|
|
|
+ // Move allocation infos from m_Allocations to appropriate m_Blocks[memTypeIndex].m_Allocations.
|
|
|
+ for(size_t blockIndex = 0, allocCount = m_Allocations.size(); blockIndex < allocCount; ++blockIndex)
|
|
|
+ {
|
|
|
+ AllocationInfo& allocInfo = m_Allocations[blockIndex];
|
|
|
+ // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
|
|
|
+ if(allocInfo.m_hAllocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* pBlock = allocInfo.m_hAllocation->GetBlock();
|
|
|
+ BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
|
|
|
+ if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
|
|
|
+ {
|
|
|
+ (*it)->m_Allocations.push_back(allocInfo);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ m_Allocations.clear();
|
|
|
+
|
|
|
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
|
+ {
|
|
|
+ BlockInfo* pBlockInfo = m_Blocks[blockIndex];
|
|
|
+ pBlockInfo->CalcHasNonMovableAllocations();
|
|
|
+ pBlockInfo->SortAllocationsBySizeDescecnding();
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
|
|
|
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
|
|
|
+
|
|
|
+ // Execute defragmentation rounds (the main part).
|
|
|
+ VkResult result = VK_SUCCESS;
|
|
|
+ for(size_t round = 0; (round < 2) && (result == VK_SUCCESS); ++round)
|
|
|
+ {
|
|
|
+ result = DefragmentRound(maxBytesToMove, maxAllocationsToMove);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Unmap blocks that were mapped for defragmentation.
|
|
|
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
|
+ {
|
|
|
+ m_Blocks[blockIndex]->Unmap(m_hAllocator);
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+bool VmaDefragmentator::MoveMakesSense(
|
|
|
+ size_t dstBlockIndex, VkDeviceSize dstOffset,
|
|
|
+ size_t srcBlockIndex, VkDeviceSize srcOffset)
|
|
|
+{
|
|
|
+ if(dstBlockIndex < srcBlockIndex)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if(dstBlockIndex > srcBlockIndex)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(dstOffset < srcOffset)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// VmaAllocator_T
|
|
|
+
|
|
|
+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
|
|
|
+ m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
|
|
|
+ m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
|
|
|
+ m_PhysicalDevice(pCreateInfo->physicalDevice),
|
|
|
+ m_hDevice(pCreateInfo->device),
|
|
|
+ m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
|
|
|
+ m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
|
|
|
+ *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
|
|
|
+ m_PreferredLargeHeapBlockSize(0),
|
|
|
+ m_PreferredSmallHeapBlockSize(0),
|
|
|
+ m_CurrentFrameIndex(0),
|
|
|
+ m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks()))
|
|
|
+{
|
|
|
+ VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
|
|
|
+
|
|
|
+ memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
|
|
|
+ memset(&m_MemProps, 0, sizeof(m_MemProps));
|
|
|
+ memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
|
|
|
+
|
|
|
+ memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
|
|
|
+ memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
|
|
|
+
|
|
|
+ for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
|
|
+ {
|
|
|
+ m_HeapSizeLimit[i] = VK_WHOLE_SIZE;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
|
|
|
+ {
|
|
|
+ m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
|
|
|
+ m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
|
|
|
+ }
|
|
|
+
|
|
|
+ ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
|
|
|
+
|
|
|
+ (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
|
|
|
+ (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
|
|
|
+
|
|
|
+ m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
|
|
|
+ pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
|
|
|
+ m_PreferredSmallHeapBlockSize = (pCreateInfo->preferredSmallHeapBlockSize != 0) ?
|
|
|
+ pCreateInfo->preferredSmallHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE);
|
|
|
+
|
|
|
+ if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
|
|
|
+ {
|
|
|
+ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
|
|
|
+ {
|
|
|
+ const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
|
|
|
+ if(limit != VK_WHOLE_SIZE)
|
|
|
+ {
|
|
|
+ m_HeapSizeLimit[heapIndex] = limit;
|
|
|
+ if(limit < m_MemProps.memoryHeaps[heapIndex].size)
|
|
|
+ {
|
|
|
+ m_MemProps.memoryHeaps[heapIndex].size = limit;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
|
+ {
|
|
|
+ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
|
|
|
+
|
|
|
+ m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
|
|
|
+ this,
|
|
|
+ memTypeIndex,
|
|
|
+ preferredBlockSize,
|
|
|
+ 0,
|
|
|
+ SIZE_MAX,
|
|
|
+ GetBufferImageGranularity(),
|
|
|
+ pCreateInfo->frameInUseCount,
|
|
|
+ false); // isCustomPool
|
|
|
+ // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
|
|
|
+ // becase minBlockCount is 0.
|
|
|
+ m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VmaAllocator_T::~VmaAllocator_T()
|
|
|
+{
|
|
|
+ VMA_ASSERT(m_Pools.empty());
|
|
|
+
|
|
|
+ for(size_t i = GetMemoryTypeCount(); i--; )
|
|
|
+ {
|
|
|
+ vma_delete(this, m_pDedicatedAllocations[i]);
|
|
|
+ vma_delete(this, m_pBlockVectors[i]);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
|
|
|
+{
|
|
|
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
|
+ m_VulkanFunctions.vkGetPhysicalDeviceProperties = &vkGetPhysicalDeviceProperties;
|
|
|
+ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = &vkGetPhysicalDeviceMemoryProperties;
|
|
|
+ m_VulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
|
|
|
+ m_VulkanFunctions.vkFreeMemory = &vkFreeMemory;
|
|
|
+ m_VulkanFunctions.vkMapMemory = &vkMapMemory;
|
|
|
+ m_VulkanFunctions.vkUnmapMemory = &vkUnmapMemory;
|
|
|
+ m_VulkanFunctions.vkBindBufferMemory = &vkBindBufferMemory;
|
|
|
+ m_VulkanFunctions.vkBindImageMemory = &vkBindImageMemory;
|
|
|
+ m_VulkanFunctions.vkGetBufferMemoryRequirements = &vkGetBufferMemoryRequirements;
|
|
|
+ m_VulkanFunctions.vkGetImageMemoryRequirements = &vkGetImageMemoryRequirements;
|
|
|
+ m_VulkanFunctions.vkCreateBuffer = &vkCreateBuffer;
|
|
|
+ m_VulkanFunctions.vkDestroyBuffer = &vkDestroyBuffer;
|
|
|
+ m_VulkanFunctions.vkCreateImage = &vkCreateImage;
|
|
|
+ m_VulkanFunctions.vkDestroyImage = &vkDestroyImage;
|
|
|
+ if(m_UseKhrDedicatedAllocation)
|
|
|
+ {
|
|
|
+ m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
|
|
|
+ (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");
|
|
|
+ m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
|
|
|
+ (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");
|
|
|
+ }
|
|
|
+#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
|
+
|
|
|
+#define VMA_COPY_IF_NOT_NULL(funcName) \
|
|
|
+ if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
|
|
|
+
|
|
|
+ if(pVulkanFunctions != VMA_NULL)
|
|
|
+ {
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkFreeMemory);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkMapMemory);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkCreateImage);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkDestroyImage);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
|
|
|
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
|
|
|
+ }
|
|
|
+
|
|
|
+#undef VMA_COPY_IF_NOT_NULL
|
|
|
+
|
|
|
+ // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
|
|
|
+ // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
|
|
|
+ if(m_UseKhrDedicatedAllocation)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
|
|
|
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
|
|
|
+{
|
|
|
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
|
+ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
|
|
|
+ return (heapSize <= VMA_SMALL_HEAP_MAX_SIZE) ?
