CmMesh.cpp 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. #include "CmMesh.h"
  2. #include "CmMeshRTTI.h"
  3. #include "CmMeshData.h"
  4. #include "CmVector2.h"
  5. #include "CmVector3.h"
  6. #include "CmDebug.h"
  7. #include "CmHardwareBufferManager.h"
  8. namespace CamelotEngine
  9. {
  10. Mesh::Mesh()
  11. :mVertexData(nullptr), mIndexData(nullptr)
  12. {
  13. }
  14. Mesh::~Mesh()
  15. {
  16. if(mVertexData)
  17. delete mVertexData;
  18. if(mIndexData)
  19. delete mIndexData;
  20. }
  21. void Mesh::setMeshData(MeshDataPtr meshData)
  22. {
  23. mMeshData = meshData;
  24. }
  25. MeshDataPtr Mesh::getMeshData()
  26. {
  27. MeshDataPtr meshData(new MeshData());
  28. meshData->declaration = mVertexData->vertexDeclaration->clone();
  29. for(UINT32 i = 0; i < mSubMeshes.size(); i++)
  30. {
  31. MeshData::SubMeshData subMesh;
  32. subMesh.indexCount = mSubMeshes[i].indexCount;
  33. subMesh.indexOffset = mSubMeshes[i].indexOffset;
  34. meshData->subMeshes.push_back(subMesh);
  35. }
  36. if(mIndexData)
  37. {
  38. meshData->indexCount = mIndexData->indexCount - mIndexData->indexStart;
  39. meshData->index = new int[meshData->indexCount];
  40. UINT16* idxData = static_cast<UINT16*>(mIndexData->indexBuffer->lock(HardwareBuffer::HBL_READ_ONLY));
  41. for(UINT32 i = 0; i < mIndexData->indexCount; i++)
  42. meshData->index[i] = (UINT32)idxData[i];
  43. mIndexData->indexBuffer->unlock();
  44. }
  45. if(mVertexData)
  46. {
  47. meshData->vertexCount = mVertexData->vertexCount - mVertexData->vertexStart;
  48. UINT16 maxBufferIdx = mVertexData->vertexBufferBinding->getLastBoundIndex();
  49. for(UINT16 i = 0; i < maxBufferIdx; i++)
  50. {
  51. if(!mVertexData->vertexBufferBinding->isBufferBound(i))
  52. continue;
  53. HardwareVertexBufferPtr vertexBuffer = mVertexData->vertexBufferBinding->getBuffer(i);
  54. UINT32 vertexSize = vertexBuffer->getVertexSize();
  55. UINT8* vertDataIter = static_cast<UINT8*>(vertexBuffer->lock(HardwareBuffer::HBL_READ_ONLY));
  56. std::shared_ptr<MeshData::VertexData> vertexData(new MeshData::VertexData(meshData->vertexCount, i));
  57. meshData->vertexBuffers[i] = vertexData;
  58. UINT32 numElements = mVertexData->vertexDeclaration->getElementCount();
  59. for(UINT32 j = 0; j < numElements; j++)
  60. {
  61. const VertexElement* element = mVertexData->vertexDeclaration->getElement(j);
  62. VertexElementSemantic semantic = element->getSemantic();
  63. UINT32 offset = element->getOffset();
  64. UINT32 elemSize = element->getSize();
  65. UINT8* dest = nullptr;
  66. switch(semantic)
  67. {
  68. case VES_POSITION:
  69. vertexData->vertex = new Vector3[meshData->vertexCount];
  70. dest = (UINT8*)vertexData->vertex;
  71. break;
  72. case VES_DIFFUSE:
  73. vertexData->color = new Color[meshData->vertexCount];
  74. dest = (UINT8*)vertexData->color;
  75. break;
  76. case VES_NORMAL:
  77. vertexData->normal = new Vector3[meshData->vertexCount];
  78. dest = (UINT8*)vertexData->normal;
  79. break;
  80. case VES_TANGENT:
  81. vertexData->tangent = new Vector3[meshData->vertexCount];
  82. dest = (UINT8*)vertexData->tangent;
  83. break;
  84. case VES_BITANGENT:
  85. vertexData->bitangent = new Vector3[meshData->vertexCount];
  86. dest = (UINT8*)vertexData->bitangent;
  87. break;
  88. case VES_TEXTURE_COORDINATES:
  89. if(element->getIndex() == 0)
  90. {
  91. vertexData->uv0 = new Vector2[meshData->vertexCount];
  92. dest = (UINT8*)vertexData->uv0;
  93. }
  94. else if(element->getIndex() == 1)
  95. {
  96. vertexData->uv1 = new Vector2[meshData->vertexCount];
  97. dest = (UINT8*)vertexData->uv1;
  98. }
  99. break;
  100. default:
  101. LOGWRN("Vertex declaration contains semantic (" + toString(semantic) + ") but mesh data can't store it.");
  102. break;
  103. }
  104. if(dest != nullptr)
  105. {
  106. for(UINT32 k = 0; k < mVertexData->vertexCount; k++)
  107. memcpy(&dest[k * elemSize], &vertDataIter[k * vertexSize + offset], elemSize);
  108. }
  109. }
  110. vertexBuffer->unlock();
  111. }
  112. }
  113. return meshData;
  114. }
  115. RenderOperation Mesh::getRenderOperation(UINT32 subMeshIdx) const
  116. {
  117. if(subMeshIdx < 0 || subMeshIdx >= mSubMeshes.size())
  118. {
  119. CM_EXCEPT(InvalidParametersException, "Invalid sub-mesh index ("
  120. + toString(subMeshIdx) + "). Number of sub-meshes available: " + toString(mSubMeshes.size()));
  121. }
  122. // TODO - BIG TODO - Completely ignores subMeshIdx and always renders the entire thing
