BsCamera.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "Renderer/BsCamera.h"
  4. #include "Private/RTTI/BsCameraRTTI.h"
  5. #include "Math/BsMath.h"
  6. #include "Math/BsMatrix3.h"
  7. #include "Math/BsVector2.h"
  8. #include "Math/BsAABox.h"
  9. #include "Math/BsSphere.h"
  10. #include "Error/BsException.h"
  11. #include "RenderAPI/BsRenderAPI.h"
  12. #include "Scene/BsSceneObject.h"
  13. #include "Renderer/BsRendererManager.h"
  14. #include "Renderer/BsRenderer.h"
  15. #include "Scene/BsSceneManager.h"
  16. namespace bs
  17. {
  18. const float CameraBase::INFINITE_FAR_PLANE_ADJUST = 0.00001f;
  19. CameraBase::CameraBase()
  20. : mLayers(0xFFFFFFFFFFFFFFFF), mProjType(PT_PERSPECTIVE), mHorzFOV(Degree(90.0f)), mFarDist(500.0f)
  21. , mNearDist(0.05f), mAspect(1.33333333333333f), mOrthoHeight(5), mPriority(0), mCustomViewMatrix(false)
  22. , mCustomProjMatrix(false), mMSAA(1), mFrustumExtentsManuallySet(false), mProjMatrixRS(BsZero), mProjMatrix(BsZero)
  23. , mViewMatrix(BsZero), mProjMatrixRSInv(BsZero), mProjMatrixInv(BsZero), mViewMatrixInv(BsZero)
  24. , mRecalcFrustum(true), mRecalcFrustumPlanes(true), mRecalcView(true)
  25. {
  26. mRenderSettings = bs_shared_ptr_new<RenderSettings>();
  27. invalidateFrustum();
  28. }
  29. void CameraBase::setHorzFOV(const Radian& fov)
  30. {
  31. mHorzFOV = fov;
  32. invalidateFrustum();
  33. _markCoreDirty();
  34. }
  35. const Radian& CameraBase::getHorzFOV() const
  36. {
  37. return mHorzFOV;
  38. }
  39. void CameraBase::setFarClipDistance(float farPlane)
  40. {
  41. mFarDist = farPlane;
  42. invalidateFrustum();
  43. _markCoreDirty();
  44. }
  45. float CameraBase::getFarClipDistance() const
  46. {
  47. return mFarDist;
  48. }
  49. void CameraBase::setNearClipDistance(float nearPlane)
  50. {
  51. if (nearPlane <= 0)
  52. {
  53. LOGERR("Near clip distance must be greater than zero.");
  54. return;
  55. }
  56. mNearDist = nearPlane;
  57. invalidateFrustum();
  58. _markCoreDirty();
  59. }
  60. float CameraBase::getNearClipDistance() const
  61. {
  62. return mNearDist;
  63. }
  64. const Matrix4& CameraBase::getProjectionMatrix() const
  65. {
  66. updateFrustum();
  67. return mProjMatrix;
  68. }
  69. const Matrix4& CameraBase::getProjectionMatrixInv() const
  70. {
  71. updateFrustum();
  72. return mProjMatrixInv;
  73. }
  74. const Matrix4& CameraBase::getProjectionMatrixRS() const
  75. {
  76. updateFrustum();
  77. return mProjMatrixRS;
  78. }
  79. const Matrix4& CameraBase::getProjectionMatrixRSInv() const
  80. {
  81. updateFrustum();
  82. return mProjMatrixRSInv;
  83. }
  84. const Matrix4& CameraBase::getViewMatrix() const
  85. {
  86. updateView();
  87. return mViewMatrix;
  88. }
  89. const Matrix4& CameraBase::getViewMatrixInv() const
  90. {
  91. updateView();
  92. return mViewMatrixInv;
  93. }
  94. const ConvexVolume& CameraBase::getFrustum() const
  95. {
  96. // Make any pending updates to the calculated frustum planes
  97. updateFrustumPlanes();
  98. return mFrustum;
  99. }
  100. ConvexVolume CameraBase::getWorldFrustum() const
  101. {