|
|
|
+ m_PreferredSmallHeapBlockSize : m_PreferredLargeHeapBlockSize;
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::AllocateMemoryOfType(
|
|
|
+ const VkMemoryRequirements& vkMemReq,
|
|
|
+ bool dedicatedAllocation,
|
|
|
+ VkBuffer dedicatedBuffer,
|
|
|
+ VkImage dedicatedImage,
|
|
|
+ const VmaAllocationCreateInfo& createInfo,
|
|
|
+ uint32_t memTypeIndex,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(pAllocation != VMA_NULL);
|
|
|
+ VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, Size=%llu", memTypeIndex, vkMemReq.size);
|
|
|
+
|
|
|
+ VmaAllocationCreateInfo finalCreateInfo = createInfo;
|
|
|
+
|
|
|
+ // If memory type is not HOST_VISIBLE, disable MAPPED.
|
|
|
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
|
|
|
+ (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
|
+ {
|
|
|
+ finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
|
|
|
+ VMA_ASSERT(blockVector);
|
|
|
+
|
|
|
+ const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
|
|
|
+ bool preferDedicatedMemory =
|
|
|
+ VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
|
|
|
+ dedicatedAllocation ||
|
|
|
+ // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
|
|
|
+ vkMemReq.size > preferredBlockSize / 2;
|
|
|
+
|
|
|
+ if(preferDedicatedMemory &&
|
|
|
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
|
|
|
+ finalCreateInfo.pool == VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
|
+ }
|
|
|
+
|
|
|
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
|
|
|
+ {
|
|
|
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
|
+ {
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return AllocateDedicatedMemory(
|
|
|
+ vkMemReq.size,
|
|
|
+ suballocType,
|
|
|
+ memTypeIndex,
|
|
|
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
|
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
|
+ finalCreateInfo.pUserData,
|
|
|
+ dedicatedBuffer,
|
|
|
+ dedicatedImage,
|
|
|
+ pAllocation);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ VkResult res = blockVector->Allocate(
|
|
|
+ VK_NULL_HANDLE, // hCurrentPool
|
|
|
+ m_CurrentFrameIndex.load(),
|
|
|
+ vkMemReq,
|
|
|
+ finalCreateInfo,
|
|
|
+ suballocType,
|
|
|
+ pAllocation);
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 5. Try dedicated memory.
|
|
|
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
|
+ {
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ res = AllocateDedicatedMemory(
|
|
|
+ vkMemReq.size,
|
|
|
+ suballocType,
|
|
|
+ memTypeIndex,
|
|
|
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
|
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
|
+ finalCreateInfo.pUserData,
|
|
|
+ dedicatedBuffer,
|
|
|
+ dedicatedImage,
|
|
|
+ pAllocation);
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
|
|
|
+ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Everything failed: Return error code.
|
|
|
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::AllocateDedicatedMemory(
|
|
|
+ VkDeviceSize size,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ uint32_t memTypeIndex,
|
|
|
+ bool map,
|
|
|
+ bool isUserDataString,
|
|
|
+ void* pUserData,
|
|
|
+ VkBuffer dedicatedBuffer,
|
|
|
+ VkImage dedicatedImage,
|
|
|
+ VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(pAllocation);
|
|
|
+
|
|
|
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
|
+ allocInfo.memoryTypeIndex = memTypeIndex;
|
|
|
+ allocInfo.allocationSize = size;
|
|
|
+
|
|
|
+ VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
|
|
|
+ if(m_UseKhrDedicatedAllocation)
|
|
|
+ {
|
|
|
+ if(dedicatedBuffer != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
|
|
|
+ dedicatedAllocInfo.buffer = dedicatedBuffer;
|
|
|
+ allocInfo.pNext = &dedicatedAllocInfo;
|
|
|
+ }
|
|
|
+ else if(dedicatedImage != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ dedicatedAllocInfo.image = dedicatedImage;
|
|
|
+ allocInfo.pNext = &dedicatedAllocInfo;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Allocate VkDeviceMemory.
|
|
|
+ VkDeviceMemory hMemory = VK_NULL_HANDLE;
|
|
|
+ VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
|
|
|
+ if(res < 0)
|
|
|
+ {
|
|
|
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ void* pMappedData = nullptr;
|
|
|
+ if(map)
|
|
|
+ {
|
|
|
+ res = (*m_VulkanFunctions.vkMapMemory)(
|
|
|
+ m_hDevice,
|
|
|
+ hMemory,
|
|
|
+ 0,
|
|
|
+ VK_WHOLE_SIZE,
|
|
|
+ 0,
|
|
|
+ &pMappedData);
|
|
|
+ if(res < 0)
|
|
|
+ {
|
|
|
+ VMA_DEBUG_LOG(" vkMapMemory FAILED");
|
|
|
+ FreeVulkanMemory(memTypeIndex, size, hMemory);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ *pAllocation = vma_new(this, VmaAllocation_T)(m_CurrentFrameIndex.load(), isUserDataString);
|
|
|
+ (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
|
|
|
+ (*pAllocation)->SetUserData(this, pUserData);
|
|
|
+
|
|
|
+ // Register it in m_pDedicatedAllocations.
