PhysicsSystem.cpp 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/PhysicsSystem.h>
  6. #include <Jolt/Physics/PhysicsSettings.h>
  7. #include <Jolt/Physics/PhysicsUpdateContext.h>
  8. #include <Jolt/Physics/PhysicsStepListener.h>
  9. #include <Jolt/Physics/Collision/BroadPhase/BroadPhaseBruteForce.h>
  10. #include <Jolt/Physics/Collision/BroadPhase/BroadPhaseQuadTree.h>
  11. #include <Jolt/Physics/Collision/CollisionDispatch.h>
  12. #include <Jolt/Physics/Collision/AABoxCast.h>
  13. #include <Jolt/Physics/Collision/ShapeCast.h>
  14. #include <Jolt/Physics/Collision/CollideShape.h>
  15. #include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
  16. #include <Jolt/Physics/Collision/CastResult.h>
  17. #include <Jolt/Physics/Collision/CollideConvexVsTriangles.h>
  18. #include <Jolt/Physics/Collision/ManifoldBetweenTwoFaces.h>
  19. #include <Jolt/Physics/Collision/Shape/ConvexShape.h>
  20. #include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
  21. #include <Jolt/Physics/DeterminismLog.h>
  22. #include <Jolt/Geometry/RayAABox.h>
  23. #include <Jolt/Core/JobSystem.h>
  24. #include <Jolt/Core/TempAllocator.h>
  25. #include <Jolt/Core/QuickSort.h>
  26. #ifdef JPH_DEBUG_RENDERER
  27. #include <Jolt/Renderer/DebugRenderer.h>
  28. #endif // JPH_DEBUG_RENDERER
  29. JPH_NAMESPACE_BEGIN
  30. #ifdef JPH_DEBUG_RENDERER
  31. bool PhysicsSystem::sDrawMotionQualityLinearCast = false;
  32. #endif // JPH_DEBUG_RENDERER
  33. //#define BROAD_PHASE BroadPhaseBruteForce
  34. #define BROAD_PHASE BroadPhaseQuadTree
  35. static const Color cColorUpdateBroadPhaseFinalize = Color::sGetDistinctColor(1);
  36. static const Color cColorUpdateBroadPhasePrepare = Color::sGetDistinctColor(2);
  37. static const Color cColorFindCollisions = Color::sGetDistinctColor(3);
  38. static const Color cColorApplyGravity = Color::sGetDistinctColor(4);
  39. static const Color cColorSetupVelocityConstraints = Color::sGetDistinctColor(5);
  40. static const Color cColorBuildIslandsFromConstraints = Color::sGetDistinctColor(6);
  41. static const Color cColorDetermineActiveConstraints = Color::sGetDistinctColor(7);
  42. static const Color cColorFinalizeIslands = Color::sGetDistinctColor(8);
  43. static const Color cColorContactRemovedCallbacks = Color::sGetDistinctColor(9);
  44. static const Color cColorBodySetIslandIndex = Color::sGetDistinctColor(10);
  45. static const Color cColorStartNextStep = Color::sGetDistinctColor(11);
  46. static const Color cColorSolveVelocityConstraints = Color::sGetDistinctColor(12);
  47. static const Color cColorPreIntegrateVelocity = Color::sGetDistinctColor(13);
  48. static const Color cColorIntegrateVelocity = Color::sGetDistinctColor(14);
  49. static const Color cColorPostIntegrateVelocity = Color::sGetDistinctColor(15);
  50. static const Color cColorResolveCCDContacts = Color::sGetDistinctColor(16);
  51. static const Color cColorSolvePositionConstraints = Color::sGetDistinctColor(17);
  52. static const Color cColorStartNextSubStep = Color::sGetDistinctColor(18);
  53. static const Color cColorFindCCDContacts = Color::sGetDistinctColor(19);
  54. static const Color cColorStepListeners = Color::sGetDistinctColor(20);
  55. PhysicsSystem::~PhysicsSystem()
  56. {
  57. // Remove broadphase
  58. delete mBroadPhase;
  59. }
  60. void PhysicsSystem::Init(uint inMaxBodies, uint inNumBodyMutexes, uint inMaxBodyPairs, uint inMaxContactConstraints, const BroadPhaseLayerInterface &inBroadPhaseLayerInterface, const ObjectVsBroadPhaseLayerFilter &inObjectVsBroadPhaseLayerFilter, const ObjectLayerPairFilter &inObjectLayerPairFilter)
