BsMath.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. #include "BsDegree.h"
  4. #include "BsRadian.h"
  5. namespace BansheeEngine
  6. {
  7. /** @addtogroup Math
  8. * @{
  9. */
  10. /** Utility class providing common scalar math operations. */
  11. class BS_UTILITY_EXPORT Math
  12. {
  13. public:
  14. static Radian acos(float val);
  15. static Radian asin(float val);
  16. static Radian atan(float val) { return Radian(std::atan(val)); }
  17. static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
  18. static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
  19. static float cos(float val) { return (float)std::cos(val); }
  20. static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
  21. static float sin(float val) { return (float)std::sin(val); }
  22. static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
  23. static float tan(float val) { return (float)std::tan(val); }
  24. static float sqrt(float val) { return (float)std::sqrt(val); }
  25. static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
  26. static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
  27. static float invSqrt(float val);
  28. static float sqr(float val) { return val*val; }
  29. static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
  30. static float exp(float val) { return (float)std::exp(val); }
  31. static float log(float val) { return (float)std::log(val); }
  32. static float log2(float val) { return (float)(std::log(val)/LOG2); }
  33. static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
  34. static float sign(float val);
  35. static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
  36. static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
  37. static float abs(float val) { return float(std::fabs(val)); }
  38. static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
  39. static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
  40. static float ceil(float val) { return (float)std::ceil(val); }
  41. static int ceilToInt(float val) { return (int)std::ceil(val); }
  42. static float round(float val) { return (float)std::floor(val + 0.5f); }
  43. static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
  44. static float floor(float val) { return (float)std::floor(val); }
  45. static int floorToInt(float val) { return (int)std::floor(val); }
  46. /** Clamp a value within an inclusive range. */
  47. template <typename T>
  48. static T clamp(T val, T minval, T maxval)
  49. {
  50. assert (minval <= maxval && "Invalid clamp range");
  51. return std::max(std::min(val, maxval), minval);
  52. }
  53. /** Clamp a value within an inclusive range [0..1]. */
  54. template <typename T>
  55. static T clamp01(T val)
  56. {
  57. return std::max(std::min(val, (T)1), (T)0);
  58. }
  59. /** Checks is the specified value a power of two. Only works on integer values. */
  60. template <typename T>
  61. static bool isPow2(T val)
  62. {
  63. return (val & (val - 1)) == 0;
  64. }
  65. static bool isNaN(float f)
  66. {
  67. return f != f;
  68. }
  69. /** Compare two floats, using tolerance for inaccuracies. */
  70. static bool approxEquals(float a, float b, float tolerance = std::numeric_limits<float>::epsilon());
  71. /** Compare two doubles, using tolerance for inaccuracies. */
  72. static bool approxEquals(double a, double b, double tolerance = std::numeric_limits<double>::epsilon());
  73. /** Compare two 2D vectors, using tolerance for inaccuracies. */
  74. static bool approxEquals(const Vector2& a, const Vector2& b, float tolerance = std::numeric_limits<float>::epsilon());
  75. /** Compare two 3D vectors, using tolerance for inaccuracies. */
  76. static bool approxEquals(const Vector3& a, const Vector3& b, float tolerance = std::numeric_limits<float>::epsilon());
  77. /** Compare two 4D vectors, using tolerance for inaccuracies. */
  78. static bool approxEquals(const Vector4& a, const Vector4& b, float tolerance = std::numeric_limits<float>::epsilon());
  79. /** Calculates the tangent space vector for a given set of positions / texture coords. */
  80. static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
  81. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
  82. /************************************************************************/
  83. /* TRIG APPROXIMATIONS */
  84. /************************************************************************/
  85. /**
  86. * Sine function approximation.
  87. *
  88. * @param[in] val Angle in range [0, pi/2].
  89. *
  90. * @note Evaluates trigonometric functions using polynomial approximations.
