TiledDeferredImageBasedLighting.bsl 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES 1
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. code
  15. {
  16. [internal]
  17. cbuffer Params : register(b0)
  18. {
  19. uint2 gFramebufferSize;
  20. }
  21. #if MSAA_COUNT > 1
  22. Texture2DMS<float4> gInColor;
  23. RWBuffer<float4> gOutput;
  24. Texture2D gMSAACoverage;
  25. uint getLinearAddress(uint2 coord, uint sampleIndex)
  26. {
  27. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  28. }
  29. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  30. {
  31. uint idx = getLinearAddress(coord, sampleIndex);
  32. gOutput[idx] = color;
  33. }
  34. #else
  35. Texture2D<float4> gInColor;
  36. RWTexture2D<float4> gOutput;
  37. #endif
  38. groupshared uint sTileMinZ;
  39. groupshared uint sTileMaxZ;
  40. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  41. {
  42. // Note: To improve performance perhaps:
  43. // - Use halfZ (split depth range into two regions for better culling)
  44. // - Use parallel reduction instead of atomics
  45. uint sampleMinZ = 0x7F7FFFFF;
  46. uint sampleMaxZ = 0;
  47. #if MSAA_COUNT > 1
  48. [unroll]
  49. for(uint i = 0; i < MSAA_COUNT; ++i)
  50. {
  51. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  52. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  53. }
  54. #else
  55. sampleMinZ = asuint(-surfaceData[0].depth);
  56. sampleMaxZ = asuint(-surfaceData[0].depth);
  57. #endif
  58. // Set initial values
  59. if(threadIndex == 0)
  60. {
  61. sTileMinZ = 0x7F7FFFFF;
  62. sTileMaxZ = 0;
  63. }
  64. GroupMemoryBarrierWithGroupSync();
  65. // Determine minimum and maximum depth values for a tile
  66. InterlockedMin(sTileMinZ, sampleMinZ);
  67. InterlockedMax(sTileMaxZ, sampleMaxZ);
  68. GroupMemoryBarrierWithGroupSync();
  69. minTileZ = -asfloat(sTileMinZ);
  70. maxTileZ = -asfloat(sTileMaxZ);
  71. }
  72. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  73. {
  74. uint2 pixelPos = tileId * TILE_SIZE;
  75. // Convert thread XY coordinates to NDC coordinates
  76. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  77. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  78. float3 ndcMin;
  79. float3 ndcMax;
  80. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  81. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  82. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  83. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  84. float flipY = -sign(gMatProj[1][1]);
  85. ndcMin.y *= flipY;
  86. ndcMax.y *= flipY;
  87. ndcMin.z = convertToNDCZ(viewZMin);
  88. ndcMax.z = convertToNDCZ(viewZMax);
  89. float4 corner[5];
  90. // Far
  91. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  92. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  93. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  94. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  95. // Near (only one point, as the far away face is guaranteed to be larger in XY extents)
  96. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  97. [unroll]
  98. for(uint i = 0; i < 5; ++i)
  99. corner[i].xy /= corner[i].w;
  100. // Flip min/max because min = closest to view plane and max = furthest from view plane
  101. // but since Z is negative, closest is in fact the maximum and furtest is the minimum
  102. float3 viewMin = float3(corner[0].xy, viewZMax);
  103. float3 viewMax = float3(corner[0].xy, viewZMin);
  104. [unroll]
  105. for(uint i = 1; i < 4; ++i)
  106. {
  107. viewMin.xy = min(viewMin.xy, corner[i].xy);
  108. viewMax.xy = max(viewMax.xy, corner[i].xy);
  109. }
  110. extent = (viewMax - viewMin) * 0.5f;
  111. center = viewMin + extent;
  112. }
  113. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  114. {
  115. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  116. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  117. }
  118. float4 getLighting(uint2 pixelPos, float2 uv, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  119. {
  120. // x, y are now in clip space, z, w are in view space
  121. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  122. // z, w eliminated (since they are already in view space)
  123. // Note: Multiply by depth should be avoided if using ortographic projection