  102. const Vector<Plane>& frustumPlanes = getFrustum().getPlanes();
  103. const Transform& tfrm = getTransform();
  104. Matrix4 worldMatrix;
  105. worldMatrix.setTRS(tfrm.getPosition(), tfrm.getRotation(), Vector3::ONE);
  106. Vector<Plane> worldPlanes(frustumPlanes.size());
  107. UINT32 i = 0;
  108. for (auto& plane : frustumPlanes)
  109. {
  110. worldPlanes[i] = worldMatrix.multiplyAffine(plane);
  111. i++;
  112. }
  113. return ConvexVolume(worldPlanes);
  114. }
  115. void CameraBase::calcProjectionParameters(float& left, float& right, float& bottom, float& top) const
  116. {
  117. if (mCustomProjMatrix)
  118. {
  119. // Convert clipspace corners to camera space
  120. Matrix4 invProj = mProjMatrix.inverse();
  121. Vector3 topLeft(-0.5f, 0.5f, 0.0f);
  122. Vector3 bottomRight(0.5f, -0.5f, 0.0f);
  123. topLeft = invProj.multiply(topLeft);
  124. bottomRight = invProj.multiply(bottomRight);
  125. left = topLeft.x;
  126. top = topLeft.y;
  127. right = bottomRight.x;
  128. bottom = bottomRight.y;
  129. }
  130. else
  131. {
  132. if (mFrustumExtentsManuallySet)
  133. {
  134. left = mLeft;
  135. right = mRight;
  136. top = mTop;
  137. bottom = mBottom;
  138. }
  139. else if (mProjType == PT_PERSPECTIVE)
  140. {
  141. Radian thetaX(mHorzFOV * 0.5f);
  142. float tanThetaX = Math::tan(thetaX);
  143. float tanThetaY = tanThetaX / mAspect;
  144. float half_w = tanThetaX * mNearDist;
  145. float half_h = tanThetaY * mNearDist;
  146. left = -half_w;
  147. right = half_w;
  148. bottom = -half_h;
  149. top = half_h;
  150. mLeft = left;
  151. mRight = right;
  152. mTop = top;
  153. mBottom = bottom;
  154. }
  155. else
  156. {
  157. float half_w = getOrthoWindowWidth() * 0.5f;
  158. float half_h = getOrthoWindowHeight() * 0.5f;
  159. left = -half_w;
  160. right = half_w;
  161. bottom = -half_h;
  162. top = half_h;
  163. mLeft = left;
  164. mRight = right;
  165. mTop = top;
  166. mBottom = bottom;
  167. }
  168. }
  169. }
  170. void CameraBase::updateFrustum() const
  171. {
  172. if (isFrustumOutOfDate())
  173. {
  174. float left, right, bottom, top;
  175. calcProjectionParameters(left, right, bottom, top);
  176. if (!mCustomProjMatrix)
  177. {
  178. float inv_w = 1 / (right - left);
  179. float inv_h = 1 / (top - bottom);
  180. float inv_d = 1 / (mFarDist - mNearDist);
  181. if (mProjType == PT_PERSPECTIVE)
  182. {
  183. float A = 2 * mNearDist * inv_w;
  184. float B = 2 * mNearDist * inv_h;
  185. float C = (right + left) * inv_w;
  186. float D = (top + bottom) * inv_h;
  187. float q, qn;
  188. if (mFarDist == 0)
  189. {
  190. // Infinite far plane
  191. q = CameraBase::INFINITE_FAR_PLANE_ADJUST - 1;
  192. qn = mNearDist * (CameraBase::INFINITE_FAR_PLANE_ADJUST - 2);
  193. }
  194. else
  195. {
  196. q = -(mFarDist + mNearDist) * inv_d;
  197. qn = -2 * (mFarDist * mNearDist) * inv_d;
  198. }
  199. mProjMatrix = Matrix4::ZERO;
  200. mProjMatrix[0][0] = A;
  201. mProjMatrix[0][2] = C;
  202. mProjMatrix[1][1] = B;
  203. mProjMatrix[1][2] = D;
  204. mProjMatrix[2][2] = q;
  205. mProjMatrix[2][3] = qn;
