ImageBasedLighting.bslinc 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  2. mixin ImageBasedLighting
  3. {
  4. mixin ReflectionCubemapCommon;
  5. code
  6. {
  7. // Arbitrary limit, increase if needed
  8. #define MAX_PROBES 512
  9. // Note: Size must be multiple of largest element, because of std430 rules
  10. struct ReflProbeData
  11. {
  12. float3 position;
  13. float radius;
  14. float3 boxExtents;
  15. float transitionDistance;
  16. float4x4 invBoxTransform;
  17. uint cubemapIdx;
  18. uint type; // 0 - Sphere, 1 - Box
  19. float2 padding;
  20. };
  21. TextureCube gSkyReflectionTex;
  22. SamplerState gSkyReflectionSamp;
  23. TextureCubeArray gReflProbeCubemaps;
  24. SamplerState gReflProbeSamp;
  25. Texture2D gPreintegratedEnvBRDF;
  26. SamplerState gPreintegratedEnvBRDFSamp;
  27. StructuredBuffer<ReflProbeData> gReflectionProbes;
  28. #if USE_COMPUTE_INDICES
  29. groupshared uint gReflectionProbeIndices[MAX_PROBES];
  30. #endif
  31. #if USE_LIGHT_GRID_INDICES
  32. Buffer<uint> gReflectionProbeIndices;
  33. #endif
  34. cbuffer ReflProbeParams
  35. {
  36. uint gReflCubemapNumMips;
  37. uint gNumProbes;
  38. uint gSkyCubemapAvailable;
  39. uint gUseReflectionMaps;
  40. uint gSkyCubemapNumMips;
  41. float gSkyBrightness;
  42. }
  43. float getSphereReflectionContribution(float normalizedDistance)
  44. {
  45. // If closer than 60% to the probe radius, then full contribution is used.
  46. // For the other 40% we smoothstep and return contribution lower than 1 so other
  47. // reflection probes can be blended.
  48. // smoothstep from 1 to 0.6:
  49. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  50. // return t * t * (3.0 - 2.0 * t);
  51. float t = saturate(2.5 - 2.5 * normalizedDistance);
  52. return t * t * (3.0 - 2.0 * t);
  53. }
  54. float3 getLookupForSphereProxy(float3 originWS, float3 dirWS, float3 centerWS, float radius)
  55. {
  56. float radius2 = radius * radius;
  57. float3 originLS = originWS - centerWS;
  58. float a = dot(originLS, dirWS);
  59. float dist2 = a * a - dot(originLS, originLS) + radius2;
  60. float3 lookupDir = dirWS;
  61. [flatten]
  62. if(dist2 >= 0)
  63. {
  64. float farDist = sqrt(dist2) - a;
  65. lookupDir = originLS + farDist * dirWS;
  66. }
  67. return lookupDir;
  68. }
  69. float getDistBoxToPoint(float3 pt, float3 extents)
  70. {
  71. float3 d = max(max(-extents - pt, 0), pt - extents);
  72. return length(d);
  73. }
  74. float3 getLookupForBoxProxy(float3 originWS, float3 dirWS, float3 centerWS, float3 extents, float4x4 invBoxTransform, float transitionDistance, out float contribution)
  75. {
  76. // Transform origin and direction into box local space, where it is united sized and axis aligned
  77. float3 originLS = mul(invBoxTransform, float4(originWS, 1)).xyz;
  78. float3 dirLS = mul(invBoxTransform, float4(dirWS, 0)).xyz;
  79. // Get distance from 3 min planes and 3 max planes of the unit AABB
  80. // float3 unitVec = float3(1.0f, 1.0f, 1.0f);
  81. // float3 intersectsMax = (unitVec - originLS) / dirLS;
  82. // float3 intersectsMin = (-unitVec - originLS) / dirLS;
  83. float3 invDirLS = rcp(dirLS);
  84. float3 intersectsMax = invDirLS - originLS * invDirLS;
  85. float3 intersectsMin = -invDirLS - originLS * invDirLS;
  86. // Find nearest positive (along ray direction) intersection
  87. float3 positiveIntersections = max(intersectsMax, intersectsMin);
  88. float intersectDist = min(positiveIntersections.x, min(positiveIntersections.y, positiveIntersections.z));
  89. float3 intersectPositionWS = originWS + intersectDist * dirWS;
  90. float3 lookupDir = intersectPositionWS - centerWS;
  91. // Calculate contribution
  92. //// Shrink the box so fade out happens within box extents
  93. float3 reducedExtents = extents - float3(transitionDistance, transitionDistance, transitionDistance);
  94. float distToBox = getDistBoxToPoint(originLS * reducedExtents, reducedExtents);
  95. float normalizedDistance = distToBox / transitionDistance;
  96. // If closer than 70% to the probe radius, then full contribution is used.