  123. RenderOperation ro;
  124. ro.indexData = mIndexData;
  125. ro.vertexData = mVertexData;
  126. ro.useIndexes = true;
  127. ro.operationType = RenderOperation::OT_TRIANGLE_LIST;
  128. return ro;
  129. }
  130. void Mesh::initImpl()
  131. {
  132. if(mMeshData == nullptr)
  133. {
  134. CM_EXCEPT(InternalErrorException, "Cannot load mesh. Mesh data hasn't been set.");
  135. }
  136. // Submeshes
  137. for(UINT32 i = 0; i < mMeshData->subMeshes.size(); i++)
  138. mSubMeshes.push_back(SubMesh(mMeshData->subMeshes[i].indexOffset, mMeshData->subMeshes[i].indexCount));
  139. // Indices
  140. mIndexData = new IndexData();
  141. mIndexData->indexCount = mMeshData->indexCount;
  142. mIndexData->indexBuffer = HardwareBufferManager::instance().createIndexBuffer(
  143. HardwareIndexBuffer::IT_16BIT,
  144. mIndexData->indexCount,
  145. HardwareBuffer::HBU_STATIC_WRITE_ONLY);
  146. UINT16* idxData = static_cast<UINT16*>(mIndexData->indexBuffer->lock(HardwareBuffer::HBL_NORMAL));
  147. for(UINT32 i = 0; i < mIndexData->indexCount; i++)
  148. {
  149. idxData[i] = (UINT16)mMeshData->index[i];
  150. }
  151. mIndexData->indexBuffer->unlock();
  152. // Vertices
  153. mVertexData = new VertexData();
  154. mVertexData->vertexStart = 0;
  155. mVertexData->vertexCount = mMeshData->vertexCount;
  156. mVertexData->vertexDeclaration = mMeshData->declaration->clone();
  157. for(auto iter = mMeshData->vertexBuffers.begin(); iter != mMeshData->vertexBuffers.end(); ++iter)
  158. {
  159. int streamIdx = iter->first;
  160. HardwareVertexBufferPtr vertexBuffer = HardwareBufferManager::instance().createVertexBuffer(
  161. mVertexData->vertexDeclaration->getVertexSize(streamIdx),
  162. mVertexData->vertexCount,
  163. HardwareBuffer::HBU_STATIC_WRITE_ONLY);
  164. mVertexData->vertexBufferBinding->setBinding(streamIdx, vertexBuffer);
  165. UINT32 vertexSize = vertexBuffer->getVertexSize();
  166. UINT8* vertBufferData = static_cast<UINT8*>(vertexBuffer->lock(HardwareBuffer::HBL_NORMAL));
  167. UINT32 numElements = mVertexData->vertexDeclaration->getElementCount();
  168. for(UINT32 j = 0; j < numElements; j++)
  169. {
  170. const VertexElement* element = mVertexData->vertexDeclaration->getElement(j);
  171. VertexElementSemantic semantic = element->getSemantic();
  172. UINT32 offset = element->getOffset();
  173. UINT32 elemSize = element->getSize();
  174. std::shared_ptr<MeshData::VertexData> vertexData = mMeshData->vertexBuffers[streamIdx];
  175. UINT8* source = nullptr;
  176. switch(semantic)
  177. {
  178. case VES_POSITION:
  179. if(vertexData->vertex)
  180. source = (UINT8*)vertexData->vertex;
  181. break;
  182. case VES_DIFFUSE:
  183. if(vertexData->color)
  184. source = (UINT8*)vertexData->color;
  185. break;
  186. case VES_NORMAL:
  187. if(vertexData->normal)
  188. source = (UINT8*)vertexData->normal;
  189. break;
  190. case VES_TANGENT:
  191. if(vertexData->tangent)
  192. source = (UINT8*)vertexData->tangent;
  193. break;
  194. case VES_BITANGENT:
  195. if(vertexData->bitangent)
  196. source = (UINT8*)vertexData->bitangent;
  197. break;
  198. case VES_TEXTURE_COORDINATES:
  199. if(element->getIndex() == 0)
  200. {
  201. if(vertexData->uv0)
  202. source = (UINT8*)vertexData->uv0;
  203. }
  204. else if(element->getIndex() == 1)
  205. {
  206. if(vertexData->uv1)
  207. source = (UINT8*)vertexData->uv1;
  208. }
  209. break;
  210. default:
  211. break;
  212. }
  213. if(source != nullptr)
  214. {
  215. for(UINT32 k = 0; k < mVertexData->vertexCount; k++)
  216. memcpy(&vertBufferData[k * vertexSize + offset], &source[k * elemSize], elemSize);
  217. }
  218. else
  219. {
  220. LOGWRN("Vertex declaration contains semantic (" + toString(semantic) + ") but mesh doesn't have data for it. Data for the semantic will be zeroed out.");
  221. for(UINT32 k = 0; k < mVertexData->vertexCount; k++)
  222. memset(&vertBufferData[k * vertexSize + offset], 0, elemSize);
  223. }
  224. }
  225. vertexBuffer->unlock();
  226. }
  227. mMeshData = nullptr;
  228. }
  229. /************************************************************************/
  230. /* SERIALIZATION */
  231. /************************************************************************/
  232. RTTITypeBase* Mesh::getRTTIStatic()
  233. {
  234. return MeshRTTI::instance();
  235. }
  236. RTTITypeBase* Mesh::getRTTI() const
  237. {
  238. return Mesh::getRTTIStatic();
  239. }
  240. }