Просмотр исходного кода

Fixed some trailing whitespace that snuck in again

Jorrit Rouwe 2 лет назад
Родитель
Сommit
e1e61bb636

+ 2 - 2
Jolt/Jolt.natvis

@@ -1,4 +1,4 @@
-<?xml version="1.0" encoding="utf-8"?> 
+<?xml version="1.0" encoding="utf-8"?>
 <AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
   <Type Name="JPH::Color">
     <DisplayString>r={(int)r}, g={(int)g}, b={(int)b}, a={(int)a}</DisplayString>
@@ -83,4 +83,4 @@
       </ArrayItems>
     </Expand>
   </Type>
-</AutoVisualizer>
+</AutoVisualizer>

+ 2 - 2
Jolt/Physics/Collision/Shape/HeightFieldShape.cpp

@@ -321,7 +321,7 @@ void HeightFieldShape::CalculateActiveEdges(const HeightFieldShapeSettings &inSe
 	/*
 		Store active edges. The triangles are organized like this:
 			x --->
-	
+
 		y   +       +
 			| \ T1B | \ T2B
 		|  e0   e2  |   \
@@ -929,7 +929,7 @@ void HeightFieldShape::SetHeights(uint inX, uint inY, uint inSizeX, uint inSizeY
 		heights = temp_heights;
 
 		// We need to fill in the following areas:
-		// 
+		//
 		// +-----------------+
 		// |        2        |
 		// |---+---------+---|

+ 6 - 6
Jolt/Physics/Constraints/ConstraintPart/DualAxisConstraintPart.h

@@ -13,22 +13,22 @@ JPH_NAMESPACE_BEGIN
 
 /**
 	Constrains movement on 2 axis
-	
+
 	@see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.3.1
-	
+
 	Constraint equation (eq 51):
-	
+
 	\f[C = \begin{bmatrix} (p_2 - p_1) \cdot n_1 \\ (p_2 - p_1) \cdot n_2\end{bmatrix}\f]
-	
+
 	Jacobian (transposed) (eq 55):
-	
+
 	\f[J^T = \begin{bmatrix}
 	-n_1					& -n_2					\\
 	-(r_1 + u) \times n_1	& -(r_1 + u) \times n_2	\\
 	n_1						& n_2					\\
 	r_2 \times n_1			& r_2 \times n_2
 	\end{bmatrix}\f]
-	
+
 	Used terms (here and below, everything in world space):\n
 	n1, n2 = constraint axis (normalized).\n
 	p1, p2 = constraint points.\n

+ 1 - 1
Jolt/Physics/Constraints/SpringSettings.h

@@ -53,7 +53,7 @@ public:
 		/// Valid when mSpringMode = ESpringMode::StiffnessAndDamping.
 		/// If mStiffness > 0 the constraint will be soft and mStiffness specifies the stiffness (k) in the spring equation F = -k * x - c * v for a linear or T = -k * theta - c * w for an angular spring.
 		/// If mStiffness <= 0, mDamping is ignored and the constraint will have hard limits (as hard as the time step / the number of velocity / position solver steps allows).
-		/// 
+		///
 		/// Note that stiffness values are large numbers. To calculate a ballpark value for the needed stiffness you can use:
 		/// force = stiffness * delta_spring_length = mass * gravity <=> stiffness = mass * gravity / delta_spring_length.
 		/// So if your object weighs 1500 kg and the spring compresses by 2 meters, you need a stiffness in the order of 1500 * 9.81 / 2 ~ 7500 N/m.