  91. */
  92. static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  93. /**
  94. * Sine function approximation.
  95. *
  96. * @param[in] val Angle in range [0, pi/2].
  97. *
  98. * @note Evaluates trigonometric functions using polynomial approximations.
  99. */
  100. static float fastSin0(float val);
  101. /**
  102. * Sine function approximation.
  103. *
  104. * @param[in] val Angle in range [0, pi/2].
  105. *
  106. * @note
  107. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
  108. */
  109. static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  110. /**
  111. * Sine function approximation.
  112. *
  113. * @param[in] val Angle in range [0, pi/2].
  114. *
  115. * @note
  116. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
  117. */
  118. static float fastSin1(float val);
  119. /**
  120. * Cosine function approximation.
  121. *
  122. * @param[in] val Angle in range [0, pi/2].
  123. *
  124. * @note Evaluates trigonometric functions using polynomial approximations.
  125. */
  126. static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  127. /**
  128. * Cosine function approximation.
  129. *
  130. * @param[in] val Angle in range [0, pi/2].
  131. *
  132. * @note Evaluates trigonometric functions using polynomial approximations.
  133. */
  134. static float fastCos0(float val);
  135. /**
  136. * Cosine function approximation.
  137. *
  138. * @param[in] val Angle in range [0, pi/2].
  139. *
  140. * @note
  141. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
  142. */
  143. static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  144. /**
  145. * Cosine function approximation.
  146. *
  147. * @param[in] val Angle in range [0, pi/2].
  148. *
  149. * @note
  150. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
  151. */
  152. static float fastCos1(float val);
  153. /**
  154. * Tangent function approximation.
  155. *
  156. * @param[in] val Angle in range [0, pi/4].
  157. *
  158. * @note Evaluates trigonometric functions using polynomial approximations.
  159. */
  160. static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  161. /**
  162. * Tangent function approximation.
  163. *
  164. * @param[in] val Angle in range [0, pi/4].
  165. *
  166. * @note Evaluates trigonometric functions using polynomial approximations.
  167. */
  168. static float fastTan0(float val);
  169. /**
  170. * Tangent function approximation.
  171. *
  172. * @param[in] val Angle in range [0, pi/4].
  173. *
  174. * @note
  175. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
  176. */
  177. static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  178. /**
  179. * Tangent function approximation.
  180. *
  181. * @param[in] val Angle in range [0, pi/4].
  182. *
  183. * @note
  184. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
  185. */
  186. static float fastTan1(float val);
  187. /**
  188. * Inverse sine function approximation.
  189. *
  190. * @param[in] val Angle in range [0, 1].
  191. *
  192. * @note Evaluates trigonometric functions using polynomial approximations.
  193. */
  194. static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  195. /**
  196. * Inverse sine function approximation.
  197. *
  198. * @param[in] val Angle in range [0, 1].
  199. *
  200. * @note Evaluates trigonometric functions using polynomial approximations.
  201. */
  202. static float fastASin0(float val);
  203. /**
  204. * Inverse sine function approximation.
  205. *
  206. * @param[in] val Angle in range [0, 1].
  207. *
  208. * @note
  209. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
  210. */
  211. static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  212. /**
  213. * Inverse sine function approximation.
  214. *
  215. * @param[in] val Angle in range [0, 1].
  216. *
  217. * @note
  218. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
  219. */
  220. static float fastASin1(float val);
  221. /**
  222. * Inverse cosine function approximation.
  223. *
  224. * @param[in] val Angle in range [0, 1].
  225. *
  226. * @note Evaluates trigonometric functions using polynomial approximations.
  227. */
  228. static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  229. /**
  230. * Inverse cosine function approximation.
  231. *
  232. * @param[in] val Angle in range [0, 1].
  233. *
  234. * @note Evaluates trigonometric functions using polynomial approximations.
  235. */
  236. static float fastACos0(float val);
  237. /**
  238. * Inverse cosine function approximation.