  61. {
  62. mObjectVsBroadPhaseLayerFilter = &inObjectVsBroadPhaseLayerFilter;
  63. mObjectLayerPairFilter = &inObjectLayerPairFilter;
  64. // Initialize body manager
  65. mBodyManager.Init(inMaxBodies, inNumBodyMutexes, inBroadPhaseLayerInterface);
  66. // Create broadphase
  67. mBroadPhase = new BROAD_PHASE();
  68. mBroadPhase->Init(&mBodyManager, inBroadPhaseLayerInterface);
  69. // Init contact constraint manager
  70. mContactManager.Init(inMaxBodyPairs, inMaxContactConstraints);
  71. // Init islands builder
  72. mIslandBuilder.Init(inMaxBodies);
  73. // Initialize body interface
  74. mBodyInterfaceLocking.Init(mBodyLockInterfaceLocking, mBodyManager, *mBroadPhase);
  75. mBodyInterfaceNoLock.Init(mBodyLockInterfaceNoLock, mBodyManager, *mBroadPhase);
  76. // Initialize narrow phase query
  77. mNarrowPhaseQueryLocking.Init(mBodyLockInterfaceLocking, *mBroadPhase);
  78. mNarrowPhaseQueryNoLock.Init(mBodyLockInterfaceNoLock, *mBroadPhase);
  79. }
  80. void PhysicsSystem::OptimizeBroadPhase()
  81. {
  82. mBroadPhase->Optimize();
  83. }
  84. void PhysicsSystem::AddStepListener(PhysicsStepListener *inListener)
  85. {
  86. lock_guard lock(mStepListenersMutex);
  87. JPH_ASSERT(find(mStepListeners.begin(), mStepListeners.end(), inListener) == mStepListeners.end());
  88. mStepListeners.push_back(inListener);
  89. }
  90. void PhysicsSystem::RemoveStepListener(PhysicsStepListener *inListener)
  91. {
  92. lock_guard lock(mStepListenersMutex);
  93. StepListeners::iterator i = find(mStepListeners.begin(), mStepListeners.end(), inListener);
  94. JPH_ASSERT(i != mStepListeners.end());
  95. mStepListeners.erase(i);
  96. }
  97. void PhysicsSystem::Update(float inDeltaTime, int inCollisionSteps, int inIntegrationSubSteps, TempAllocator *inTempAllocator, JobSystem *inJobSystem)
  98. {
  99. JPH_PROFILE_FUNCTION();
  100. JPH_ASSERT(inDeltaTime >= 0.0f);
  101. JPH_ASSERT(inIntegrationSubSteps <= PhysicsUpdateContext::cMaxSubSteps);
  102. // Sync point for the broadphase. This will allow it to do clean up operations without having any mutexes locked yet.
  103. mBroadPhase->FrameSync();
  104. // If there are no active bodies or there's no time delta
  105. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  106. if (num_active_bodies == 0 || inDeltaTime <= 0.0f)
  107. {
  108. mBodyManager.LockAllBodies();
  109. // Update broadphase
  110. mBroadPhase->LockModifications();
  111. BroadPhase::UpdateState update_state = mBroadPhase->UpdatePrepare();
  112. mBroadPhase->UpdateFinalize(update_state);
  113. mBroadPhase->UnlockModifications();
  114. // Call contact removal callbacks from contacts that existed in the previous update
  115. mContactManager.FinalizeContactCacheAndCallContactPointRemovedCallbacks(0, 0);
  116. mBodyManager.UnlockAllBodies();
  117. return;
  118. }
  119. // Calculate ratio between current and previous frame delta time to scale initial constraint forces
  120. float sub_step_delta_time = inDeltaTime / (inCollisionSteps * inIntegrationSubSteps);
  121. float warm_start_impulse_ratio = mPhysicsSettings.mConstraintWarmStart && mPreviousSubStepDeltaTime > 0.0f? sub_step_delta_time / mPreviousSubStepDeltaTime : 0.0f;
  122. mPreviousSubStepDeltaTime = sub_step_delta_time;
  123. // Create the context used for passing information between jobs
  124. PhysicsUpdateContext context(*inTempAllocator);
  125. context.mPhysicsSystem = this;
