BsMatrix3.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. #include "BsVector3.h"
  4. namespace BansheeEngine
  5. {
  6. /**
  7. * @brief Class representing a 3x3 matrix.
  8. */
  9. class BS_UTILITY_EXPORT Matrix3
  10. {
  11. private:
  12. struct EulerAngleOrderData
  13. {
  14. int a, b, c;
  15. float sign;
  16. };
  17. public:
  18. Matrix3() {}
  19. Matrix3(const Matrix3& mat)
  20. {
  21. memcpy(m, mat.m, 9*sizeof(float));
  22. }
  23. Matrix3(float m00, float m01, float m02,
  24. float m10, float m11, float m12,
  25. float m20, float m21, float m22)
  26. {
  27. m[0][0] = m00;
  28. m[0][1] = m01;
  29. m[0][2] = m02;
  30. m[1][0] = m10;
  31. m[1][1] = m11;
  32. m[1][2] = m12;
  33. m[2][0] = m20;
  34. m[2][1] = m21;
  35. m[2][2] = m22;
  36. }
  37. /**
  38. * @brief Construct a matrix from a quaternion.
  39. */
  40. explicit Matrix3(const Quaternion& rotation)
  41. {
  42. fromQuaternion(rotation);
  43. }
  44. /**
  45. * @brief Construct a matrix that performs rotation and scale.
  46. */
  47. explicit Matrix3(const Quaternion& rotation, const Vector3& scale)
  48. {
  49. fromQuaternion(rotation);
  50. for (int row = 0; row < 3; row++)
  51. {
  52. for (int col = 0; col < 3; col++)
  53. m[row][col] = scale[row]*m[row][col];
  54. }
  55. }
  56. /**
  57. * @brief Construct a matrix from an angle/axis pair.
  58. */
  59. explicit Matrix3(const Vector3& axis, const Radian& angle)
  60. {
  61. fromAxisAngle(axis, angle);
  62. }
  63. /**
  64. * @brief Construct a matrix from 3 orthonormal local axes.
  65. */
  66. explicit Matrix3(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
  67. {
  68. fromAxes(xaxis, yaxis, zaxis);
  69. }
  70. /**
  71. * @brief Construct a matrix from euler angles, YXZ ordering.
  72. *
  73. * @see Matrix3::fromEulerAngles
  74. */
  75. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle)
  76. {
  77. fromEulerAngles(xAngle, yAngle, zAngle);
  78. }
  79. /**
  80. * @brief Construct a matrix from euler angles, custom ordering.
  81. *
  82. * @see Matrix3::fromEulerAngles
  83. */
  84. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order)
  85. {
  86. fromEulerAngles(xAngle, yAngle, zAngle, order);
  87. }
  88. /**
  89. * @brief Swaps the contents of this matrix with another.
  90. */
  91. void swap(Matrix3& other)
  92. {
  93. std::swap(m[0][0], other.m[0][0]);
  94. std::swap(m[0][1], other.m[0][1]);
  95. std::swap(m[0][2], other.m[0][2]);
  96. std::swap(m[1][0], other.m[1][0]);
  97. std::swap(m[1][1], other.m[1][1]);
  98. std::swap(m[1][2], other.m[1][2]);
  99. std::swap(m[2][0], other.m[2][0]);
  100. std::swap(m[2][1], other.m[2][1]);
  101. std::swap(m[2][2], other.m[2][2]);
  102. }
  103. /**
  104. * @brief Returns a row of the matrix.
  105. */
  106. inline float* operator[] (UINT32 row) const
  107. {
  108. assert(row < 3);
  109. return (float*)m[row];
  110. }
  111. Vector3 getColumn(UINT32 col) const;
  112. void setColumn(UINT32 col, const Vector3& vec);
  113. Matrix3& operator= (const Matrix3& rhs)
  114. {
  115. memcpy(m, rhs.m, 9*sizeof(float));
  116. return *this;
  117. }
  118. bool operator== (const Matrix3& rhs) const;
  119. bool operator!= (const Matrix3& rhs) const;
  120. Matrix3 operator+ (const Matrix3& rhs) const;
  121. Matrix3 operator- (const Matrix3& rhs) const;
  122. Matrix3 operator* (const Matrix3& rhs) const;
  123. Matrix3 operator- () const;
  124. Matrix3 operator* (float rhs) const;
  125. friend Matrix3 operator* (float lhs, const Matrix3& rhs);
  126. /**
  127. * @brief Transforms the given vector by this matrix and returns
  128. * the newly transformed vector.
  129. */
  130. Vector3 transform(const Vector3& vec) const;
  131. /**
  132. * @brief Returns a transpose of the matrix (switched columns and rows).
  133. */
  134. Matrix3 transpose () const;
  135. /**
  136. * @brief Calculates an inverse of the matrix if it exists.
  137. *
  138. * @param [out] mat Resulting matrix inverse.
  139. * @param fTolerance (optional) Tolerance to use when checking
  140. * if determinant is zero (or near zero in this case).
  141. * Zero determinant means inverse doesn't exist.
  142. *
  143. * @return True if inverse exists, false otherwise.
  144. */
  145. bool inverse(Matrix3& mat, float fTolerance = 1e-06f) const;
  146. /**
  147. * @brief Calculates an inverse of the matrix if it exists.
