CmMesh.cpp 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. #include "CmMesh.h"
  2. #include "CmMeshRTTI.h"
  3. #include "CmMeshData.h"
  4. #include "CmVector2.h"
  5. #include "CmVector3.h"
  6. #include "CmDebug.h"
  7. #include "CmHardwareBufferManager.h"
  8. #include "CmMeshManager.h"
  9. #include "CmCoreThread.h"
  10. #include "CmAsyncOp.h"
  11. #include "CmAABox.h"
  12. #include "CmProfiler.h"
  13. namespace CamelotFramework
  14. {
  15. Mesh::Mesh()
  16. :mVertexData(nullptr), mIndexData(nullptr)
  17. {
  18. }
  19. Mesh::~Mesh()
  20. {
  21. }
  22. void Mesh::writeSubresource(UINT32 subresourceIdx, const GpuResourceData& data)
  23. {
  24. THROW_IF_NOT_CORE_THREAD;
  25. if(data.getTypeId() != TID_MeshData)
  26. CM_EXCEPT(InvalidParametersException, "Invalid GpuResourceData type. Only MeshData is supported.");
  27. const MeshData& meshData = static_cast<const MeshData&>(data);
  28. // Indices
  29. mIndexData = std::shared_ptr<IndexData>(cm_new<IndexData, PoolAlloc>());
  30. mIndexData->indexCount = meshData.getNumIndices();
  31. mIndexData->indexBuffer = HardwareBufferManager::instance().createIndexBuffer(
  32. meshData.getIndexType(),
  33. mIndexData->indexCount,
  34. GBU_STATIC);
  35. UINT8* idxData = static_cast<UINT8*>(mIndexData->indexBuffer->lock(GBL_WRITE_ONLY));
  36. UINT32 idxElementSize = meshData.getIndexElementSize();
  37. UINT32 indicesSize = meshData.getIndexBufferSize();
  38. UINT8* srcIdxData = meshData.getIndexData();
  39. memcpy(idxData, srcIdxData, indicesSize);
  40. mIndexData->indexBuffer->unlock();
  41. // Vertices
  42. mVertexData = std::shared_ptr<VertexData>(cm_new<VertexData, PoolAlloc>());
  43. mVertexData->vertexCount = meshData.getNumVertices();
  44. mVertexData->vertexDeclaration = meshData.createDeclaration();
  45. for(UINT32 i = 0; i <= meshData.getMaxStreamIdx(); i++)
  46. {
  47. if(!meshData.hasStream(i))
  48. continue;
  49. UINT32 streamSize = meshData.getStreamSize(i);
  50. VertexBufferPtr vertexBuffer = HardwareBufferManager::instance().createVertexBuffer(
  51. mVertexData->vertexDeclaration->getVertexSize(i),
  52. mVertexData->vertexCount,
  53. GBU_STATIC);
  54. mVertexData->setBuffer(i, vertexBuffer);
  55. UINT8* srcVertBufferData = meshData.getStreamData(i);
  56. UINT8* vertBufferData = static_cast<UINT8*>(vertexBuffer->lock(GBL_WRITE_ONLY));
  57. UINT32 bufferSize = meshData.getStreamSize(i);
  58. memcpy(vertBufferData, srcVertBufferData, bufferSize);
  59. if(vertexBuffer->vertexColorReqRGBFlip())
  60. {
  61. UINT32 vertexStride = meshData.getVertexStride(i);
  62. for(INT32 semanticIdx = 0; semanticIdx < VertexBuffer::MAX_SEMANTIC_IDX; semanticIdx++)
  63. {
  64. if(!meshData.hasElement(VES_COLOR, semanticIdx, i))
  65. continue;
  66. UINT8* colorData = vertBufferData + meshData.getElementOffset(VES_COLOR, semanticIdx, i);
  67. for(UINT32 j = 0; j < mVertexData->vertexCount; j++)
  68. {
  69. UINT32* curColor = (UINT32*)colorData;
  70. (*curColor) = ((*curColor) & 0xFF00FF00) | ((*curColor >> 16) & 0x000000FF) | ((*curColor << 16) & 0x00FF0000);
  71. colorData += vertexStride;
  72. }
  73. }
  74. }
  75. vertexBuffer->unlock();
  76. }
  77. // Submeshes
  78. mSubMeshes.clear();
  79. for(UINT32 i = 0; i < meshData.getNumSubmeshes(); i++)
  80. {
  81. UINT32 numIndices = meshData.getNumIndices(i);
  82. if(numIndices > 0)
  83. {
  84. mSubMeshes.push_back(SubMesh(meshData.getIndexBufferOffset(i), numIndices, meshData.getDrawOp(i), mVertexData, mIndexData, true));
  85. }
  86. }
  87. }
  88. void Mesh::readSubresource(UINT32 subresourceIdx, GpuResourceData& data)
  89. {
  90. THROW_IF_NOT_CORE_THREAD;
  91. if(data.getTypeId() != TID_MeshData)
  92. CM_EXCEPT(InvalidParametersException, "Invalid GpuResourceData type. Only MeshData is supported.");
  93. IndexBuffer::IndexType indexType = IndexBuffer::IT_32BIT;
  94. if(mIndexData)
  95. indexType = mIndexData->indexBuffer->getType();
  96. MeshData& meshData = static_cast<MeshData&>(data);
  97. if(mIndexData)
  98. {
  99. UINT8* idxData = static_cast<UINT8*>(mIndexData->indexBuffer->lock(GBL_READ_ONLY));
  100. UINT32 idxElemSize = mIndexData->indexBuffer->getIndexSize();
  101. for(UINT32 i = 0; i < mSubMeshes.size(); i++)
  102. {
  103. UINT8* indices = nullptr;
  104. if(indexType == IndexBuffer::IT_16BIT)
  105. indices = (UINT8*)meshData.getIndices16(i);
  106. else
  107. indices = (UINT8*)meshData.getIndices32(i);
  108. memcpy(indices, &idxData[mSubMeshes[i].indexOffset * idxElemSize], mSubMeshes[i].indexCount * idxElemSize);
  109. }
