TiledDeferredImageBasedLighting.bsl 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES 1
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. code
  15. {
  16. [internal]
  17. cbuffer Params : register(b0)
  18. {
  19. uint2 gFramebufferSize;
  20. }
  21. #if MSAA_COUNT > 1
  22. Texture2DMS<float4> gInColor;
  23. RWBuffer<float4> gOutput;
  24. uint getLinearAddress(uint2 coord, uint sampleIndex)
  25. {
  26. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  27. }
  28. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  29. {
  30. uint idx = getLinearAddress(coord, sampleIndex);
  31. gOutput[idx] = color;
  32. }
  33. #else
  34. Texture2D<float4> gInColor;
  35. RWTexture2D<float4> gOutput;
  36. #endif
  37. groupshared uint sTileMinZ;
  38. groupshared uint sTileMaxZ;
  39. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  40. {
  41. // Note: To improve performance perhaps:
  42. // - Use halfZ (split depth range into two regions for better culling)
  43. // - Use parallel reduction instead of atomics
  44. uint sampleMinZ = 0x7F7FFFFF;
  45. uint sampleMaxZ = 0;
  46. #if MSAA_COUNT > 1
  47. [unroll]
  48. for(uint i = 0; i < MSAA_COUNT; ++i)
  49. {
  50. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  51. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  52. }
  53. #else
  54. sampleMinZ = asuint(-surfaceData[0].depth);
  55. sampleMaxZ = asuint(-surfaceData[0].depth);
  56. #endif
  57. // Set initial values
  58. if(threadIndex == 0)
  59. {
  60. sTileMinZ = 0x7F7FFFFF;
  61. sTileMaxZ = 0;
  62. }
  63. GroupMemoryBarrierWithGroupSync();
  64. // Determine minimum and maximum depth values for a tile
  65. InterlockedMin(sTileMinZ, sampleMinZ);
  66. // Skip samples on the far plane (e.g. skybox) as they ruin the precision
  67. if(sampleMaxZ < 1.0f)
  68. InterlockedMax(sTileMaxZ, sampleMaxZ);
  69. GroupMemoryBarrierWithGroupSync();
  70. minTileZ = -asfloat(sTileMinZ);
  71. maxTileZ = -asfloat(sTileMaxZ);
  72. }
  73. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  74. {
  75. uint2 pixelPos = tileId * TILE_SIZE;
  76. // Convert thread XY coordinates to NDC coordinates
  77. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  78. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  79. float3 ndcMin;
  80. float3 ndcMax;
  81. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  82. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  83. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  84. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  85. float flipY = -sign(gMatProj[1][1]);
  86. ndcMin.y *= flipY;
  87. ndcMax.y *= flipY;
  88. ndcMin.z = convertToNDCZ(viewZMin);
  89. ndcMax.z = convertToNDCZ(viewZMax);
  90. float4 corner[5];
  91. // Far
  92. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  93. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  94. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  95. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  96. // Near (only one point, as the far away face is guaranteed to be larger in XY extents)
  97. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  98. [unroll]
  99. for(uint i = 0; i < 5; ++i)
  100. corner[i].xy /= corner[i].w;
  101. // Flip min/max because min = closest to view plane and max = furthest from view plane
  102. // but since Z is negative, closest is in fact the maximum and furtest is the minimum
  103. float3 viewMin = float3(corner[0].xy, viewZMax);
  104. float3 viewMax = float3(corner[0].xy, viewZMin);
  105. [unroll]
  106. for(uint i = 1; i < 4; ++i)
  107. {
  108. viewMin.xy = min(viewMin.xy, corner[i].xy);
  109. viewMax.xy = max(viewMax.xy, corner[i].xy);
  110. }
  111. extent = (viewMax - viewMin) * 0.5f;
  112. center = viewMin + extent;
  113. }
  114. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  115. {
  116. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  117. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  118. }
  119. float4 getLighting(uint2 pixelPos, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  120. {
  121. // x, y are now in clip space, z, w are in view space
  122. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  123. // z, w eliminated (since they are already in view space)
