ImageBasedLighting.bslinc 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  2. Technique
  3. : base("ImageBasedLighting")
  4. : inherits("ReflectionCubemapCommon") =
  5. {
  6. Pass =
  7. {
  8. Common =
  9. {
  10. // Arbitrary limit, increase if needed
  11. #define MAX_PROBES 512
  12. // Note: Size must be multiple of largest element, because of std430 rules
  13. struct ReflProbeData
  14. {
  15. float3 position;
  16. float radius;
  17. float3 boxExtents;
  18. float transitionDistance;
  19. float4x4 invBoxTransform;
  20. uint cubemapIdx;
  21. uint type; // 0 - Sphere, 1 - Box
  22. float2 padding;
  23. };
  24. TextureCube gSkyReflectionTex;
  25. SamplerState gSkyReflectionSamp;
  26. TextureCube gSkyIrradianceTex;
  27. SamplerState gSkyIrradianceSamp;
  28. TextureCubeArray gReflProbeCubemaps;
  29. SamplerState gReflProbeSamp;
  30. Texture2D gPreintegratedEnvBRDF;
  31. SamplerState gPreintegratedEnvBRDFSamp;
  32. StructuredBuffer<ReflProbeData> gReflectionProbes;
  33. #ifdef USE_COMPUTE_INDICES
  34. groupshared uint gReflectionProbeIndices[MAX_PROBES];
  35. #endif
  36. #ifdef USE_LIGHT_GRID_INDICES
  37. Buffer<uint> gReflectionProbeIndices;
  38. #endif
  39. cbuffer ReflProbeParams
  40. {
  41. uint gReflCubemapNumMips;
  42. uint gNumProbes;
  43. uint gSkyCubemapAvailable;
  44. uint gUseReflectionMaps;
  45. uint gSkyCubemapNumMips;
  46. float gSkyBrightness;
  47. }
  48. float3 getSkyIndirectDiffuse(float3 dir)
  49. {
  50. return gSkyIrradianceTex.SampleLevel(gSkyIrradianceSamp, dir, 0).rgb * gSkyBrightness;
  51. }
  52. float getSphereReflectionContribution(float normalizedDistance)
  53. {
  54. // If closer than 60% to the probe radius, then full contribution is used.
  55. // For the other 40% we smoothstep and return contribution lower than 1 so other
  56. // reflection probes can be blended.
  57. // smoothstep from 1 to 0.6:
  58. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  59. // return t * t * (3.0 - 2.0 * t);
  60. float t = saturate(2.5 - 2.5 * normalizedDistance);
  61. return t * t * (3.0 - 2.0 * t);
  62. }
  63. float3 getLookupForSphereProxy(float3 originWS, float3 dirWS, float3 centerWS, float radius)
  64. {
  65. float radius2 = radius * radius;
  66. float3 originLS = originWS - centerWS;
  67. float a = dot(originLS, dirWS);
  68. float dist2 = a * a - dot(originLS, originLS) + radius2;
  69. float3 lookupDir = dirWS;
  70. [flatten]
  71. if(dist2 >= 0)
  72. {
  73. float farDist = sqrt(dist2) - a;
  74. lookupDir = originLS + farDist * dirWS;
  75. }
  76. return lookupDir;
  77. }
  78. float getDistBoxToPoint(float3 pt, float3 extents)
  79. {
  80. float3 d = max(max(-extents - pt, 0), pt - extents);
  81. return length(d);
  82. }
  83. float3 getLookupForBoxProxy(float3 originWS, float3 dirWS, float3 centerWS, float3 extents, float4x4 invBoxTransform, float transitionDistance, out float contribution)
  84. {
  85. // Transform origin and direction into box local space, where it is united sized and axis aligned
  86. float3 originLS = mul(invBoxTransform, float4(originWS, 1)).xyz;
  87. float3 dirLS = mul(invBoxTransform, float4(dirWS, 0)).xyz;
  88. // Get distance from 3 min planes and 3 max planes of the unit AABB
  89. // float3 unitVec = float3(1.0f, 1.0f, 1.0f);
  90. // float3 intersectsMax = (unitVec - originLS) / dirLS;
  91. // float3 intersectsMin = (-unitVec - originLS) / dirLS;
  92. float3 invDirLS = rcp(dirLS);
  93. float3 intersectsMax = invDirLS - originLS * invDirLS;
  94. float3 intersectsMin = -invDirLS - originLS * invDirLS;
  95. // Find nearest positive (along ray direction) intersection
  96. float3 positiveIntersections = max(intersectsMax, intersectsMin);
  97. float intersectDist = min(positiveIntersections.x, min(positiveIntersections.y, positiveIntersections.z));
  98. float3 intersectPositionWS = originWS + intersectDist * dirWS;
  99. float3 lookupDir = intersectPositionWS - centerWS;
  100. // Calculate contribution
  101. //// Shrink the box so fade out happens within box extents
  102. float3 reducedExtents = extents - float3(transitionDistance, transitionDistance, transitionDistance);
  103. float distToBox = getDistBoxToPoint(originLS * reducedExtents, reducedExtents);
  104. float normalizedDistance = distToBox / transitionDistance;
  105. // If closer than 70% to the probe radius, then full contribution is used.