  206. mProjMatrix[3][2] = -1;
  207. }
  208. else if (mProjType == PT_ORTHOGRAPHIC)
  209. {
  210. float A = 2 * inv_w;
  211. float B = 2 * inv_h;
  212. float C = -(right + left) * inv_w;
  213. float D = -(top + bottom) * inv_h;
  214. float q, qn;
  215. if (mFarDist == 0)
  216. {
  217. // Can not do infinite far plane here, avoid divided zero only
  218. q = -CameraBase::INFINITE_FAR_PLANE_ADJUST / mNearDist;
  219. qn = -CameraBase::INFINITE_FAR_PLANE_ADJUST - 1;
  220. }
  221. else
  222. {
  223. q = -2 * inv_d;
  224. qn = -(mFarDist + mNearDist) * inv_d;
  225. }
  226. mProjMatrix = Matrix4::ZERO;
  227. mProjMatrix[0][0] = A;
  228. mProjMatrix[0][3] = C;
  229. mProjMatrix[1][1] = B;
  230. mProjMatrix[1][3] = D;
  231. mProjMatrix[2][2] = q;
  232. mProjMatrix[2][3] = qn;
  233. mProjMatrix[3][3] = 1;
  234. }
  235. }
  236. ct::RenderAPI* renderAPI = ct::RenderAPI::instancePtr();
  237. renderAPI->convertProjectionMatrix(mProjMatrix, mProjMatrixRS);
  238. mProjMatrixInv = mProjMatrix.inverse();
  239. mProjMatrixRSInv = mProjMatrixRS.inverse();
  240. // Calculate bounding box (local)
  241. // Box is from 0, down -Z, max dimensions as determined from far plane
  242. // If infinite view frustum just pick a far value
  243. float farDist = (mFarDist == 0) ? 100000 : mFarDist;
  244. // Near plane bounds
  245. Vector3 min(left, bottom, -farDist);
  246. Vector3 max(right, top, 0);
  247. if (mCustomProjMatrix)
  248. {
  249. // Some custom projection matrices can have unusual inverted settings
  250. // So make sure the AABB is the right way around to start with
  251. Vector3 tmp = min;
  252. min.floor(max);
  253. max.ceil(tmp);
  254. }
  255. if (mProjType == PT_PERSPECTIVE)
  256. {
  257. // Merge with far plane bounds
  258. float radio = farDist / mNearDist;
  259. min.floor(Vector3(left * radio, bottom * radio, -farDist));
  260. max.ceil(Vector3(right * radio, top * radio, 0));
  261. }
  262. mBoundingBox.setExtents(min, max);
  263. mRecalcFrustum = false;
  264. mRecalcFrustumPlanes = true;
  265. }
  266. }
  267. bool CameraBase::isFrustumOutOfDate() const
  268. {
  269. return mRecalcFrustum;
  270. }
  271. void CameraBase::updateView() const
  272. {
  273. if (!mCustomViewMatrix && mRecalcView)
  274. {
  275. mViewMatrix.makeView(mTransform.getPosition(), mTransform.getRotation());
  276. mViewMatrixInv = mViewMatrix.inverseAffine();
  277. mRecalcView = false;
  278. }
  279. }
  280. void CameraBase::updateFrustumPlanes() const
  281. {
  282. updateFrustum();
  283. if (mRecalcFrustumPlanes)
  284. {
  285. mFrustum = ConvexVolume(mProjMatrix);
  286. mRecalcFrustumPlanes = false;
  287. }
  288. }
  289. float CameraBase::getAspectRatio() const
  290. {
  291. return mAspect;
  292. }
  293. void CameraBase::setAspectRatio(float r)
  294. {
  295. mAspect = r;
  296. invalidateFrustum();
  297. _markCoreDirty();
  298. }
  299. const AABox& CameraBase::getBoundingBox() const
  300. {
  301. updateFrustum();
  302. return mBoundingBox;
  303. }
  304. void CameraBase::setProjectionType(ProjectionType pt)
  305. {