  126. context.mJobSystem = inJobSystem;
  127. context.mBarrier = inJobSystem->CreateBarrier();
  128. context.mIslandBuilder = &mIslandBuilder;
  129. context.mStepDeltaTime = inDeltaTime / inCollisionSteps;
  130. context.mSubStepDeltaTime = sub_step_delta_time;
  131. context.mWarmStartImpulseRatio = warm_start_impulse_ratio;
  132. context.mUseLargeIslandSplitter = mPhysicsSettings.mUseLargeIslandSplitter && inIntegrationSubSteps == 1; // Only use large island splitter if we don't have sub steps, not yet supported
  133. context.mSteps.resize(inCollisionSteps);
  134. // Allocate space for body pairs
  135. JPH_ASSERT(context.mBodyPairs == nullptr);
  136. context.mBodyPairs = static_cast<BodyPair *>(inTempAllocator->Allocate(sizeof(BodyPair) * mPhysicsSettings.mMaxInFlightBodyPairs));
  137. // Lock all bodies for write so that we can freely touch them
  138. mStepListenersMutex.lock();
  139. mBodyManager.LockAllBodies();
  140. mBroadPhase->LockModifications();
  141. // Get max number of concurrent jobs
  142. int max_concurrency = context.GetMaxConcurrency();
  143. // Calculate how many step listener jobs we spawn
  144. int num_step_listener_jobs = mStepListeners.empty()? 0 : max(1, min((int)mStepListeners.size() / mPhysicsSettings.mStepListenersBatchSize / mPhysicsSettings.mStepListenerBatchesPerJob, max_concurrency));
  145. // Number of gravity jobs depends on the amount of active bodies.
  146. // Launch max 1 job per batch of active bodies
  147. // Leave 1 thread for update broadphase prepare and 1 for determine active constraints
  148. int num_apply_gravity_jobs = max(1, min(((int)num_active_bodies + cApplyGravityBatchSize - 1) / cApplyGravityBatchSize, max_concurrency - 2));
  149. // Number of determine active constraints jobs to run depends on number of constraints.
  150. // Leave 1 thread for update broadphase prepare and 1 for apply gravity
  151. int num_determine_active_constraints_jobs = max(1, min(((int)mConstraintManager.GetNumConstraints() + cDetermineActiveConstraintsBatchSize - 1) / cDetermineActiveConstraintsBatchSize, max_concurrency - 2));
  152. // Number of find collisions jobs to run depends on number of active bodies.
  153. // Note that when we have more than 1 thread, we always spawn at least 2 find collisions jobs so that the first job can wait for build islands from constraints
  154. // (which may activate additional bodies that need to be processed) while the second job can start processing collision work.
  155. int num_find_collisions_jobs = max(max_concurrency == 1? 1 : 2, min(((int)num_active_bodies + cActiveBodiesBatchSize - 1) / cActiveBodiesBatchSize, max_concurrency));
  156. // Number of integrate velocity jobs depends on number of active bodies.
  157. int num_integrate_velocity_jobs = max(1, min(((int)num_active_bodies + cIntegrateVelocityBatchSize - 1) / cIntegrateVelocityBatchSize, max_concurrency));
  158. {
  159. JPH_PROFILE("Build Jobs");
  160. // Iterate over collision steps
  161. for (int step_idx = 0; step_idx < inCollisionSteps; ++step_idx)
  162. {
  163. bool is_first_step = step_idx == 0;
  164. bool is_last_step = step_idx == inCollisionSteps - 1;
  165. PhysicsUpdateContext::Step &step = context.mSteps[step_idx];
  166. step.mContext = &context;
  167. step.mSubSteps.resize(inIntegrationSubSteps);
  168. // Create job to do broadphase finalization
  169. // This job must finish before integrating velocities. Until then the positions will not be updated neither will bodies be added / removed.
