| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- #include "$ENGINE$\GBufferInput.bslinc"
- #include "$ENGINE$\PerCameraData.bslinc"
- #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
- #define USE_COMPUTE_INDICES 1
- #include "$ENGINE$\LightingCommon.bslinc"
- #include "$ENGINE$\ImageBasedLighting.bslinc"
- technique TiledDeferredImageBasedLighting
- {
- mixin GBufferInput;
- mixin PerCameraData;
- mixin LightingCommon;
- mixin ReflectionCubemapCommon;
- mixin ImageBasedLighting;
- code
- {
- [internal]
- cbuffer Params : register(b0)
- {
- uint2 gFramebufferSize;
- }
-
- #if MSAA_COUNT > 1
- Texture2DMS<float4> gInColor;
- RWBuffer<float4> gOutput;
-
- uint getLinearAddress(uint2 coord, uint sampleIndex)
- {
- return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
- }
-
- void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
- {
- uint idx = getLinearAddress(coord, sampleIndex);
- gOutput[idx] = color;
- }
- #else
- Texture2D<float4> gInColor;
- RWTexture2D<float4> gOutput;
- #endif
-
- groupshared uint sTileMinZ;
- groupshared uint sTileMaxZ;
- void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
- {
- // Note: To improve performance perhaps:
- // - Use halfZ (split depth range into two regions for better culling)
- // - Use parallel reduction instead of atomics
-
- uint sampleMinZ = 0x7F7FFFFF;
- uint sampleMaxZ = 0;
- #if MSAA_COUNT > 1
- [unroll]
- for(uint i = 0; i < MSAA_COUNT; ++i)
- {
- sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
- sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
- }
- #else
- sampleMinZ = asuint(-surfaceData[0].depth);
- sampleMaxZ = asuint(-surfaceData[0].depth);
- #endif
- // Set initial values
- if(threadIndex == 0)
- {
- sTileMinZ = 0x7F7FFFFF;
- sTileMaxZ = 0;
- }
-
- GroupMemoryBarrierWithGroupSync();
-
- // Determine minimum and maximum depth values for a tile
- InterlockedMin(sTileMinZ, sampleMinZ);
- InterlockedMax(sTileMaxZ, sampleMaxZ);
-
- GroupMemoryBarrierWithGroupSync();
-
- minTileZ = asfloat(sTileMinZ);
- maxTileZ = asfloat(sTileMaxZ);
- }
-
- void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
- {
- uint2 pixelPos = tileId * TILE_SIZE;
-
- // Convert threat XY coordinates to NDC coordinates
- float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
- float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
-
- float3 ndcMin;
- float3 ndcMax;
-
- ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
- ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
-
- // Flip Y depending on render API, depending if Y in NDC is facing up or down
- // (We negate the value because we want NDC with Y flipped, so origin is top left)
- float flipY = -sign(gMatProj[1][1]);
- ndcMin.y *= flipY;
- ndcMax.y *= flipY;
-
- // Camera is looking along negative z, therefore min in view space is max in NDC
- ndcMin.z = convertToNDCZ(viewZMax);
- ndcMax.z = convertToNDCZ(viewZMin);
-
- float4 corner[5];
- // Far
- corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
- corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
- corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
- corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
-
- // Near (only one point, as the far away face is guaranteed to be larger in XY extents)
- corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
-
- [unroll]
- for(uint i = 0; i < 5; ++i)
- corner[i].xy /= corner[i].w;
-
- float3 viewMin = float3(corner[0].xy, viewZMin);
- float3 viewMax = float3(corner[0].xy, viewZMax);
-
- [unroll]
- for(uint i = 1; i < 4; ++i)
- {
- viewMin.xy = min(viewMin.xy, corner[i].xy);
- viewMax.xy = max(viewMax.xy, corner[i].xy);
- }
-
- extent = (viewMax - viewMin) * 0.5f;
- center = viewMin + extent;
- }
-
- bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
- {
- float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
- return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
- }
-