  306. mProjType = pt;
  307. invalidateFrustum();
  308. _markCoreDirty();
  309. }
  310. ProjectionType CameraBase::getProjectionType() const
  311. {
  312. return mProjType;
  313. }
  314. void CameraBase::setCustomViewMatrix(bool enable, const Matrix4& viewMatrix)
  315. {
  316. mCustomViewMatrix = enable;
  317. if (enable)
  318. {
  319. BS_ASSERT(viewMatrix.isAffine());
  320. mViewMatrix = viewMatrix;
  321. mViewMatrixInv = mViewMatrix.inverseAffine();
  322. }
  323. _markCoreDirty();
  324. }
  325. void CameraBase::setCustomProjectionMatrix(bool enable, const Matrix4& projMatrix)
  326. {
  327. mCustomProjMatrix = enable;
  328. if (enable)
  329. mProjMatrix = projMatrix;
  330. invalidateFrustum();
  331. _markCoreDirty();
  332. }
  333. void CameraBase::setOrthoWindow(float w, float h)
  334. {
  335. mOrthoHeight = h;
  336. mAspect = w / h;
  337. invalidateFrustum();
  338. _markCoreDirty();
  339. }
  340. void CameraBase::setOrthoWindowHeight(float h)
  341. {
  342. mOrthoHeight = h;
  343. invalidateFrustum();
  344. _markCoreDirty();
  345. }
  346. void CameraBase::setOrthoWindowWidth(float w)
  347. {
  348. mOrthoHeight = w / mAspect;
  349. invalidateFrustum();
  350. _markCoreDirty();
  351. }
  352. float CameraBase::getOrthoWindowHeight() const
  353. {
  354. return mOrthoHeight;
  355. }
  356. float CameraBase::getOrthoWindowWidth() const
  357. {
  358. return mOrthoHeight * mAspect;
  359. }
  360. void CameraBase::setFrustumExtents(float left, float right, float top, float bottom)
  361. {
  362. mFrustumExtentsManuallySet = true;
  363. mLeft = left;
  364. mRight = right;
  365. mTop = top;
  366. mBottom = bottom;
  367. invalidateFrustum();
  368. _markCoreDirty();
  369. }
  370. void CameraBase::resetFrustumExtents()
  371. {
  372. mFrustumExtentsManuallySet = false;
  373. invalidateFrustum();
  374. _markCoreDirty();
  375. }
  376. void CameraBase::getFrustumExtents(float& outleft, float& outright, float& outtop, float& outbottom) const
  377. {
  378. updateFrustum();
  379. outleft = mLeft;
  380. outright = mRight;
  381. outtop = mTop;
  382. outbottom = mBottom;
  383. }
  384. void CameraBase::setTransform(const Transform& transform)
  385. {
  386. SceneActor::setTransform(transform);
  387. mRecalcView = true;
  388. }
  389. void CameraBase::invalidateFrustum() const
  390. {
  391. mRecalcFrustum = true;
  392. mRecalcFrustumPlanes = true;
  393. }
  394. Vector2I CameraBase::worldToScreenPoint(const Vector3& worldPoint) const
  395. {
  396. Vector2 ndcPoint = worldToNdcPoint(worldPoint);
  397. return ndcToScreenPoint(ndcPoint);
  398. }
  399. Vector2 CameraBase::worldToNdcPoint(const Vector3& worldPoint) const
  400. {
  401. Vector3 viewPoint = worldToViewPoint(worldPoint);
  402. return viewToNdcPoint(viewPoint);
  403. }
  404. Vector3 CameraBase::worldToViewPoint(const Vector3& worldPoint) const
  405. {
  406. return getViewMatrix().multiplyAffine(worldPoint);
  407. }
  408. Vector3 CameraBase::screenToWorldPoint(const Vector2I& screenPoint, float depth) const
  409. {