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
|
+ AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
|
|
|
+ VMA_ASSERT(pDedicatedAllocations);
|
|
|
+ VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, *pAllocation);
|
|
|
+ }
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG(" Allocated DedicatedMemory MemoryTypeIndex=#%u", memTypeIndex);
|
|
|
+
|
|
|
+ return VK_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::GetBufferMemoryRequirements(
|
|
|
+ VkBuffer hBuffer,
|
|
|
+ VkMemoryRequirements& memReq,
|
|
|
+ bool& requiresDedicatedAllocation,
|
|
|
+ bool& prefersDedicatedAllocation) const
|
|
|
+{
|
|
|
+ if(m_UseKhrDedicatedAllocation)
|
|
|
+ {
|
|
|
+ VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
|
|
|
+ memReqInfo.buffer = hBuffer;
|
|
|
+
|
|
|
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
|
|
|
+
|
|
|
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
|
|
|
+ memReq2.pNext = &memDedicatedReq;
|
|
|
+
|
|
|
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
|
|
|
+
|
|
|
+ memReq = memReq2.memoryRequirements;
|
|
|
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
|
|
|
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
|
|
|
+ requiresDedicatedAllocation = false;
|
|
|
+ prefersDedicatedAllocation = false;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::GetImageMemoryRequirements(
|
|
|
+ VkImage hImage,
|
|
|
+ VkMemoryRequirements& memReq,
|
|
|
+ bool& requiresDedicatedAllocation,
|
|
|
+ bool& prefersDedicatedAllocation) const
|
|
|
+{
|
|
|
+ if(m_UseKhrDedicatedAllocation)
|
|
|
+ {
|
|
|
+ VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
|
|
|
+ memReqInfo.image = hImage;
|
|
|
+
|
|
|
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
|
|
|
+
|
|
|
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
|
|
|
+ memReq2.pNext = &memDedicatedReq;
|
|
|
+
|
|
|
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
|
|
|
+
|
|
|
+ memReq = memReq2.memoryRequirements;
|
|
|
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
|
|
|
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
|
|
|
+ requiresDedicatedAllocation = false;
|
|
|
+ prefersDedicatedAllocation = false;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::AllocateMemory(
|
|
|
+ const VkMemoryRequirements& vkMemReq,
|
|
|
+ bool requiresDedicatedAllocation,
|
|
|
+ bool prefersDedicatedAllocation,
|
|
|
+ VkBuffer dedicatedBuffer,
|
|
|
+ VkImage dedicatedImage,
|
|
|
+ const VmaAllocationCreateInfo& createInfo,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
|
|
|
+ (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
|
|
|
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ if(requiresDedicatedAllocation)
|
|
|
+ {
|
|
|
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ if(createInfo.pool != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if((createInfo.pool != VK_NULL_HANDLE) &&
|
|
|
+ ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
|
|
|
+ {
|
|
|
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(createInfo.pool != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ return createInfo.pool->m_BlockVector.Allocate(
|
|
|
+ createInfo.pool,
|
|
|
+ m_CurrentFrameIndex.load(),
|
|
|
+ vkMemReq,
|
|
|
+ createInfo,
|
|
|
+ suballocType,
|
|
|
+ pAllocation);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Bit mask of memory Vulkan types acceptable for this allocation.
|
|
|
+ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
|
|
|
+ uint32_t memTypeIndex = UINT32_MAX;
|
|
|
+ VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ res = AllocateMemoryOfType(
|
|
|
+ vkMemReq,
|
|
|
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
|
|
|
+ dedicatedBuffer,
|
|
|
+ dedicatedImage,
|
|
|
+ createInfo,
|
|
|
+ memTypeIndex,
|
|
|
+ suballocType,
|
|
|
+ pAllocation);
|
|
|
+ // Succeeded on first try.
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ // Allocation from this memory type failed. Try other compatible memory types.
|
|
|
+ else
|
|
|
+ {
|
|
|
+ for(;;)
|
|
|
+ {
|
|
|
+ // Remove old memTypeIndex from list of possibilities.
|
|
|
+ memoryTypeBits &= ~(1u << memTypeIndex);
|
|
|
+ // Find alternative memTypeIndex.
|
|
|
+ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ res = AllocateMemoryOfType(
|
|
|
+ vkMemReq,
|
|
|
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
|
|
|
+ dedicatedBuffer,
|
|
|
+ dedicatedImage,
|
|
|
+ createInfo,
|
|
|
+ memTypeIndex,
|
|
|
+ suballocType,
|
|
|
+ pAllocation);
|
|
|
+ // Allocation from this alternative memory type succeeded.
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ // else: Allocation from this memory type failed. Try next one - next loop iteration.
|
|
|
+ }
|
|
|
+ // No other matching memory type index could be found.
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
|
|
|
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
|
|
|
+ else
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::FreeMemory(const VmaAllocation allocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocation);
|
|
|
+
|
|
|
+ if(allocation->CanBecomeLost() == false ||
|
|
|
+ allocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
|
|
|
+ {
|
|
|
+ switch(allocation->GetType())
|
|
|
+ {
|
|
|
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
|
+ {
|
|
|
+ VmaBlockVector* pBlockVector = VMA_NULL;
|
|
|
+ VmaPool hPool = allocation->GetPool();
|
|
|
+ if(hPool != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ pBlockVector = &hPool->m_BlockVector;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
|
+ pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
|
+ }
|
|
|
+ pBlockVector->Free(allocation);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
|
+ FreeDedicatedMemory(allocation);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ allocation->SetUserData(this, VMA_NULL);
|
|
|
+ vma_delete(this, allocation);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::CalculateStats(VmaStats* pStats)
|
|
|
+{
|
|
|
+ // Initialize.
|
|
|
+ InitStatInfo(pStats->total);
|
|
|
+ for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
|
|
|
+ InitStatInfo(pStats->memoryType[i]);
|
|
|
+ for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
|
|
+ InitStatInfo(pStats->memoryHeap[i]);
|
|
|
+
|
|
|
+ // Process default pools.
|
|
|
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
|
+ {
|
|
|
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
|
+ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
|
+ VMA_ASSERT(pBlockVector);
|
|
|
+ pBlockVector->AddStats(pStats);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process custom pools.