  239. *
  240. * @param[in] val Angle in range [0, 1].
  241. *
  242. * @note
  243. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
  244. */
  245. static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  246. /**
  247. * Inverse cosine function approximation.
  248. *
  249. * @param[in] val Angle in range [0, 1].
  250. *
  251. * @note
  252. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
  253. */
  254. static float fastACos1(float val);
  255. /**
  256. * Inverse tangent function approximation.
  257. *
  258. * @param[in] val Angle in range [-1, 1].
  259. *
  260. * @note Evaluates trigonometric functions using polynomial approximations.
  261. */
  262. static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  263. /**
  264. * Inverse tangent function approximation.
  265. *
  266. * @param[in] val Angle in range [-1, 1].
  267. *
  268. * @note Evaluates trigonometric functions using polynomial approximations.
  269. */
  270. static float fastATan0(float val);
  271. /**
  272. * Inverse tangent function approximation.
  273. *
  274. * @param[in] val Angle in range [-1, 1].
  275. *
  276. * @note
  277. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
  278. */
  279. static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  280. /**
  281. * Inverse tangent function approximation.
  282. *
  283. * @param[in] val Angle in range [-1, 1].
  284. *
  285. * @note
  286. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
  287. */
  288. static float fastATan1(float val);
  289. /**
  290. * Interpolates between min and max. Returned value is in [0, 1] range where min = 0, max = 1 and 0.5 is
  291. * the average of min and max.
  292. */
  293. template <typename T>
  294. static float lerp01(T val, T min, T max)
  295. {
  296. return clamp01((val - min) / std::max(max - min, 0.0001F));
  297. }
  298. /**
  299. * Solves the linear equation with the parameters A, B. Returns number of roots found and the roots themselves will
  300. * be output in the @p roots array.
  301. *
  302. * @param[out] roots Must be at least size of 1.
  303. *
  304. * @note Only returns real roots.
  305. */
  306. template <typename T>
  307. static UINT32 solveLinear(T A, T B, T* roots)
  308. {
  309. if (!approxEquals(A, (T)0))
  310. {
  311. roots[0] = -B / A;
  312. return 1;
  313. }
  314. roots[0] = 0.0f;
  315. return 1;
  316. }
  317. /**
  318. * Solves the quadratic equation with the parameters A, B, C. Returns number of roots found and the roots themselves
  319. * will be output in the @p roots array.
  320. *
  321. * @param[out] roots Must be at least size of 2.
  322. *
  323. * @note Only returns real roots.
  324. */
  325. template <typename T>
  326. static UINT32 solveQuadratic(T A, T B, T C, T* roots)
  327. {
  328. if (!approxEquals(A, (T)0))
  329. {
  330. T p = B / (2 * A);
  331. T q = C / A;
  332. T D = p * p - q;
  333. if (!approxEquals(D, (T)0))
  334. {
  335. if (D < (T)0)
  336. return 0;
  337. T sqrtD = sqrt(D);
  338. roots[0] = sqrtD - p;
  339. roots[1] = -sqrtD - p;
  340. return 2;
  341. }
  342. else
  343. {
  344. roots[0] = -p;
  345. roots[1] = -p;
  346. return 1;
  347. }
  348. }
  349. else
  350. {
  351. return solveLinear(B, C, roots);
  352. }
  353. }
  354. /**
  355. * Solves the cubic equation with the parameters A, B, C, D. Returns number of roots found and the roots themselves
  356. * will be output in the @p roots array.
  357. *
  358. * @param[out] roots Must be at least size of 3.
  359. *
  360. * @note Only returns real roots.