  106. // For the other 30% we smoothstep and return contribution lower than 1 so other
  107. // reflection probes can be blended.
  108. // smoothstep from 1 to 0.7:
  109. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  110. // return t * t * (3.0 - 2.0 * t);
  111. float t = saturate(3.3333 - 3.3333 * normalizedDistance);
  112. contribution = t * t * (3.0 - 2.0 * t);
  113. return lookupDir;
  114. }
  115. float3 gatherReflectionRadiance(float3 worldPos, float3 dir, float roughness, float3 specularColor, uint probeOffset, uint numProbes)
  116. {
  117. if(gUseReflectionMaps == 0)
  118. return specularColor;
  119. float mipLevel = mapRoughnessToMipLevel(roughness, gReflCubemapNumMips);
  120. float3 output = 0;
  121. float leftoverContribution = 1.0f;
  122. for(uint i = 0; i < numProbes; i++)
  123. {
  124. if(leftoverContribution < 0.001f)
  125. break;
  126. uint probeIdx = gReflectionProbeIndices[probeOffset + i];
  127. ReflProbeData probeData = gReflectionProbes[probeIdx];
  128. float3 probeToPos = worldPos - probeData.position;
  129. float distToProbe = length(probeToPos);
  130. float normalizedDist = saturate(distToProbe / probeData.radius);
  131. if(distToProbe <= probeData.radius)
  132. {
  133. float3 correctedDir;
  134. float contribution = 0;
  135. if(probeData.type == 0) // Sphere
  136. {
  137. correctedDir = getLookupForSphereProxy(worldPos, dir, probeData.position, probeData.radius);
  138. contribution = getSphereReflectionContribution(normalizedDist);
  139. }
  140. else if(probeData.type == 1) // Box
  141. {
  142. correctedDir = getLookupForBoxProxy(worldPos, dir, probeData.position, probeData.boxExtents, probeData.invBoxTransform, probeData.transitionDistance, contribution);
  143. }
  144. float4 probeSample = gReflProbeCubemaps.SampleLevel(gReflProbeSamp, float4(correctedDir, probeData.cubemapIdx), mipLevel);
  145. probeSample *= contribution;
  146. output += probeSample.rgb * leftoverContribution;
  147. leftoverContribution *= (1.0f - contribution);
  148. }
  149. }
  150. if(gSkyCubemapAvailable > 0)
  151. {
  152. float skyMipLevel = mapRoughnessToMipLevel(roughness, gSkyCubemapNumMips);
  153. float4 skySample = gSkyReflectionTex.SampleLevel(gSkyReflectionSamp, dir, skyMipLevel) * gSkyBrightness;
  154. output += skySample.rgb * leftoverContribution;
  155. }
  156. return output;
  157. }
  158. float3 getImageBasedSpecular(float3 worldPos, float3 V, float3 R, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  159. {
  160. // See C++ code for generation of gPreintegratedEnvBRDF to see why this code works as is
  161. float3 N = surfaceData.worldNormal.xyz;
  162. float NoV = saturate(dot(N, V));
  163. // Note: Using a fixed F0 value of 0.04 (plastic) for dielectrics, and using albedo as specular for conductors.
  164. // For more customizability allow the user to provide separate albedo/specular colors for both types.
  165. float3 specularColor = lerp(float3(0.04f, 0.04f, 0.04f), surfaceData.albedo.rgb, surfaceData.metalness);
  166. float3 radiance = gatherReflectionRadiance(worldPos, R, surfaceData.roughness, specularColor, probeOffset, numProbes);
  167. float2 envBRDF = gPreintegratedEnvBRDF.SampleLevel(gPreintegratedEnvBRDFSamp, float2(NoV, surfaceData.roughness), 0).rg;
  168. return radiance * (specularColor * envBRDF.x + envBRDF.y);
  169. }
  170. };
  171. };
  172. };