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
|
|
|
+ for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
|
|
|
+ {
|
|
|
+ m_Pools[poolIndex]->GetBlockVector().AddStats(pStats);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process dedicated allocations.
|
|
|
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
|
+ {
|
|
|
+ const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
|
+ VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
|
+ AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
|
|
|
+ VMA_ASSERT(pDedicatedAllocVector);
|
|
|
+ for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)
|
|
|
+ {
|
|
|
+ VmaStatInfo allocationStatInfo;
|
|
|
+ (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
|
|
|
+ VmaAddStatInfo(pStats->total, allocationStatInfo);
|
|
|
+ VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
|
|
|
+ VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Postprocess.
|
|
|
+ VmaPostprocessCalcStatInfo(pStats->total);
|
|
|
+ for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
|
|
|
+ VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
|
|
|
+ for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
|
|
|
+ VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
|
|
|
+}
|
|
|
+
|
|
|
+static const uint32_t VMA_VENDOR_ID_AMD = 4098;
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::Defragment(
|
|
|
+ VmaAllocation* pAllocations,
|
|
|
+ size_t allocationCount,
|
|
|
+ VkBool32* pAllocationsChanged,
|
|
|
+ const VmaDefragmentationInfo* pDefragmentationInfo,
|
|
|
+ VmaDefragmentationStats* pDefragmentationStats)
|
|
|
+{
|
|
|
+ if(pAllocationsChanged != VMA_NULL)
|
|
|
+ {
|
|
|
+ memset(pAllocationsChanged, 0, sizeof(*pAllocationsChanged));
|
|
|
+ }
|
|
|
+ if(pDefragmentationStats != VMA_NULL)
|
|
|
+ {
|
|
|
+ memset(pDefragmentationStats, 0, sizeof(*pDefragmentationStats));
|
|
|
+ }
|
|
|
+
|
|
|
+ const uint32_t currentFrameIndex = m_CurrentFrameIndex.load();
|
|
|
+
|
|
|
+ VmaMutexLock poolsLock(m_PoolsMutex, m_UseMutex);
|
|
|
+
|
|
|
+ const size_t poolCount = m_Pools.size();
|
|
|
+
|
|
|
+ // Dispatch pAllocations among defragmentators. Create them in BlockVectors when necessary.
|
|
|
+ for(size_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
|
+ {
|
|
|
+ VmaAllocation hAlloc = pAllocations[allocIndex];
|
|
|
+ VMA_ASSERT(hAlloc);
|
|
|
+ const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
|
|
|
+ // DedicatedAlloc cannot be defragmented.
|
|
|
+ if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
|
|
|
+ // Only HOST_VISIBLE memory types can be defragmented.
|
|
|
+ ((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) &&
|
|
|
+ // Lost allocation cannot be defragmented.
|
|
|
+ (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
|
|
|
+ {
|
|
|
+ VmaBlockVector* pAllocBlockVector = nullptr;
|
|
|
+
|
|
|
+ const VmaPool hAllocPool = hAlloc->GetPool();
|
|
|
+ // This allocation belongs to custom pool.
|
|
|
+ if(hAllocPool != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ pAllocBlockVector = &hAllocPool->GetBlockVector();
|
|
|
+ }
|
|
|
+ // This allocation belongs to general pool.
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pAllocBlockVector = m_pBlockVectors[memTypeIndex];
|
|
|
+ }
|
|
|
+
|
|
|
+ VmaDefragmentator* const pDefragmentator = pAllocBlockVector->EnsureDefragmentator(this, currentFrameIndex);
|
|
|
+
|
|
|
+ VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
|
|
|
+ &pAllocationsChanged[allocIndex] : VMA_NULL;
|
|
|
+ pDefragmentator->AddAllocation(hAlloc, pChanged);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ VkResult result = VK_SUCCESS;
|
|
|
+
|
|
|
+ // ======== Main processing.
|
|
|
+
|
|
|
+ VkDeviceSize maxBytesToMove = SIZE_MAX;
|
|
|
+ uint32_t maxAllocationsToMove = UINT32_MAX;
|
|
|
+ if(pDefragmentationInfo != VMA_NULL)
|
|
|
+ {
|
|
|
+ maxBytesToMove = pDefragmentationInfo->maxBytesToMove;
|
|
|
+ maxAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process standard memory.
|
|
|
+ for(uint32_t memTypeIndex = 0;
|
|
|
+ (memTypeIndex < GetMemoryTypeCount()) && (result == VK_SUCCESS);
|
|
|
+ ++memTypeIndex)
|
|
|
+ {
|
|
|
+ // Only HOST_VISIBLE memory types can be defragmented.
|
|
|
+ if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
|
+ {
|
|
|
+ result = m_pBlockVectors[memTypeIndex]->Defragment(
|
|
|
+ pDefragmentationStats,
|
|
|
+ maxBytesToMove,
|
|
|
+ maxAllocationsToMove);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process custom pools.
|
|
|
+ for(size_t poolIndex = 0; (poolIndex < poolCount) && (result == VK_SUCCESS); ++poolIndex)
|
|
|
+ {
|
|
|
+ result = m_Pools[poolIndex]->GetBlockVector().Defragment(
|
|
|
+ pDefragmentationStats,
|
|
|
+ maxBytesToMove,
|
|
|
+ maxAllocationsToMove);
|
|
|
+ }
|
|
|
+
|
|
|
+ // ======== Destroy defragmentators.
|
|
|
+
|
|
|
+ // Process custom pools.
|
|
|
+ for(size_t poolIndex = poolCount; poolIndex--; )
|
|
|
+ {
|
|
|
+ m_Pools[poolIndex]->GetBlockVector().DestroyDefragmentator();
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process standard memory.
|
|
|
+ for(uint32_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
|
|
|
+ {
|
|
|
+ if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
|
+ {
|
|
|
+ m_pBlockVectors[memTypeIndex]->DestroyDefragmentator();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ if(hAllocation->CanBecomeLost())
|
|
|
+ {
|
|
|
+ /*
|
|
|
+ Warning: This is a carefully designed algorithm.
|
|
|
+ Do not modify unless you really know what you're doing :)
|
|
|
+ */
|
|
|
+ uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
|
|
|
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
|
|
|
+ for(;;)
|
|
|
+ {
|
|
|
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
|
|
|
+ {
|
|
|
+ pAllocationInfo->memoryType = UINT32_MAX;
|
|
|
+ pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
|
|
|
+ pAllocationInfo->offset = 0;
|
|
|
+ pAllocationInfo->size = hAllocation->GetSize();
|
|
|
+ pAllocationInfo->pMappedData = VMA_NULL;
|
|
|
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ else if(localLastUseFrameIndex == localCurrFrameIndex)
|
|
|
+ {
|
|
|
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
|
|
|
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
|
|
|
+ pAllocationInfo->offset = hAllocation->GetOffset();
|
|
|
+ pAllocationInfo->size = hAllocation->GetSize();
|
|
|
+ pAllocationInfo->pMappedData = VMA_NULL;
|
|
|
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ else // Last use time earlier than current time.