  97. // For the other 30% we smoothstep and return contribution lower than 1 so other
  98. // reflection probes can be blended.
  99. // smoothstep from 1 to 0.7:
  100. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  101. // return t * t * (3.0 - 2.0 * t);
  102. float t = saturate(3.3333 - 3.3333 * normalizedDistance);
  103. contribution = t * t * (3.0 - 2.0 * t);
  104. return lookupDir;
  105. }
  106. float3 gatherReflectionRadiance(float3 worldPos, float3 dir, float roughness, float3 specularColor, uint probeOffset, uint numProbes)
  107. {
  108. if(gUseReflectionMaps == 0)
  109. return specularColor;
  110. float mipLevel = mapRoughnessToMipLevel(roughness, gReflCubemapNumMips);
  111. float3 output = 0;
  112. float leftoverContribution = 1.0f;
  113. for(uint i = 0; i < numProbes; i++)
  114. {
  115. if(leftoverContribution < 0.001f)
  116. break;
  117. uint probeIdx = gReflectionProbeIndices[probeOffset + i];
  118. ReflProbeData probeData = gReflectionProbes[probeIdx];
  119. float3 probeToPos = worldPos - probeData.position;
  120. float distToProbe = length(probeToPos);
  121. float normalizedDist = saturate(distToProbe / probeData.radius);
  122. if(distToProbe <= probeData.radius)
  123. {
  124. float3 correctedDir;
  125. float contribution = 0;
  126. if(probeData.type == 0) // Sphere
  127. {
  128. correctedDir = getLookupForSphereProxy(worldPos, dir, probeData.position, probeData.radius);
  129. contribution = getSphereReflectionContribution(normalizedDist);
  130. }
  131. else if(probeData.type == 1) // Box
  132. {
  133. correctedDir = getLookupForBoxProxy(worldPos, dir, probeData.position, probeData.boxExtents, probeData.invBoxTransform, probeData.transitionDistance, contribution);
  134. }
  135. float4 probeSample = gReflProbeCubemaps.SampleLevel(gReflProbeSamp, float4(correctedDir, probeData.cubemapIdx), mipLevel);
  136. probeSample *= contribution;
  137. output += probeSample.rgb * leftoverContribution;
  138. leftoverContribution *= (1.0f - contribution);
  139. }
  140. }
  141. if(gSkyCubemapAvailable > 0)
  142. {
  143. float skyMipLevel = mapRoughnessToMipLevel(roughness, gSkyCubemapNumMips);
  144. float4 skySample = gSkyReflectionTex.SampleLevel(gSkyReflectionSamp, dir, skyMipLevel) * gSkyBrightness;
  145. output += skySample.rgb * leftoverContribution;
  146. }
  147. return output;
  148. }
  149. float3 getImageBasedSpecular(float3 worldPos, float3 V, float3 R, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  150. {
  151. // See C++ code for generation of gPreintegratedEnvBRDF to see why this code works as is
  152. float3 N = surfaceData.worldNormal.xyz;
  153. float NoV = saturate(dot(N, V));
  154. // Note: Using a fixed F0 value of 0.04 (plastic) for dielectrics, and using albedo as specular for conductors.
  155. // For more customizability allow the user to provide separate albedo/specular colors for both types.
  156. float3 specularColor = lerp(float3(0.04f, 0.04f, 0.04f), surfaceData.albedo.rgb, surfaceData.metalness);
  157. float3 radiance = gatherReflectionRadiance(worldPos, R, surfaceData.roughness, specularColor, probeOffset, numProbes);
  158. float2 envBRDF = gPreintegratedEnvBRDF.SampleLevel(gPreintegratedEnvBRDFSamp, float2(NoV, surfaceData.roughness), 0).rg;
  159. return radiance * (specularColor * envBRDF.x + envBRDF.y);
  160. }
  161. };
  162. };