  124. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  125. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  126. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  127. float3 V = normalize(gViewOrigin - worldPosition);
  128. float3 N = surfaceData.worldNormal.xyz;
  129. float3 R = 2 * dot(V, N) * N - V;
  130. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  131. float4 existingColor;
  132. #if MSAA_COUNT > 1
  133. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  134. #else
  135. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  136. #endif
  137. float ao = gAmbientOcclusionTex.SampleLevel(gAmbientOcclusionSamp, uv, 0.0f).r;
  138. float4 ssr = gSSRTex.SampleLevel(gSSRSamp, uv, 0.0f);
  139. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, ao, ssr, probeOffset, numProbes);
  140. float4 totalLighting = existingColor;
  141. totalLighting.rgb += imageBasedSpecular;
  142. return totalLighting;
  143. }
  144. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  145. groupshared uint sNumProbes;
  146. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  147. void csmain(
  148. uint3 groupId : SV_GroupID,
  149. uint3 groupThreadId : SV_GroupThreadID,
  150. uint3 dispatchThreadId : SV_DispatchThreadID)
  151. {
  152. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  153. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  154. // Get data for all samples
  155. SurfaceData surfaceData[MSAA_COUNT];
  156. #if MSAA_COUNT > 1
  157. [unroll]
  158. for(uint i = 0; i < MSAA_COUNT; ++i)
  159. surfaceData[i] = getGBufferData(pixelPos, i);
  160. #else
  161. surfaceData[0] = getGBufferData(pixelPos);
  162. #endif
  163. // Set initial values
  164. if(threadIndex == 0)
  165. sNumProbes = 0;
  166. // Determine per-pixel minimum and maximum depth values
  167. float minTileZ, maxTileZ;
  168. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  169. // Create AABB for the current tile
  170. float3 center, extent;
  171. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  172. // Find probes overlapping the tile
  173. for (uint i = threadIndex; i < gNumProbes && i < MAX_LIGHTS; i += TILE_SIZE)
  174. {
  175. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  176. float probeRadius = gReflectionProbes[i].radius;
  177. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  178. {
  179. uint idx;
  180. InterlockedAdd(sNumProbes, 1U, idx);
  181. gUnsortedProbeIndices[idx] = i;
  182. }
  183. }
  184. GroupMemoryBarrierWithGroupSync();
  185. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  186. const uint numThreads = TILE_SIZE * TILE_SIZE;
  187. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  188. {
  189. int idx = gUnsortedProbeIndices[i];
  190. uint smallerCount = 0;
  191. for (uint j = 0; j < sNumProbes; j++)
  192. {
  193. int otherIdx = gUnsortedProbeIndices[j];
  194. if (otherIdx < idx)
  195. smallerCount++;
  196. }
  197. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  198. }
  199. GroupMemoryBarrierWithGroupSync();
  200. // Generate world position
  201. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  202. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  203. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  204. // Ignore pixels out of valid range
  205. if (all(dispatchThreadId.xy < viewportMax))
  206. {
  207. #if MSAA_COUNT > 1
  208. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  209. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  210. writeBufferSample(pixelPos, 0, lighting);
  211. bool doPerSampleShading = coverage > 0.5f;
  212. if(doPerSampleShading)
  213. {
  214. [unroll]
  215. for(uint i = 1; i < MSAA_COUNT; ++i)
  216. {
  217. lighting = getLighting(pixelPos, screenUv, i, clipSpacePos.xy, surfaceData[i], 0, sNumProbes);
  218. writeBufferSample(pixelPos, i, lighting);
  219. }
  220. }
  221. else // Splat same information to all samples
  222. {
  223. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  224. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  225. // so we need to resolve all samples. Consider getting around this issue somehow.
  226. [unroll]
  227. for(uint i = 1; i < MSAA_COUNT; ++i)
  228. writeBufferSample(pixelPos, i, lighting);
  229. }
  230. #else
  231. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  232. gOutput[pixelPos] = lighting;
  233. #endif
  234. }
  235. }
  236. };
  237. };