|
|
|
+ {
|
|
|
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
|
|
|
+ {
|
|
|
+ localLastUseFrameIndex = localCurrFrameIndex;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
|
|
|
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
|
|
|
+ pAllocationInfo->offset = hAllocation->GetOffset();
|
|
|
+ pAllocationInfo->size = hAllocation->GetSize();
|
|
|
+ pAllocationInfo->pMappedData = hAllocation->GetMappedData();
|
|
|
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
|
|
|
+{
|
|
|
+ VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u", pCreateInfo->memoryTypeIndex);
|
|
|
+
|
|
|
+ VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
|
|
|
+
|
|
|
+ if(newCreateInfo.maxBlockCount == 0)
|
|
|
+ {
|
|
|
+ newCreateInfo.maxBlockCount = SIZE_MAX;
|
|
|
+ }
|
|
|
+ if(newCreateInfo.blockSize == 0)
|
|
|
+ {
|
|
|
+ newCreateInfo.blockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
|
|
|
+ }
|
|
|
+
|
|
|
+ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);
|
|
|
+
|
|
|
+ VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
|
|
|
+ if(res != VK_SUCCESS)
|
|
|
+ {
|
|
|
+ vma_delete(this, *pPool);
|
|
|
+ *pPool = VMA_NULL;
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Add to m_Pools.
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
|
|
|
+ VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
|
|
|
+ }
|
|
|
+
|
|
|
+ return VK_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::DestroyPool(VmaPool pool)
|
|
|
+{
|
|
|
+ // Remove from m_Pools.
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
|
|
|
+ bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
|
|
|
+ VMA_ASSERT(success && "Pool not found in Allocator.");
|
|
|
+ }
|
|
|
+
|
|
|
+ vma_delete(this, pool);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
|
|
|
+{
|
|
|
+ pool->m_BlockVector.GetPoolStats(pPoolStats);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
|
|
|
+{
|
|
|
+ m_CurrentFrameIndex.store(frameIndex);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::MakePoolAllocationsLost(
|
|
|
+ VmaPool hPool,
|
|
|
+ size_t* pLostAllocationCount)
|
|
|
+{
|
|
|
+ hPool->m_BlockVector.MakePoolAllocationsLost(
|
|
|
+ m_CurrentFrameIndex.load(),
|
|
|
+ pLostAllocationCount);
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ *pAllocation = vma_new(this, VmaAllocation_T)(VMA_FRAME_INDEX_LOST, false);
|
|
|
+ (*pAllocation)->InitLost();
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
|
|
|
+{
|
|
|
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
|
|
|
+
|
|
|
+ VkResult res;
|
|
|
+ if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
|
|
|
+ if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize)
|
|
|
+ {
|
|
|
+ res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ res = VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
|
|
|
+ }
|
|
|
+
|
|
|
+ if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
|
|
|
+ {
|
|
|
+ (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
|
|
|
+ }
|
|
|
+
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
|
|
|
+{
|
|
|
+ if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
|
|
|
+ {
|
|
|
+ (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
|
|
|
+ }
|
|
|
+
|
|
|
+ (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
|
|
|
+
|
|
|
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
|
|
|
+ if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
|
|
|
+ m_HeapSizeLimit[heapIndex] += size;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
|
|
|
+{
|
|
|
+ if(hAllocation->CanBecomeLost())
|
|
|
+ {
|
|
|
+ return VK_ERROR_MEMORY_MAP_FAILED;
|
|
|
+ }
|
|
|
+
|
|
|
+ switch(hAllocation->GetType())
|
|
|
+ {
|
|
|
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
|
+ char *pBytes = nullptr;
|
|
|
+ VkResult res = pBlock->Map(this, (void**)&pBytes);
|
|
|
+ if(res == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
|
|
|
+ hAllocation->BlockAllocMap();
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
|
+ return hAllocation->DedicatedAllocMap(this, ppData);
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ return VK_ERROR_MEMORY_MAP_FAILED;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
|
|
|
+{
|
|
|
+ switch(hAllocation->GetType())
|
|
|
+ {
|
|
|
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
|
+ {
|
|
|
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
|
+ hAllocation->BlockAllocUnmap();
|
|
|
+ pBlock->Unmap(this);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
|
+ hAllocation->DedicatedAllocUnmap(this);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ VMA_ASSERT(0);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
|
+
|
|
|
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
|
+ AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
|
|
|
+ VMA_ASSERT(pDedicatedAllocations);
|
|
|
+ bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
|
|
|
+ VMA_ASSERT(success);
|
|
|
+ }
|
|
|
+
|
|
|
+ VkDeviceMemory hMemory = allocation->GetMemory();
|
|
|
+
|
|
|
+ if(allocation->GetMappedData() != VMA_NULL)
|
|
|
+ {
|
|
|
+ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
|
|
|
+ }
|
|
|
+
|
|
|
+ FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
|
|
|
+}
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
|
|
|
+{
|
|
|
+ bool dedicatedAllocationsStarted = false;
|
|
|
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
|
+ {
|
|
|
+ VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
|
+ AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
|
|
|
+ VMA_ASSERT(pDedicatedAllocVector);
|
|
|
+ if(pDedicatedAllocVector->empty() == false)
|
|
|
+ {
|
|
|
+ if(dedicatedAllocationsStarted == false)
|
|
|
+ {
|
|
|
+ dedicatedAllocationsStarted = true;
|
|
|
+ json.WriteString("DedicatedAllocations");
|
|
|
+ json.BeginObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ json.BeginString("Type ");
|
|
|
+ json.ContinueString(memTypeIndex);
|
|
|
+ json.EndString();
|
|
|
+
|
|
|
+ json.BeginArray();
|
|
|
+
|
|
|
+ for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)
|
|
|
+ {
|
|
|
+ const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
|
|
|
+ json.BeginObject(true);
|
|
|
+
|
|
|
+ json.WriteString("Type");
|
|
|
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[hAlloc->GetSuballocationType()]);
|
|
|
+
|
|
|
+ json.WriteString("Size");
|
|
|
+ json.WriteNumber(hAlloc->GetSize());
|
|
|
+
|
|
|
+ const void* pUserData = hAlloc->GetUserData();
|
|
|
+ if(pUserData != VMA_NULL)
|
|
|
+ {
|
|
|
+ json.WriteString("UserData");
|
|
|
+ if(hAlloc->IsUserDataString())
|
|
|
+ {
|
|
|
+ json.WriteString((const char*)pUserData);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ json.BeginString();
|
|
|
+ json.ContinueString_Pointer(pUserData);
|
|
|
+ json.EndString();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndArray();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(dedicatedAllocationsStarted)
|
|
|
+ {
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ bool allocationsStarted = false;
|
|
|
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
|
+ {
|
|
|
+ if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)
|
|
|
+ {
|
|
|
