TiledDeferredImageBasedLighting.bsl 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES 1
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. code
  15. {
  16. [internal]
  17. cbuffer Params : register(b0)
  18. {
  19. uint2 gFramebufferSize;
  20. }
  21. #if MSAA_COUNT > 1
  22. Texture2DMS<float4> gInColor;
  23. RWBuffer<float4> gOutput;
  24. Texture2D gMSAACoverage;
  25. uint getLinearAddress(uint2 coord, uint sampleIndex)
  26. {
  27. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  28. }
  29. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  30. {
  31. uint idx = getLinearAddress(coord, sampleIndex);
  32. gOutput[idx] = color;
  33. }
  34. #else
  35. Texture2D<float4> gInColor;
  36. RWTexture2D<float4> gOutput;
  37. #endif
  38. groupshared uint sTileMinZ;
  39. groupshared uint sTileMaxZ;
  40. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  41. {
  42. // Note: To improve performance perhaps:
  43. // - Use halfZ (split depth range into two regions for better culling)
  44. // - Use parallel reduction instead of atomics
  45. uint sampleMinZ = 0x7F7FFFFF;
  46. uint sampleMaxZ = 0;
  47. #if MSAA_COUNT > 1
  48. [unroll]
  49. for(uint i = 0; i < MSAA_COUNT; ++i)
  50. {
  51. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  52. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  53. }
  54. #else
  55. sampleMinZ = asuint(-surfaceData[0].depth);
  56. sampleMaxZ = asuint(-surfaceData[0].depth);
  57. #endif
  58. // Set initial values
  59. if(threadIndex == 0)
  60. {
  61. sTileMinZ = 0x7F7FFFFF;
  62. sTileMaxZ = 0;
  63. }
  64. GroupMemoryBarrierWithGroupSync();
  65. // Determine minimum and maximum depth values for a tile
  66. InterlockedMin(sTileMinZ, sampleMinZ);
  67. // Skip samples on the far plane (e.g. skybox) as they ruin the precision
  68. if(sampleMaxZ < 1.0f)
  69. InterlockedMax(sTileMaxZ, sampleMaxZ);
  70. GroupMemoryBarrierWithGroupSync();
  71. minTileZ = -asfloat(sTileMinZ);
  72. maxTileZ = -asfloat(sTileMaxZ);
  73. }
  74. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  75. {
  76. uint2 pixelPos = tileId * TILE_SIZE;
  77. // Convert thread XY coordinates to NDC coordinates
  78. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  79. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  80. float3 ndcMin;
  81. float3 ndcMax;
  82. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  83. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  84. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  85. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  86. float flipY = -sign(gMatProj[1][1]);
  87. ndcMin.y *= flipY;
  88. ndcMax.y *= flipY;
  89. ndcMin.z = convertToNDCZ(viewZMin);
  90. ndcMax.z = convertToNDCZ(viewZMax);
  91. float4 corner[5];
  92. // Far
  93. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  94. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  95. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  96. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  97. // Near (only one point, as the far away face is guaranteed to be larger in XY extents)
  98. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  99. [unroll]
  100. for(uint i = 0; i < 5; ++i)
  101. corner[i].xy /= corner[i].w;
  102. // Flip min/max because min = closest to view plane and max = furthest from view plane
  103. // but since Z is negative, closest is in fact the maximum and furtest is the minimum
  104. float3 viewMin = float3(corner[0].xy, viewZMax);
  105. float3 viewMax = float3(corner[0].xy, viewZMin);
  106. [unroll]
  107. for(uint i = 1; i < 4; ++i)
  108. {
  109. viewMin.xy = min(viewMin.xy, corner[i].xy);
  110. viewMax.xy = max(viewMax.xy, corner[i].xy);
  111. }
  112. extent = (viewMax - viewMin) * 0.5f;
  113. center = viewMin + extent;
  114. }
  115. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  116. {
  117. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  118. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  119. }
  120. float4 getLighting(uint2 pixelPos, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  121. {
  122. // x, y are now in clip space, z, w are in view space
  123. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  124. // z, w eliminated (since they are already in view space)
  125. // Note: Multiply by depth should be avoided if using ortographic projection