- float4 getLighting(uint2 pixelPos, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
- {
- // x, y are now in clip space, z, w are in view space
- // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
- // z, w eliminated (since they are already in view space)
- // Note: Multiply by depth should be avoided if using ortographic projection
- float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
- float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
- float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
-
- float3 V = normalize(gViewOrigin - worldPosition);
- float3 N = surfaceData.worldNormal.xyz;
- float3 R = 2 * dot(V, N) * N - V;
- float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
-
- float4 existingColor;
- #if MSAA_COUNT > 1
- existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
- #else
- existingColor = gInColor.Load(int3(pixelPos.xy, 0));
- #endif
-
- float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, probeOffset, numProbes);
- float4 totalLighting = existingColor;
- totalLighting.rgb += imageBasedSpecular;
-
- return totalLighting;
- }
-
- groupshared uint gUnsortedProbeIndices[MAX_PROBES];
- groupshared uint sNumProbes;
-
- [numthreads(TILE_SIZE, TILE_SIZE, 1)]
- void csmain(
- uint3 groupId : SV_GroupID,
- uint3 groupThreadId : SV_GroupThreadID,
- uint3 dispatchThreadId : SV_DispatchThreadID)
- {
- uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
- uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
-
- // Get data for all samples
- SurfaceData surfaceData[MSAA_COUNT];
-
- #if MSAA_COUNT > 1
- [unroll]
- for(uint i = 0; i < MSAA_COUNT; ++i)
- surfaceData[i] = getGBufferData(pixelPos, i);
- #else
- surfaceData[0] = getGBufferData(pixelPos);
- #endif
- // Set initial values
- if(threadIndex == 0)
- sNumProbes = 0;
-
- // Determine per-pixel minimum and maximum depth values
- float minTileZ, maxTileZ;
- getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
-
- // Create AABB for the current tile
- float3 center, extent;
- calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
-
- // Find probes overlapping the tile
- for (uint i = 0; i < gNumProbes && i < MAX_LIGHTS; i += TILE_SIZE)
- {
- float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
- float probeRadius = gReflectionProbes[i].radius;
-
- if(intersectSphereBox(probePosition, probeRadius, center, extent))
- {
- uint idx;
- InterlockedAdd(sNumProbes, 1U, idx);
- gUnsortedProbeIndices[idx] = i;
- }
- }
- GroupMemoryBarrierWithGroupSync();
- // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
- const uint numThreads = TILE_SIZE * TILE_SIZE;
- for (uint i = threadIndex; i < sNumProbes; i += numThreads)
- {
- int idx = gUnsortedProbeIndices[i];
- uint smallerCount = 0;
- for (uint j = 0; j < sNumProbes; j++)
- {
- int otherIdx = gUnsortedProbeIndices[j];
- if (otherIdx < idx)
- smallerCount++;
- }
- gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
- }
-
- GroupMemoryBarrierWithGroupSync();
-
- // Generate world position
- float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
- float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
-
- uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
- // Ignore pixels out of valid range
- if (all(dispatchThreadId.xy < viewportMax))
- {
- #if MSAA_COUNT > 1
- float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, gNumProbes);
- writeBufferSample(pixelPos, 0, lighting);
- bool doPerSampleShading = needsPerSampleShading(surfaceData);
- if(doPerSampleShading)
- {
- [unroll]
- for(uint i = 1; i < MSAA_COUNT; ++i)
- {
- lighting = getLighting(pixelPos, i, clipSpacePos.xy, surfaceData[i], 0, gNumProbes);
- writeBufferSample(pixelPos, i, lighting);
- }
- }
- else // Splat same information to all samples
- {
- [unroll]
- for(uint i = 1; i < MSAA_COUNT; ++i)
- writeBufferSample(pixelPos, i, lighting);
- }
-
- #else
- float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, gNumProbes);
- gOutput[pixelPos] = lighting;
- #endif
- }
- }
- };
- };
|