+ if(allocationsStarted == false)
|
|
|
+ {
|
|
|
+ allocationsStarted = true;
|
|
|
+ json.WriteString("DefaultPools");
|
|
|
+ json.BeginObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ json.BeginString("Type ");
|
|
|
+ json.ContinueString(memTypeIndex);
|
|
|
+ json.EndString();
|
|
|
+
|
|
|
+ m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(allocationsStarted)
|
|
|
+ {
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
|
|
|
+ const size_t poolCount = m_Pools.size();
|
|
|
+ if(poolCount > 0)
|
|
|
+ {
|
|
|
+ json.WriteString("Pools");
|
|
|
+ json.BeginArray();
|
|
|
+ for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
|
|
|
+ {
|
|
|
+ m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
|
|
|
+ }
|
|
|
+ json.EndArray();
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+static VkResult AllocateMemoryForImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkImage image,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ VmaSuballocationType suballocType,
|
|
|
+ VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && (image != VK_NULL_HANDLE) && pAllocationCreateInfo && pAllocation);
|
|
|
+
|
|
|
+ VkMemoryRequirements vkMemReq = {};
|
|
|
+ bool requiresDedicatedAllocation = false;
|
|
|
+ bool prefersDedicatedAllocation = false;
|
|
|
+ allocator->GetImageMemoryRequirements(image, vkMemReq,
|
|
|
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
+
|
|
|
+ return allocator->AllocateMemory(
|
|
|
+ vkMemReq,
|
|
|
+ requiresDedicatedAllocation,
|
|
|
+ prefersDedicatedAllocation,
|
|
|
+ VK_NULL_HANDLE, // dedicatedBuffer
|
|
|
+ image, // dedicatedImage
|
|
|
+ *pAllocationCreateInfo,
|
|
|
+ suballocType,
|
|
|
+ pAllocation);
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
+// Public interface
|
|
|
+
|
|
|
+VkResult vmaCreateAllocator(
|
|
|
+ const VmaAllocatorCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocator* pAllocator)
|
|
|
+{
|
|
|
+ VMA_ASSERT(pCreateInfo && pAllocator);
|
|
|
+ VMA_DEBUG_LOG("vmaCreateAllocator");
|
|
|
+ *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
|
|
|
+ return VK_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaDestroyAllocator(
|
|
|
+ VmaAllocator allocator)
|
|
|
+{
|
|
|
+ if(allocator != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ VMA_DEBUG_LOG("vmaDestroyAllocator");
|
|
|
+ VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
|
|
|
+ vma_delete(&allocationCallbacks, allocator);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void vmaGetPhysicalDeviceProperties(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
|
|
|
+ *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaGetMemoryProperties(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
|
|
|
+ *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaGetMemoryTypeProperties(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t memoryTypeIndex,
|
|
|
+ VkMemoryPropertyFlags* pFlags)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pFlags);
|
|
|
+ VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
|
|
|
+ *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaSetCurrentFrameIndex(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t frameIndex)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator);
|
|
|
+ VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->SetCurrentFrameIndex(frameIndex);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaCalculateStats(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaStats* pStats)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pStats);
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+ allocator->CalculateStats(pStats);
|
|
|
+}
|
|
|
+
|
|
|
+#if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+void vmaBuildStatsString(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ char** ppStatsString,
|
|
|
+ VkBool32 detailedMap)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && ppStatsString);
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ VmaStringBuilder sb(allocator);
|
|
|
+ {
|
|
|
+ VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
|
|
|
+ json.BeginObject();
|
|
|
+
|
|
|
+ VmaStats stats;
|
|
|
+ allocator->CalculateStats(&stats);
|
|
|
+
|
|
|
+ json.WriteString("Total");
|
|
|
+ VmaPrintStatInfo(json, stats.total);
|
|
|
+
|
|
|
+ for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
|
|
|
+ {
|
|
|
+ json.BeginString("Heap ");
|
|
|
+ json.ContinueString(heapIndex);
|
|
|
+ json.EndString();
|
|
|
+ json.BeginObject();
|
|
|
+
|
|
|
+ json.WriteString("Size");
|
|
|
+ json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
|
|
|
+
|
|
|
+ json.WriteString("Flags");
|
|
|
+ json.BeginArray(true);
|
|
|
+ if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
|
|
|
+ {
|
|
|
+ json.WriteString("DEVICE_LOCAL");
|
|
|
+ }
|
|
|
+ json.EndArray();
|
|
|
+
|
|
|
+ if(stats.memoryHeap[heapIndex].blockCount > 0)
|
|
|
+ {
|
|
|
+ json.WriteString("Stats");
|
|
|
+ VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
|
|
|
+ }
|
|
|
+
|
|
|
+ for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
|
|
|
+ {
|
|
|
+ if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
|
|
|
+ {
|
|
|
+ json.BeginString("Type ");
|
|
|
+ json.ContinueString(typeIndex);
|
|
|
+ json.EndString();
|
|
|
+
|
|
|
+ json.BeginObject();
|
|
|
+
|
|
|
+ json.WriteString("Flags");
|
|
|
+ json.BeginArray(true);
|
|
|
+ VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
|
|
|
+ if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
|
|
|
+ {
|
|
|
+ json.WriteString("DEVICE_LOCAL");
|
|
|
+ }
|
|
|
+ if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
|
+ {
|
|
|
+ json.WriteString("HOST_VISIBLE");
|
|
|
+ }
|
|
|
+ if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
|
|
|
+ {
|
|
|
+ json.WriteString("HOST_COHERENT");
|
|
|
+ }
|
|
|
+ if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
|
|
|
+ {
|
|
|
+ json.WriteString("HOST_CACHED");
|
|
|
+ }
|
|
|
+ if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
|
|
|
+ {
|
|
|
+ json.WriteString("LAZILY_ALLOCATED");
|
|
|
+ }
|
|
|
+ json.EndArray();
|
|
|
+
|
|
|
+ if(stats.memoryType[typeIndex].blockCount > 0)
|
|
|
+ {
|
|
|
+ json.WriteString("Stats");
|
|
|
+ VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+ if(detailedMap == VK_TRUE)
|
|
|
+ {
|
|
|
+ allocator->PrintDetailedMap(json);
|
|
|
+ }
|
|
|
+
|
|
|
+ json.EndObject();
|
|
|
+ }
|
|
|
+
|
|
|
+ const size_t len = sb.GetLength();
|
|
|
+ char* const pChars = vma_new_array(allocator, char, len + 1);
|
|
|
+ if(len > 0)
|
|
|
+ {
|
|
|
+ memcpy(pChars, sb.GetData(), len);
|
|
|
+ }
|
|
|
+ pChars[len] = '\0';
|
|
|
+ *ppStatsString = pChars;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaFreeStatsString(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ char* pStatsString)
|
|
|
+{
|
|
|
+ if(pStatsString != VMA_NULL)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(allocator);
|
|
|
+ size_t len = strlen(pStatsString);
|
|
|
+ vma_delete_array(allocator, pStatsString, len + 1);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
+
|
|
|
+/*
|
|
|
+This function is not protected by any mutex because it just reads immutable data.