  148. *
  149. * @param fTolerance (optional) Tolerance to use when checking
  150. * if determinant is zero (or near zero in this case).
  151. * Zero determinant means inverse doesn't exist.
  152. *
  153. * @return Resulting matrix inverse if it exists, otherwise a zero matrix.
  154. */
  155. Matrix3 inverse(float fTolerance = 1e-06f) const;
  156. /**
  157. * @brief Calculates the matrix determinant.
  158. */
  159. float determinant() const;
  160. /**
  161. * @brief Decompose a Matrix3 to rotation and scale.
  162. *
  163. * @note Matrix must consist only of rotation and uniform scale transformations,
  164. * otherwise accurate results are not guaranteed. Applying non-uniform scale guarantees
  165. * rotation portion will not be accurate.
  166. */
  167. void decomposition(Quaternion& rotation, Vector3& scale) const;
  168. /**
  169. * @brief Decomposes the matrix into various useful values.
  170. *
  171. * @param [out] matL Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  172. * doesn't use non-uniform scaling this matrix will be a conjugate transpose of the rotation part of the matrix.
  173. * @param [out] matS Singular values of the matrix. If your matrix is affine these will be scaling factors of the matrix.
  174. * @param [out] matR Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  175. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  176. */
  177. void singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const;
  178. /**
  179. * @brief Decomposes the matrix into various useful values.
  180. *
  181. * @param [out] matQ Columns form orthonormal bases. If your matrix is affine and
  182. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  183. * @param [out] vecD If your matrix is affine these will be scaling factors of the matrix.
  184. * @param [out] vecU If your matrix is affine these will be shear factors of the matrix.
  185. */
  186. void QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const;
  187. /**
  188. * @brief Gram-Schmidt orthonormalization (applied to columns of rotation matrix)
  189. */
  190. void orthonormalize();
  191. /**
  192. * @brief Converts an orthonormal matrix to axis angle representation.
  193. *
  194. * @note Matrix must be orthonormal.
  195. */
  196. void toAxisAngle(Vector3& axis, Radian& angle) const;
  197. /**
  198. * @brief Creates a rotation matrix from an axis angle representation.
  199. */
  200. void fromAxisAngle(const Vector3& axis, const Radian& angle);
  201. /**
  202. * @brief Converts an orthonormal matrix to quaternion representation.
  203. *
  204. * @note Matrix must be orthonormal.
  205. */
  206. void toQuaternion(Quaternion& quat) const;
  207. /**
  208. * @brief Creates a rotation matrix from a quaternion representation.
  209. */
  210. void fromQuaternion(const Quaternion& quat);
  211. /**
  212. * @brief Creates a matrix from a three axes.
  213. */
  214. void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
  215. /**
  216. * @brief Extracts Pitch/Yaw/Roll rotations from this matrix.
  217. *
  218. * @param [in,out] xAngle Rotation about x axis. (AKA Pitch)
  219. * @param [in,out] yAngle Rotation about y axis. (AKA Yaw)
  220. * @param [in,out] zAngle Rotation about z axis. (AKA Roll)
  221. *
  222. * @return True if unique solution was found, false otherwise.
  223. *
  224. * @note Matrix must be orthonormal.
  225. */
  226. bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const;
  227. /**
  228. * @brief Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  229. *
  230. * @param xAngle Rotation about x axis. (AKA Pitch)
  231. * @param yAngle Rotation about y axis. (AKA Yaw)
  232. * @param zAngle Rotation about z axis. (AKA Roll)
  233. *
  234. * @note Matrix must be orthonormal.
  235. * Since different values will be produced depending in which order are the rotations applied, this method assumes
  236. * they are applied in YXZ order. If you need a specific order, use the overloaded "fromEulerAngles" method instead.
  237. */
  238. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle);
  239. /**
  240. * @brief Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  241. *
  242. * @param xAngle Rotation about x axis. (AKA Pitch)
  243. * @param yAngle Rotation about y axis. (AKA Yaw)
  244. * @param zAngle Rotation about z axis. (AKA Roll)
  245. * @param order The order in which rotations will be extracted.
  246. * Different values can be retrieved depending on the order.
  247. *
  248. * @note Matrix must be orthonormal.
  249. */
  250. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order);
  251. /**
  252. * @brief Eigensolver, matrix must be symmetric.
  253. *
  254. * @note Eigenvectors are vectors which when transformed by the matrix, only change
  255. * in magnitude, but not in direction. Eigenvalue is that magnitude. In other words
  256. * you will get the same result whether you multiply the vector by the matrix or by its
  257. * eigenvalue.
  258. */
  259. void eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const;
  260. static const float EPSILON;
  261. static const Matrix3 ZERO;
  262. static const Matrix3 IDENTITY;
  263. protected:
  264. friend class Matrix4;
  265. // Support for eigensolver
  266. void tridiagonal (float diag[3], float subDiag[3]);
  267. bool QLAlgorithm (float diag[3], float subDiag[3]);
  268. // Support for singular value decomposition
  269. static const float SVD_EPSILON;
  270. static const unsigned int SVD_MAX_ITERS;
  271. static void bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  272. static void golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  273. // Euler angle conversions
  274. static const EulerAngleOrderData EA_LOOKUP[6];
  275. float m[3][3];
  276. };
  277. BS_ALLOW_MEMCPY_SERIALIZATION(Matrix3);
  278. }