  170. step.mUpdateBroadphaseFinalize = inJobSystem->CreateJob("UpdateBroadPhaseFinalize", cColorUpdateBroadPhaseFinalize, [&context, &step]()
  171. {
  172. // Validate that all find collision jobs have stopped
  173. JPH_ASSERT(step.mActiveFindCollisionJobs == 0);
  174. // Finalize the broadphase update
  175. context.mPhysicsSystem->mBroadPhase->UpdateFinalize(step.mBroadPhaseUpdateState);
  176. // Signal that it is done
  177. step.mSubSteps[0].mPreIntegrateVelocity.RemoveDependency();
  178. }, num_find_collisions_jobs + 2); // depends on: find collisions, broadphase prepare update, finish building jobs
  179. // The immediate jobs below are only immediate for the first step, the all finished job will kick them for the next step
  180. int previous_step_dependency_count = is_first_step? 0 : 1;
  181. // Start job immediately: Start the prepare broadphase
  182. // Must be done under body lock protection since the order is body locks then broadphase mutex
  183. // If this is turned around the RemoveBody call will hang since it locks in that order
  184. step.mBroadPhasePrepare = inJobSystem->CreateJob("UpdateBroadPhasePrepare", cColorUpdateBroadPhasePrepare, [&context, &step]()
  185. {
  186. // Prepare the broadphase update
  187. step.mBroadPhaseUpdateState = context.mPhysicsSystem->mBroadPhase->UpdatePrepare();
  188. // Now the finalize can run (if other dependencies are met too)
  189. step.mUpdateBroadphaseFinalize.RemoveDependency();
  190. }, previous_step_dependency_count);
  191. // This job will find all collisions
  192. step.mBodyPairQueues.resize(max_concurrency);
  193. step.mMaxBodyPairsPerQueue = mPhysicsSettings.mMaxInFlightBodyPairs / max_concurrency;
  194. step.mActiveFindCollisionJobs = ~PhysicsUpdateContext::JobMask(0) >> (sizeof(PhysicsUpdateContext::JobMask) * 8 - num_find_collisions_jobs);
  195. step.mFindCollisions.resize(num_find_collisions_jobs);
  196. for (int i = 0; i < num_find_collisions_jobs; ++i)
  197. {
  198. // Build islands from constraints may activate additional bodies, so the first job will wait for this to finish in order to not miss any active bodies
  199. int num_dep_build_islands_from_constraints = i == 0? 1 : 0;
  200. step.mFindCollisions[i] = inJobSystem->CreateJob("FindCollisions", cColorFindCollisions, [&step, i]()
  201. {
  202. step.mContext->mPhysicsSystem->JobFindCollisions(&step, i);
  203. }, num_apply_gravity_jobs + num_determine_active_constraints_jobs + 1 + num_dep_build_islands_from_constraints); // depends on: apply gravity, determine active constraints, finish building jobs, build islands from constraints
  204. }
  205. if (is_first_step)
  206. {
  207. #ifdef JPH_ENABLE_ASSERTS
  208. // Don't allow write operations to the active bodies list
  209. mBodyManager.SetActiveBodiesLocked(true);
  210. #endif
  211. // Store the number of active bodies at the start of the step
  212. step.mNumActiveBodiesAtStepStart = mBodyManager.GetNumActiveBodies();
  213. // Lock all constraints
  214. mConstraintManager.LockAllConstraints();
  215. // Allocate memory for storing the active constraints
  216. JPH_ASSERT(context.mActiveConstraints == nullptr);
  217. context.mActiveConstraints = static_cast<Constraint **>(inTempAllocator->Allocate(mConstraintManager.GetNumConstraints() * sizeof(Constraint *)));
  218. // Prepare contact buffer
  219. mContactManager.PrepareConstraintBuffer(&context);
  220. // Setup island builder
  221. mIslandBuilder.PrepareContactConstraints(mContactManager.GetMaxConstraints(), context.mTempAllocator);
  222. }
  223. // This job applies gravity to all active bodies
  224. step.mApplyGravity.resize(num_apply_gravity_jobs);
  225. for (int i = 0; i < num_apply_gravity_jobs; ++i)
  226. step.mApplyGravity[i] = inJobSystem->CreateJob("ApplyGravity", cColorApplyGravity, [&context, &step]()
  227. {
  228. context.mPhysicsSystem->JobApplyGravity(&context, &step);
  229. JobHandle::sRemoveDependencies(step.mFindCollisions);
  230. }, num_step_listener_jobs > 0? num_step_listener_jobs : previous_step_dependency_count); // depends on: step listeners (or previous step if no step listeners)
  231. // This job will setup velocity constraints for non-collision constraints
  232. step.mSetupVelocityConstraints = inJobSystem->CreateJob("SetupVelocityConstraints", cColorSetupVelocityConstraints, [&context, &step]()
  233. {
  234. context.mPhysicsSystem->JobSetupVelocityConstraints(context.mSubStepDeltaTime, &step);