|
|
|
+*/
|
|
|
+VkResult vmaFindMemoryTypeIndex(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ uint32_t memoryTypeBits,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ uint32_t* pMemoryTypeIndex)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
|
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
|
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
+
|
|
|
+ if(pAllocationCreateInfo->memoryTypeBits != 0)
|
|
|
+ {
|
|
|
+ memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
|
|
|
+ }
|
|
|
+
|
|
|
+ uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
|
|
|
+ uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
|
|
|
+
|
|
|
+ // Convert usage to requiredFlags and preferredFlags.
|
|
|
+ switch(pAllocationCreateInfo->usage)
|
|
|
+ {
|
|
|
+ case VMA_MEMORY_USAGE_UNKNOWN:
|
|
|
+ break;
|
|
|
+ case VMA_MEMORY_USAGE_GPU_ONLY:
|
|
|
+ preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
|
+ break;
|
|
|
+ case VMA_MEMORY_USAGE_CPU_ONLY:
|
|
|
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
|
+ break;
|
|
|
+ case VMA_MEMORY_USAGE_CPU_TO_GPU:
|
|
|
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
|
+ preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
|
+ break;
|
|
|
+ case VMA_MEMORY_USAGE_GPU_TO_CPU:
|
|
|
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
|
+ preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ *pMemoryTypeIndex = UINT32_MAX;
|
|
|
+ uint32_t minCost = UINT32_MAX;
|
|
|
+ for(uint32_t memTypeIndex = 0, memTypeBit = 1;
|
|
|
+ memTypeIndex < allocator->GetMemoryTypeCount();
|
|
|
+ ++memTypeIndex, memTypeBit <<= 1)
|
|
|
+ {
|
|
|
+ // This memory type is acceptable according to memoryTypeBits bitmask.
|
|
|
+ if((memTypeBit & memoryTypeBits) != 0)
|
|
|
+ {
|
|
|
+ const VkMemoryPropertyFlags currFlags =
|
|
|
+ allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
|
+ // This memory type contains requiredFlags.
|
|
|
+ if((requiredFlags & ~currFlags) == 0)
|
|
|
+ {
|
|
|
+ // Calculate cost as number of bits from preferredFlags not present in this memory type.
|
|
|
+ uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags);
|
|
|
+ // Remember memory type with lowest cost.
|
|
|
+ if(currCost < minCost)
|
|
|
+ {
|
|
|
+ *pMemoryTypeIndex = memTypeIndex;
|
|
|
+ if(currCost == 0)
|
|
|
+ {
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ minCost = currCost;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaCreatePool(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VmaPoolCreateInfo* pCreateInfo,
|
|
|
+ VmaPool* pPool)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pCreateInfo && pPool);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaCreatePool");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ return allocator->CreatePool(pCreateInfo, pPool);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaDestroyPool(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaPool pool)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator);
|
|
|
+
|
|
|
+ if(pool == VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaDestroyPool");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->DestroyPool(pool);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaGetPoolStats(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaPool pool,
|
|
|
+ VmaPoolStats* pPoolStats)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pool && pPoolStats);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->GetPoolStats(pool, pPoolStats);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaMakePoolAllocationsLost(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaPool pool,
|
|
|
+ size_t* pLostAllocationCount)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pool);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaAllocateMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkMemoryRequirements* pVkMemoryRequirements,
|
|
|
+ const VmaAllocationCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaAllocateMemory");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ VkResult result = allocator->AllocateMemory(
|
|
|
+ *pVkMemoryRequirements,
|
|
|
+ false, // requiresDedicatedAllocation
|
|
|
+ false, // prefersDedicatedAllocation
|
|
|
+ VK_NULL_HANDLE, // dedicatedBuffer
|
|
|
+ VK_NULL_HANDLE, // dedicatedImage
|
|
|
+ *pCreateInfo,
|
|
|
+ VMA_SUBALLOCATION_TYPE_UNKNOWN,
|
|
|
+ pAllocation);
|
|
|
+
|
|
|
+ if(pAllocationInfo && result == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaAllocateMemoryForBuffer(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkBuffer buffer,
|
|
|
+ const VmaAllocationCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ VkMemoryRequirements vkMemReq = {};
|
|
|
+ bool requiresDedicatedAllocation = false;
|
|
|
+ bool prefersDedicatedAllocation = false;
|
|
|
+ allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
|
|
|
+ requiresDedicatedAllocation,
|
|
|
+ prefersDedicatedAllocation);
|
|
|
+
|
|
|
+ VkResult result = allocator->AllocateMemory(
|
|
|
+ vkMemReq,
|
|
|
+ requiresDedicatedAllocation,
|
|
|
+ prefersDedicatedAllocation,
|
|
|
+ buffer, // dedicatedBuffer
|
|
|
+ VK_NULL_HANDLE, // dedicatedImage
|
|
|
+ *pCreateInfo,
|
|
|
+ VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
|
+ pAllocation);
|
|
|
+
|
|
|
+ if(pAllocationInfo && result == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaAllocateMemoryForImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkImage image,
|
|
|
+ const VmaAllocationCreateInfo* pCreateInfo,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ VkResult result = AllocateMemoryForImage(
|
|
|
+ allocator,
|
|
|
+ image,
|
|
|
+ pCreateInfo,
|
|
|
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
|
|
|
+ pAllocation);
|
|
|
+
|
|
|
+ if(pAllocationInfo && result == VK_SUCCESS)
|
|
|
+ {
|
|
|
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaFreeMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && allocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaFreeMemory");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->FreeMemory(allocation);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaGetAllocationInfo(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && allocation && pAllocationInfo);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->GetAllocationInfo(allocation, pAllocationInfo);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaSetAllocationUserData(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation,
|
|
|
+ void* pUserData)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && allocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocation->SetUserData(allocator, pUserData);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaCreateLostAllocation(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation* pAllocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pAllocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
|
+
|
|
|
+ allocator->CreateLostAllocation(pAllocation);
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaMapMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation,
|
|
|
+ void** ppData)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && allocation && ppData);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ return allocator->Map(allocation, ppData);
|
|
|
+}
|
|
|
+
|
|
|
+void vmaUnmapMemory(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation allocation)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && allocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ allocator->Unmap(allocation);
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaDefragment(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VmaAllocation* pAllocations,
|
|
|
+ size_t allocationCount,
|
|
|
+ VkBool32* pAllocationsChanged,
|
|
|
+ const VmaDefragmentationInfo *pDefragmentationInfo,
|
|
|
+ VmaDefragmentationStats* pDefragmentationStats)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pAllocations);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaDefragment");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ return allocator->Defragment(pAllocations, allocationCount, pAllocationsChanged, pDefragmentationInfo, pDefragmentationStats);
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaCreateBuffer(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkBufferCreateInfo* pBufferCreateInfo,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ VkBuffer* pBuffer,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaCreateBuffer");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ *pBuffer = VK_NULL_HANDLE;
|
|
|
+ *pAllocation = VK_NULL_HANDLE;
|
|
|
+
|
|
|
+ // 1. Create VkBuffer.