  410. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  411. return ndcToWorldPoint(ndcPoint, depth);
  412. }
  413. Vector3 CameraBase::screenToWorldPointDeviceDepth(const Vector2I& screenPoint, float deviceDepth) const
  414. {
  415. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  416. Vector4 worldPoint(ndcPoint.x, ndcPoint.y, deviceDepth, 1.0f);
  417. worldPoint = getProjectionMatrixRS().inverse().multiply(worldPoint);
  418. Vector3 worldPoint3D;
  419. if (Math::abs(worldPoint.w) > 1e-7f)
  420. {
  421. float invW = 1.0f / worldPoint.w;
  422. worldPoint3D.x = worldPoint.x * invW;
  423. worldPoint3D.y = worldPoint.y * invW;
  424. worldPoint3D.z = worldPoint.z * invW;
  425. }
  426. return viewToWorldPoint(worldPoint3D);
  427. }
  428. Vector3 CameraBase::screenToViewPoint(const Vector2I& screenPoint, float depth) const
  429. {
  430. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  431. return ndcToViewPoint(ndcPoint, depth);
  432. }
  433. Vector2 CameraBase::screenToNdcPoint(const Vector2I& screenPoint) const
  434. {
  435. Rect2I viewport = getViewportRect();
  436. Vector2 ndcPoint;
  437. ndcPoint.x = (float)(((screenPoint.x - viewport.x) / (float)viewport.width) * 2.0f - 1.0f);
  438. const RenderAPIInfo& info = RenderAPI::getAPIInfo();
  439. if(info.isFlagSet(RenderAPIFeatureFlag::NDCYAxisDown))
  440. ndcPoint.y = (float)(((screenPoint.y - viewport.y) / (float)viewport.height) * 2.0f - 1.0f);
  441. else
  442. ndcPoint.y = (float)((1.0f - ((screenPoint.y - viewport.y) / (float)viewport.height)) * 2.0f - 1.0f);
  443. return ndcPoint;
  444. }
  445. Vector3 CameraBase::viewToWorldPoint(const Vector3& viewPoint) const
  446. {
  447. return getViewMatrix().inverseAffine().multiplyAffine(viewPoint);
  448. }
  449. Vector2I CameraBase::viewToScreenPoint(const Vector3& viewPoint) const
  450. {
  451. Vector2 ndcPoint = viewToNdcPoint(viewPoint);
  452. return ndcToScreenPoint(ndcPoint);
  453. }
  454. Vector2 CameraBase::viewToNdcPoint(const Vector3& viewPoint) const
  455. {
  456. Vector3 projPoint = projectPoint(viewPoint);
  457. return Vector2(projPoint.x, projPoint.y);
  458. }
  459. Vector3 CameraBase::ndcToWorldPoint(const Vector2& ndcPoint, float depth) const
  460. {
  461. Vector3 viewPoint = ndcToViewPoint(ndcPoint, depth);
  462. return viewToWorldPoint(viewPoint);
  463. }
  464. Vector3 CameraBase::ndcToViewPoint(const Vector2& ndcPoint, float depth) const
  465. {
  466. return unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, depth));
  467. }
  468. Vector2I CameraBase::ndcToScreenPoint(const Vector2& ndcPoint) const
  469. {
  470. Rect2I viewport = getViewportRect();
  471. Vector2I screenPoint;
  472. screenPoint.x = Math::roundToInt(viewport.x + ((ndcPoint.x + 1.0f) * 0.5f) * viewport.width);
  473. screenPoint.y = Math::roundToInt(viewport.y + (1.0f - (ndcPoint.y + 1.0f) * 0.5f) * viewport.height);
  474. return screenPoint;
  475. }
  476. Ray CameraBase::screenPointToRay(const Vector2I& screenPoint) const
  477. {
  478. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  479. Vector3 near = unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, mNearDist));