  110. mIndexData->indexBuffer->unlock();
  111. }
  112. if(mVertexData)
  113. {
  114. auto vertexBuffers = mVertexData->getBuffers();
  115. UINT32 streamIdx = 0;
  116. for(auto iter = vertexBuffers.begin(); iter != vertexBuffers.end() ; ++iter)
  117. {
  118. VertexBufferPtr vertexBuffer = iter->second;
  119. UINT32 bufferSize = vertexBuffer->getVertexSize() * vertexBuffer->getNumVertices();
  120. UINT8* vertDataPtr = static_cast<UINT8*>(vertexBuffer->lock(GBL_READ_ONLY));
  121. UINT8* dest = meshData.getStreamData(streamIdx);
  122. memcpy(dest, vertDataPtr, bufferSize);
  123. vertexBuffer->unlock();
  124. streamIdx++;
  125. }
  126. }
  127. }
  128. MeshDataPtr Mesh::allocateSubresourceBuffer(UINT32 subresourceIdx) const
  129. {
  130. IndexBuffer::IndexType indexType = IndexBuffer::IT_32BIT;
  131. if(mIndexData)
  132. indexType = mIndexData->indexBuffer->getType();
  133. MeshDataPtr meshData = cm_shared_ptr<MeshData, PoolAlloc>(mVertexData->vertexCount, indexType);
  134. meshData->beginDesc();
  135. if(mIndexData)
  136. {
  137. for(UINT32 i = 0; i < mSubMeshes.size(); i++)
  138. meshData->addSubMesh(mSubMeshes[i].indexCount, i);
  139. }
  140. if(mVertexData)
  141. {
  142. auto vertexBuffers = mVertexData->getBuffers();
  143. UINT32 streamIdx = 0;
  144. for(auto iter = vertexBuffers.begin(); iter != vertexBuffers.end() ; ++iter)
  145. {
  146. VertexBufferPtr vertexBuffer = iter->second;
  147. UINT32 vertexSize = vertexBuffer->getVertexSize();
  148. UINT32 numElements = mVertexData->vertexDeclaration->getElementCount();
  149. for(UINT32 j = 0; j < numElements; j++)
  150. {
  151. const VertexElement* element = mVertexData->vertexDeclaration->getElement(j);
  152. VertexElementType type = element->getType();
  153. VertexElementSemantic semantic = element->getSemantic();
  154. UINT32 semanticIdx = element->getSemanticIdx();
  155. UINT32 offset = element->getOffset();
  156. UINT32 elemSize = element->getSize();
  157. meshData->addVertElem(type, semantic, semanticIdx, streamIdx);
  158. }
  159. streamIdx++;
  160. }
  161. }
  162. meshData->endDesc();
  163. return meshData;
  164. }
  165. const SubMesh& Mesh::getSubMesh(UINT32 subMeshIdx) const
  166. {
  167. THROW_IF_NOT_CORE_THREAD;
  168. if(subMeshIdx < 0 || subMeshIdx >= mSubMeshes.size())
  169. {
  170. CM_EXCEPT(InvalidParametersException, "Invalid sub-mesh index ("
  171. + toString(subMeshIdx) + "). Number of sub-meshes available: " + toString((int)mSubMeshes.size()));
  172. }
  173. // TODO - BIG TODO - Completely ignores subMeshIdx and always renders the entire thing because all submeshes
  174. // will share the same buffers
  175. return mSubMeshes[subMeshIdx];
  176. }
  177. const AABox& Mesh::getBounds() const
  178. {
  179. // TODO - Retrieve bounds for entire mesh (need to calculate them during creation)
  180. return AABox::BOX_EMPTY;
  181. }
  182. const AABox& Mesh::getBounds(UINT32 submeshIdx) const
  183. {
  184. // TODO - Retrieve bounds a specific sub-mesh (need to calculate them during creation)
  185. return AABox::BOX_EMPTY;
  186. }
  187. void Mesh::initialize_internal()
  188. {
  189. THROW_IF_NOT_CORE_THREAD;
  190. // TODO Low priority - Initialize an empty mesh. A better way would be to only initialize the mesh
  191. // once we set the proper mesh data (then we don't have to do it twice), but this makes the code less complex.
  192. // Consider changing it if there are performance issues.
  193. writeSubresource(0, *MeshManager::instance().getDummyMeshData());
  194. Resource::initialize_internal();
  195. }
  196. void Mesh::destroy_internal()
  197. {
  198. THROW_IF_NOT_CORE_THREAD;
  199. Resource::destroy_internal();
  200. }
  201. HMesh Mesh::dummy()
  202. {
  203. return MeshManager::instance().getDummyMesh();
  204. }
  205. /************************************************************************/
  206. /* SERIALIZATION */
  207. /************************************************************************/
  208. RTTITypeBase* Mesh::getRTTIStatic()
  209. {
  210. return MeshRTTI::instance();
  211. }
  212. RTTITypeBase* Mesh::getRTTI() const
  213. {
  214. return Mesh::getRTTIStatic();
  215. }
  216. /************************************************************************/
  217. /* STATICS */
  218. /************************************************************************/
  219. HMesh Mesh::create()
  220. {
  221. MeshPtr meshPtr = MeshManager::instance().create();
  222. return static_resource_cast<Mesh>(Resource::_createResourceHandle(meshPtr));
  223. }
  224. }