  124. // Note: Multiply by depth should be avoided if using ortographic projection
  125. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  126. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  127. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  128. float3 V = normalize(gViewOrigin - worldPosition);
  129. float3 N = surfaceData.worldNormal.xyz;
  130. float3 R = 2 * dot(V, N) * N - V;
  131. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  132. float4 existingColor;
  133. #if MSAA_COUNT > 1
  134. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  135. #else
  136. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  137. #endif
  138. float ao = gAmbientOcclusionTex.Load(int3(pixelPos.xy, 0));
  139. float4 ssr = gSSRTex.Load(int3(pixelPos.xy, 0));
  140. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, ao, ssr, probeOffset, numProbes);
  141. float4 totalLighting = existingColor;
  142. totalLighting.rgb += imageBasedSpecular;
  143. return totalLighting;
  144. }
  145. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  146. groupshared uint sNumProbes;
  147. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  148. void csmain(
  149. uint3 groupId : SV_GroupID,
  150. uint3 groupThreadId : SV_GroupThreadID,
  151. uint3 dispatchThreadId : SV_DispatchThreadID)
  152. {
  153. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  154. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  155. // Get data for all samples
  156. SurfaceData surfaceData[MSAA_COUNT];
  157. #if MSAA_COUNT > 1
  158. [unroll]
  159. for(uint i = 0; i < MSAA_COUNT; ++i)
  160. surfaceData[i] = getGBufferData(pixelPos, i);
  161. #else
  162. surfaceData[0] = getGBufferData(pixelPos);
  163. #endif
  164. // Set initial values
  165. if(threadIndex == 0)
  166. sNumProbes = 0;
  167. // Determine per-pixel minimum and maximum depth values
  168. float minTileZ, maxTileZ;
  169. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  170. // Create AABB for the current tile
  171. float3 center, extent;
  172. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  173. // Find probes overlapping the tile
  174. for (uint i = threadIndex; i < gNumProbes && i < MAX_LIGHTS; i += TILE_SIZE)
  175. {
  176. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  177. float probeRadius = gReflectionProbes[i].radius;
  178. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  179. {
  180. uint idx;
  181. InterlockedAdd(sNumProbes, 1U, idx);
  182. gUnsortedProbeIndices[idx] = i;
  183. }
  184. }
  185. GroupMemoryBarrierWithGroupSync();
  186. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  187. const uint numThreads = TILE_SIZE * TILE_SIZE;
  188. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  189. {
  190. int idx = gUnsortedProbeIndices[i];
  191. uint smallerCount = 0;
  192. for (uint j = 0; j < sNumProbes; j++)
  193. {
  194. int otherIdx = gUnsortedProbeIndices[j];
  195. if (otherIdx < idx)
  196. smallerCount++;
  197. }
  198. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  199. }
  200. GroupMemoryBarrierWithGroupSync();
  201. // Generate world position
  202. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  203. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  204. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  205. // Ignore pixels out of valid range
  206. if (all(dispatchThreadId.xy < viewportMax))
  207. {
  208. #if MSAA_COUNT > 1
  209. float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  210. writeBufferSample(pixelPos, 0, lighting);
  211. bool doPerSampleShading = needsPerSampleShading(surfaceData);
  212. if(doPerSampleShading)
  213. {
  214. [unroll]
  215. for(uint i = 1; i < MSAA_COUNT; ++i)
  216. {
  217. lighting = getLighting(pixelPos, i, clipSpacePos.xy, surfaceData[i], 0, sNumProbes);
  218. writeBufferSample(pixelPos, i, lighting);
  219. }
  220. }
  221. else // Splat same information to all samples
  222. {
  223. [unroll]
  224. for(uint i = 1; i < MSAA_COUNT; ++i)
  225. writeBufferSample(pixelPos, i, lighting);
  226. }
  227. #else
  228. float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  229. gOutput[pixelPos] = lighting;
  230. #endif
  231. }
  232. }
  233. };
  234. };