  480. Vector3 far = unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, mNearDist + 1.0f));
  481. Ray ray(near, Vector3::normalize(far - near));
  482. ray.transformAffine(getViewMatrix().inverseAffine());
  483. return ray;
  484. }
  485. Vector3 CameraBase::projectPoint(const Vector3& point) const
  486. {
  487. Vector4 projPoint4(point.x, point.y, point.z, 1.0f);
  488. projPoint4 = getProjectionMatrixRS().multiply(projPoint4);
  489. if (Math::abs(projPoint4.w) > 1e-7f)
  490. {
  491. float invW = 1.0f / projPoint4.w;
  492. projPoint4.x *= invW;
  493. projPoint4.y *= invW;
  494. projPoint4.z *= invW;
  495. }
  496. else
  497. {
  498. projPoint4.x = 0.0f;
  499. projPoint4.y = 0.0f;
  500. projPoint4.z = 0.0f;
  501. }
  502. return Vector3(projPoint4.x, projPoint4.y, projPoint4.z);
  503. }
  504. Vector3 CameraBase::unprojectPoint(const Vector3& point) const
  505. {
  506. // Point.z is expected to be in view space, so we need to do some extra work to get the proper coordinates
  507. // (as opposed to if point.z was in device coordinates, in which case we could just inverse project)
  508. // Get world position for a point near the far plane (0.95f)
  509. Vector4 farAwayPoint(point.x, point.y, 0.95f, 1.0f);
  510. farAwayPoint = getProjectionMatrixRS().inverse().multiply(farAwayPoint);
  511. // Can't proceed if w is too small
  512. if (Math::abs(farAwayPoint.w) > 1e-7f)
  513. {
  514. // Perspective divide, to get the values that make sense in 3D space
  515. float invW = 1.0f / farAwayPoint.w;
  516. Vector3 farAwayPoint3D;
  517. farAwayPoint3D.x = farAwayPoint.x * invW;
  518. farAwayPoint3D.y = farAwayPoint.y * invW;
  519. farAwayPoint3D.z = farAwayPoint.z * invW;
  520. // Find the distance to the far point along the camera's viewing axis
  521. float distAlongZ = farAwayPoint3D.dot(-Vector3::UNIT_Z);
  522. // Do nothing if point is behind the camera
  523. if (distAlongZ >= 0.0f)
  524. {
  525. if (mProjType == PT_PERSPECTIVE)
  526. {
  527. // Direction from origin to our point
  528. Vector3 dir = farAwayPoint3D; // Camera is at (0, 0, 0) so it's the same vector
  529. // Our view space depth (point.z) is distance along the camera's viewing axis. Since our direction
  530. // vector is not parallel to the viewing axis, instead of normalizing it with its own length, we
  531. // "normalize" with the length projected along the camera's viewing axis.
  532. dir /= distAlongZ;
  533. // And now we just find the final position along the direction
  534. return dir * point.z;
  535. }
  536. else // Ortographic
  537. {
  538. // Depth difference between our arbitrary point and actual depth
  539. float depthDiff = distAlongZ - point.z;
  540. // Depth difference along viewing direction
  541. Vector3 depthDiffVec = depthDiff * -Vector3::UNIT_Z;
  542. // Return point that is depthDiff closer than our arbitrary point
  543. return farAwayPoint3D - depthDiffVec;
  544. }
  545. }
  546. }
  547. return Vector3(0.0f, 0.0f, 0.0f);
  548. }
  549. Camera::Camera()
  550. :mMain(false)
  551. { }
  552. SPtr<ct::Camera> Camera::getCore() const