  126. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  127. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  128. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  129. float3 V = normalize(gViewOrigin - worldPosition);
  130. float3 N = surfaceData.worldNormal.xyz;
  131. float3 R = 2 * dot(V, N) * N - V;
  132. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  133. float4 existingColor;
  134. #if MSAA_COUNT > 1
  135. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  136. #else
  137. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  138. #endif
  139. float ao = gAmbientOcclusionTex.Load(int3(pixelPos.xy, 0));
  140. float4 ssr = gSSRTex.Load(int3(pixelPos.xy, 0));
  141. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, ao, ssr, probeOffset, numProbes);
  142. float4 totalLighting = existingColor;
  143. totalLighting.rgb += imageBasedSpecular;
  144. return totalLighting;
  145. }
  146. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  147. groupshared uint sNumProbes;
  148. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  149. void csmain(
  150. uint3 groupId : SV_GroupID,
  151. uint3 groupThreadId : SV_GroupThreadID,
  152. uint3 dispatchThreadId : SV_DispatchThreadID)
  153. {
  154. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  155. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  156. // Get data for all samples
  157. SurfaceData surfaceData[MSAA_COUNT];
  158. #if MSAA_COUNT > 1
  159. [unroll]
  160. for(uint i = 0; i < MSAA_COUNT; ++i)
  161. surfaceData[i] = getGBufferData(pixelPos, i);
  162. #else
  163. surfaceData[0] = getGBufferData(pixelPos);
  164. #endif
  165. // Set initial values
  166. if(threadIndex == 0)
  167. sNumProbes = 0;
  168. // Determine per-pixel minimum and maximum depth values
  169. float minTileZ, maxTileZ;
  170. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  171. // Create AABB for the current tile
  172. float3 center, extent;
  173. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  174. // Find probes overlapping the tile
  175. for (uint i = threadIndex; i < gNumProbes && i < MAX_LIGHTS; i += TILE_SIZE)
  176. {
  177. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  178. float probeRadius = gReflectionProbes[i].radius;
  179. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  180. {
  181. uint idx;
  182. InterlockedAdd(sNumProbes, 1U, idx);
  183. gUnsortedProbeIndices[idx] = i;
  184. }
  185. }
  186. GroupMemoryBarrierWithGroupSync();
  187. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  188. const uint numThreads = TILE_SIZE * TILE_SIZE;
  189. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  190. {
  191. int idx = gUnsortedProbeIndices[i];
  192. uint smallerCount = 0;
  193. for (uint j = 0; j < sNumProbes; j++)
  194. {
  195. int otherIdx = gUnsortedProbeIndices[j];
  196. if (otherIdx < idx)
  197. smallerCount++;
  198. }
  199. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  200. }
  201. GroupMemoryBarrierWithGroupSync();
  202. // Generate world position
  203. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  204. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  205. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  206. // Ignore pixels out of valid range
  207. if (all(dispatchThreadId.xy < viewportMax))
  208. {
  209. #if MSAA_COUNT > 1
  210. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  211. float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  212. writeBufferSample(pixelPos, 0, lighting);
  213. bool doPerSampleShading = coverage > 0.5f;
  214. if(doPerSampleShading)
  215. {
  216. [unroll]
  217. for(uint i = 1; i < MSAA_COUNT; ++i)
  218. {
  219. lighting = getLighting(pixelPos, i, clipSpacePos.xy, surfaceData[i], 0, sNumProbes);
  220. writeBufferSample(pixelPos, i, lighting);
  221. }
  222. }
  223. else // Splat same information to all samples
  224. {
  225. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  226. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  227. // so we need to resolve all samples. Consider getting around this issue somehow.
  228. [unroll]
  229. for(uint i = 1; i < MSAA_COUNT; ++i)
  230. writeBufferSample(pixelPos, i, lighting);
  231. }
  232. #else
  233. float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  234. gOutput[pixelPos] = lighting;
  235. #endif
  236. }
  237. }
  238. };
  239. };