|
|
|
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
|
+ allocator->m_hDevice,
|
|
|
+ pBufferCreateInfo,
|
|
|
+ allocator->GetAllocationCallbacks(),
|
|
|
+ pBuffer);
|
|
|
+ if(res >= 0)
|
|
|
+ {
|
|
|
+ // 2. vkGetBufferMemoryRequirements.
|
|
|
+ VkMemoryRequirements vkMemReq = {};
|
|
|
+ bool requiresDedicatedAllocation = false;
|
|
|
+ bool prefersDedicatedAllocation = false;
|
|
|
+ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
|
|
|
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
+
|
|
|
+ // Make sure alignment requirements for specific buffer usages reported
|
|
|
+ // in Physical Device Properties are included in alignment reported by memory requirements.
|
|
|
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(vkMemReq.alignment %
|
|
|
+ allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0);
|
|
|
+ }
|
|
|
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(vkMemReq.alignment %
|
|
|
+ allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0);
|
|
|
+ }
|
|
|
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(vkMemReq.alignment %
|
|
|
+ allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // 3. Allocate memory using allocator.
|
|
|
+ res = allocator->AllocateMemory(
|
|
|
+ vkMemReq,
|
|
|
+ requiresDedicatedAllocation,
|
|
|
+ prefersDedicatedAllocation,
|
|
|
+ *pBuffer, // dedicatedBuffer
|
|
|
+ VK_NULL_HANDLE, // dedicatedImage
|
|
|
+ *pAllocationCreateInfo,
|
|
|
+ VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
|
+ pAllocation);
|
|
|
+ if(res >= 0)
|
|
|
+ {
|
|
|
+ // 3. Bind buffer with memory.
|
|
|
+ res = (*allocator->GetVulkanFunctions().vkBindBufferMemory)(
|
|
|
+ allocator->m_hDevice,
|
|
|
+ *pBuffer,
|
|
|
+ (*pAllocation)->GetMemory(),
|
|
|
+ (*pAllocation)->GetOffset());
|
|
|
+ if(res >= 0)
|
|
|
+ {
|
|
|
+ // All steps succeeded.
|
|
|
+ if(pAllocationInfo != VMA_NULL)
|
|
|
+ {
|
|
|
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
|
+ }
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ allocator->FreeMemory(*pAllocation);
|
|
|
+ *pAllocation = VK_NULL_HANDLE;
|
|
|
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
|
+ *pBuffer = VK_NULL_HANDLE;
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
|
+ *pBuffer = VK_NULL_HANDLE;
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaDestroyBuffer(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkBuffer buffer,
|
|
|
+ VmaAllocation allocation)
|
|
|
+{
|
|
|
+ if(buffer != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(allocator);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaDestroyBuffer");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
|
|
|
+
|
|
|
+ allocator->FreeMemory(allocation);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+VkResult vmaCreateImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ const VkImageCreateInfo* pImageCreateInfo,
|
|
|
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
|
+ VkImage* pImage,
|
|
|
+ VmaAllocation* pAllocation,
|
|
|
+ VmaAllocationInfo* pAllocationInfo)
|
|
|
+{
|
|
|
+ VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaCreateImage");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ *pImage = VK_NULL_HANDLE;
|
|
|
+ *pAllocation = VK_NULL_HANDLE;
|
|
|
+
|
|
|
+ // 1. Create VkImage.
|
|
|
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
|
|
|
+ allocator->m_hDevice,
|
|
|
+ pImageCreateInfo,
|
|
|
+ allocator->GetAllocationCallbacks(),
|
|
|
+ pImage);
|
|
|
+ if(res >= 0)
|
|
|
+ {
|
|
|
+ VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
|
|
|
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
|
|
|
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
|
|
|
+
|
|
|
+ // 2. Allocate memory using allocator.
|
|
|
+ res = AllocateMemoryForImage(allocator, *pImage, pAllocationCreateInfo, suballocType, pAllocation);
|
|
|
+ if(res >= 0)
|
|
|
+ {
|
|
|
+ // 3. Bind image with memory.
|
|
|
+ res = (*allocator->GetVulkanFunctions().vkBindImageMemory)(
|
|
|
+ allocator->m_hDevice,
|
|
|
+ *pImage,
|
|
|
+ (*pAllocation)->GetMemory(),
|
|
|
+ (*pAllocation)->GetOffset());
|
|
|
+ if(res >= 0)
|
|
|
+ {
|
|
|
+ // All steps succeeded.
|
|
|
+ if(pAllocationInfo != VMA_NULL)
|
|
|
+ {
|
|
|
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
|
+ }
|
|
|
+ return VK_SUCCESS;
|
|
|
+ }
|
|
|
+ allocator->FreeMemory(*pAllocation);
|
|
|
+ *pAllocation = VK_NULL_HANDLE;
|
|
|
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
|
+ *pImage = VK_NULL_HANDLE;
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
|
+ *pImage = VK_NULL_HANDLE;
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+void vmaDestroyImage(
|
|
|
+ VmaAllocator allocator,
|
|
|
+ VkImage image,
|
|
|
+ VmaAllocation allocation)
|
|
|
+{
|
|
|
+ if(image != VK_NULL_HANDLE)
|
|
|
+ {
|
|
|
+ VMA_ASSERT(allocator);
|
|
|
+
|
|
|
+ VMA_DEBUG_LOG("vmaDestroyImage");
|
|
|
+
|
|
|
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
+
|
|
|
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
|
|
|
+
|
|
|
+ allocator->FreeMemory(allocation);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif // #ifdef VMA_IMPLEMENTATION
|