  361. */
  362. template <typename T>
  363. static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
  364. {
  365. static const T THIRD = (1 / (T)3);
  366. T invA = 1 / A;
  367. A = B * invA;
  368. B = C * invA;
  369. C = D * invA;
  370. T sqA = A * A;
  371. T p = THIRD * (-THIRD * sqA + B);
  372. T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C);
  373. T cbp = p * p * p;
  374. D = q * q + cbp;
  375. UINT32 numRoots = 0;
  376. if (!approxEquals(D, (T)0))
  377. {
  378. if (D < 0.0)
  379. {
  380. T phi = THIRD * ::acos(-q / sqrt(-cbp));
  381. T t = 2 * sqrt(-p);
  382. roots[0] = t * cos(phi);
  383. roots[1] = -t * cos(phi + PI * THIRD);
  384. roots[2] = -t * cos(phi - PI * THIRD);
  385. numRoots = 3;
  386. }
  387. else
  388. {
  389. T sqrtD = sqrt(D);
  390. T u = cbrt(sqrtD + fabs(q));
  391. if (q > (T)0)
  392. roots[0] = -u + p / u;
  393. else
  394. roots[0] = u - p / u;
  395. numRoots = 1;
  396. }
  397. }
  398. else
  399. {
  400. if (!approxEquals(q, (T)0))
  401. {
  402. T u = cbrt(-q);
  403. roots[0] = 2 * u;
  404. roots[1] = -u;
  405. numRoots = 2;
  406. }
  407. else
  408. {
  409. roots[0] = 0.0f;
  410. numRoots = 1;
  411. }
  412. }
  413. T sub = THIRD * A;
  414. for (UINT32 i = 0; i < numRoots; i++)
  415. roots[i] -= sub;
  416. return numRoots;
  417. }
  418. /**
  419. * Solves the quartic equation with the parameters A, B, C, D, E. Returns number of roots found and the roots
  420. * themselves will be output in the @p roots array.
  421. *
  422. * @param[out] roots Must be at least size of 4.
  423. *
  424. * @note Only returns real roots.
  425. */
  426. template <typename T>
  427. static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
  428. {
  429. T invA = 1 / A;
  430. A = B * invA;
  431. B = C * invA;
  432. C = D * invA;
  433. D = E * invA;
  434. T sqA = A*A;
  435. T p = -(3 / (T)8) * sqA + B;
  436. T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C;
  437. T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D;
  438. UINT32 numRoots = 0;
  439. if (!approxEquals(r, (T)0))
  440. {
  441. T cubicA = 1;
  442. T cubicB = -(T)0.5 * p ;
  443. T cubicC = -r;
  444. T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q;
  445. solveCubic(cubicA, cubicB, cubicC, cubicD, roots);
  446. T z = roots[0];
  447. T u = z * z - r;
  448. T v = 2 * z - p;
  449. if (approxEquals(u, T(0)))
  450. u = 0;
  451. else if (u > 0)
  452. u = sqrt(u);
  453. else
  454. return 0;
  455. if (approxEquals(v, T(0)))
  456. v = 0;
  457. else if (v > 0)
  458. v = sqrt(v);
  459. else
  460. return 0;
  461. T quadraticA = 1;
  462. T quadraticB = q < 0 ? -v : v;
  463. T quadraticC = z - u;
  464. numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots);
  465. quadraticA = 1;
  466. quadraticB = q < 0 ? v : -v;
  467. quadraticC = z + u;
  468. numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots);
  469. }
  470. else
  471. {
  472. numRoots = solveCubic(q, p, (T)0, (T)1, roots);
  473. roots[numRoots++] = 0;
  474. }
  475. T sub = (1/(T)4) * A;
  476. for (UINT32 i = 0; i < numRoots; i++)
  477. roots[i] -= sub;
  478. return numRoots;
  479. }
  480. static const float POS_INFINITY;
  481. static const float NEG_INFINITY;
  482. static const float PI;
  483. static const float TWO_PI;
  484. static const float HALF_PI;
  485. static const float DEG2RAD;
  486. static const float RAD2DEG;
  487. static const float LOG2;
  488. };
  489. /** @} */
  490. }