  553. {
  554. return std::static_pointer_cast<ct::Camera>(mCoreSpecific);
  555. }
  556. SPtr<Camera> Camera::create()
  557. {
  558. Camera* handler = new (bs_alloc<Camera>()) Camera();
  559. SPtr<Camera> handlerPtr = bs_core_ptr<Camera>(handler);
  560. handlerPtr->_setThisPtr(handlerPtr);
  561. handlerPtr->initialize();
  562. return handlerPtr;
  563. }
  564. SPtr<Camera> Camera::createEmpty()
  565. {
  566. Camera* handler = new (bs_alloc<Camera>()) Camera();
  567. SPtr<Camera> handlerPtr = bs_core_ptr<Camera>(handler);
  568. handlerPtr->_setThisPtr(handlerPtr);
  569. return handlerPtr;
  570. }
  571. SPtr<ct::CoreObject> Camera::createCore() const
  572. {
  573. ct::Camera* handler = new (bs_alloc<ct::Camera>()) ct::Camera(mViewport->getCore());
  574. SPtr<ct::Camera> handlerPtr = bs_shared_ptr<ct::Camera>(handler);
  575. handlerPtr->_setThisPtr(handlerPtr);
  576. return handlerPtr;
  577. }
  578. void Camera::initialize()
  579. {
  580. mViewport = Viewport::create(nullptr);
  581. CoreObject::initialize();
  582. gSceneManager()._registerCamera(std::static_pointer_cast<Camera>(getThisPtr()));
  583. }
  584. void Camera::destroy()
  585. {
  586. if(isInitialized())
  587. gSceneManager()._unregisterCamera(std::static_pointer_cast<Camera>(getThisPtr()));
  588. CoreObject::destroy();
  589. }
  590. Rect2I Camera::getViewportRect() const
  591. {
  592. return mViewport->getPixelArea();
  593. }
  594. CoreSyncData Camera::syncToCore(FrameAlloc* allocator)
  595. {
  596. UINT32 dirtyFlag = getCoreDirtyFlags();
  597. UINT32 size = getActorSyncDataSize();
  598. size += rttiGetElemSize(dirtyFlag);
  599. UINT32 ppSize = 0;
  600. if (dirtyFlag != (UINT32)ActorDirtyFlag::Transform)
  601. {
  602. size += rttiGetElemSize(mLayers);
  603. size += rttiGetElemSize(mProjType);
  604. size += rttiGetElemSize(mHorzFOV);
  605. size += rttiGetElemSize(mFarDist);
  606. size += rttiGetElemSize(mNearDist);
  607. size += rttiGetElemSize(mAspect);
  608. size += rttiGetElemSize(mOrthoHeight);
  609. size += rttiGetElemSize(mPriority);
  610. size += rttiGetElemSize(mCustomViewMatrix);
  611. size += rttiGetElemSize(mCustomProjMatrix);
  612. size += rttiGetElemSize(mFrustumExtentsManuallySet);
  613. size += rttiGetElemSize(mMSAA);
  614. size += sizeof(UINT32);
  615. if(mRenderSettings != nullptr)
  616. {
  617. mRenderSettings->_getSyncData(nullptr, ppSize);
  618. size += ppSize;
  619. }
  620. }
  621. UINT8* buffer = allocator->alloc(size);
  622. char* dataPtr = (char*)buffer;
  623. dataPtr = syncActorTo(dataPtr);
  624. dataPtr = rttiWriteElem(dirtyFlag, dataPtr);
  625. if (dirtyFlag != (UINT32)ActorDirtyFlag::Transform)
  626. {
  627. dataPtr = rttiWriteElem(mLayers, dataPtr);
  628. dataPtr = rttiWriteElem(mProjType, dataPtr);
  629. dataPtr = rttiWriteElem(mHorzFOV, dataPtr);
  630. dataPtr = rttiWriteElem(mFarDist, dataPtr);
  631. dataPtr = rttiWriteElem(mNearDist, dataPtr);
  632. dataPtr = rttiWriteElem(mAspect, dataPtr);
  633. dataPtr = rttiWriteElem(mOrthoHeight, dataPtr);
  634. dataPtr = rttiWriteElem(mPriority, dataPtr);
  635. dataPtr = rttiWriteElem(mCustomViewMatrix, dataPtr);
  636. dataPtr = rttiWriteElem(mCustomProjMatrix, dataPtr);
  637. dataPtr = rttiWriteElem(mFrustumExtentsManuallySet, dataPtr);
  638. dataPtr = rttiWriteElem(mMSAA, dataPtr);
  639. dataPtr = rttiWriteElem(ppSize, dataPtr);
  640. if(mRenderSettings != nullptr)
  641. mRenderSettings->_getSyncData((UINT8*)dataPtr, ppSize);
  642. dataPtr += ppSize;
  643. }
  644. return CoreSyncData(buffer, size);
  645. }
  646. void Camera::getCoreDependencies(Vector<CoreObject*>& dependencies)
  647. {
  648. dependencies.push_back(mViewport.get());
  649. }
  650. void Camera::_markCoreDirty(ActorDirtyFlag flag)
  651. {
  652. markCoreDirty((UINT32)flag);
  653. }
  654. RTTITypeBase* Camera::getRTTIStatic()
  655. {
  656. return CameraRTTI::instance();
  657. }
  658. RTTITypeBase* Camera::getRTTI() const
  659. {
  660. return Camera::getRTTIStatic();
  661. }
  662. namespace ct
  663. {
  664. Camera::~Camera()
  665. {
  666. RendererManager::instance().getActive()->notifyCameraRemoved(this);
  667. }
  668. Camera::Camera(SPtr<RenderTarget> target, float left, float top, float width, float height)
  669. : mRendererId(0)
  670. {
  671. mViewport = Viewport::create(target, left, top, width, height);
  672. }
  673. Camera::Camera(const SPtr<Viewport>& viewport)
  674. : mRendererId(0)
  675. {
  676. mViewport = viewport;
  677. }
  678. void Camera::initialize()
  679. {
  680. RendererManager::instance().getActive()->notifyCameraAdded(this);
  681. CoreObject::initialize();
  682. }
  683. Rect2I Camera::getViewportRect() const
  684. {
  685. return mViewport->getPixelArea();
  686. }
  687. void Camera::syncToCore(const CoreSyncData& data)
  688. {
  689. char* dataPtr = (char*)data.getBuffer();
  690. UINT32 dirtyFlag;
  691. dataPtr = syncActorFrom(dataPtr);
  692. dataPtr = rttiReadElem(dirtyFlag, dataPtr);
  693. mRecalcFrustum = true;
  694. mRecalcFrustumPlanes = true;
  695. mRecalcView = true;
  696. if (dirtyFlag != (UINT32)ActorDirtyFlag::Transform)
  697. {
  698. dataPtr = rttiReadElem(mLayers, dataPtr);
  699. dataPtr = rttiReadElem(mProjType, dataPtr);
  700. dataPtr = rttiReadElem(mHorzFOV, dataPtr);
  701. dataPtr = rttiReadElem(mFarDist, dataPtr);
  702. dataPtr = rttiReadElem(mNearDist, dataPtr);
  703. dataPtr = rttiReadElem(mAspect, dataPtr);
  704. dataPtr = rttiReadElem(mOrthoHeight, dataPtr);
  705. dataPtr = rttiReadElem(mPriority, dataPtr);
  706. dataPtr = rttiReadElem(mCustomViewMatrix, dataPtr);
  707. dataPtr = rttiReadElem(mCustomProjMatrix, dataPtr);
  708. dataPtr = rttiReadElem(mFrustumExtentsManuallySet, dataPtr);
  709. dataPtr = rttiReadElem(mMSAA, dataPtr);
  710. UINT32 ppSize = 0;
  711. dataPtr = rttiReadElem(ppSize, dataPtr);
  712. if(ppSize > 0)
  713. {
  714. if (mRenderSettings == nullptr)
  715. mRenderSettings = bs_shared_ptr_new<RenderSettings>();
  716. mRenderSettings->_setSyncData((UINT8*)dataPtr, ppSize);
  717. dataPtr += ppSize;
  718. }
  719. }
  720. RendererManager::instance().getActive()->notifyCameraUpdated(this, (UINT32)dirtyFlag);
  721. }
  722. }
  723. }