  235. JobHandle::sRemoveDependencies(step.mSubSteps[0].mSolveVelocityConstraints);
  236. }, num_determine_active_constraints_jobs + 1); // depends on: determine active constraints, finish building jobs
  237. // This job will build islands from constraints
  238. step.mBuildIslandsFromConstraints = inJobSystem->CreateJob("BuildIslandsFromConstraints", cColorBuildIslandsFromConstraints, [&context, &step]()
  239. {
  240. context.mPhysicsSystem->JobBuildIslandsFromConstraints(&context, &step);
  241. step.mFindCollisions[0].RemoveDependency(); // The first collisions job cannot start running until we've finished building islands and activated all bodies
  242. step.mFinalizeIslands.RemoveDependency();
  243. }, num_determine_active_constraints_jobs + 1); // depends on: determine active constraints, finish building jobs
  244. // This job determines active constraints
  245. step.mDetermineActiveConstraints.resize(num_determine_active_constraints_jobs);
  246. for (int i = 0; i < num_determine_active_constraints_jobs; ++i)
  247. step.mDetermineActiveConstraints[i] = inJobSystem->CreateJob("DetermineActiveConstraints", cColorDetermineActiveConstraints, [&context, &step]()
  248. {
  249. context.mPhysicsSystem->JobDetermineActiveConstraints(&step);
  250. step.mSetupVelocityConstraints.RemoveDependency();
  251. step.mBuildIslandsFromConstraints.RemoveDependency();
  252. // Kick find collisions last as they will use up all CPU cores leaving no space for the previous 2 jobs
  253. JobHandle::sRemoveDependencies(step.mFindCollisions);
  254. }, num_step_listener_jobs > 0? num_step_listener_jobs : previous_step_dependency_count); // depends on: step listeners (or previous step if no step listeners)
  255. // This job calls the step listeners
  256. step.mStepListeners.resize(num_step_listener_jobs);
  257. for (int i = 0; i < num_step_listener_jobs; ++i)
  258. step.mStepListeners[i] = inJobSystem->CreateJob("StepListeners", cColorStepListeners, [&context, &step]()
  259. {
  260. // Call the step listeners
  261. context.mPhysicsSystem->JobStepListeners(&step);
  262. // Kick apply gravity and determine active constraint jobs
  263. JobHandle::sRemoveDependencies(step.mApplyGravity);
  264. JobHandle::sRemoveDependencies(step.mDetermineActiveConstraints);
  265. }, previous_step_dependency_count);
  266. // Unblock the previous step
  267. if (!is_first_step)
  268. context.mSteps[step_idx - 1].mStartNextStep.RemoveDependency();
  269. // This job will finalize the simulation islands
  270. step.mFinalizeIslands = inJobSystem->CreateJob("FinalizeIslands", cColorFinalizeIslands, [&context, &step]()
  271. {
  272. // Validate that all find collision jobs have stopped
  273. JPH_ASSERT(step.mActiveFindCollisionJobs == 0);
  274. context.mPhysicsSystem->JobFinalizeIslands(&context);
  275. JobHandle::sRemoveDependencies(step.mSubSteps[0].mSolveVelocityConstraints);
  276. step.mBodySetIslandIndex.RemoveDependency();
  277. }, num_find_collisions_jobs + 2); // depends on: find collisions, build islands from constraints, finish building jobs
  278. // Unblock previous job
  279. // Note: technically we could release find collisions here but we don't want to because that could make them run before 'setup velocity constraints' which means that job won't have a thread left
  280. step.mBuildIslandsFromConstraints.RemoveDependency();
  281. // This job will call the contact removed callbacks
  282. step.mContactRemovedCallbacks = inJobSystem->CreateJob("ContactRemovedCallbacks", cColorContactRemovedCallbacks, [&context, &step]()
  283. {
  284. context.mPhysicsSystem->JobContactRemovedCallbacks(&step);
  285. if (step.mStartNextStep.IsValid())
  286. step.mStartNextStep.RemoveDependency();
  287. }, 1); // depends on the find ccd contacts of the last sub step
  288. // This job will set the island index on each body (only used for debug drawing purposes)
  289. // It will also delete any bodies that have been destroyed in the last frame
  290. step.mBodySetIslandIndex = inJobSystem->CreateJob("BodySetIslandIndex", cColorBodySetIslandIndex, [&context, &step]()
  291. {
  292. context.mPhysicsSystem->JobBodySetIslandIndex();
  293. if (step.mStartNextStep.IsValid())
  294. step.mStartNextStep.RemoveDependency();
  295. }, 1); // depends on: finalize islands
  296. // Job to start the next collision step
  297. if (!is_last_step)
  298. {
  299. PhysicsUpdateContext::Step *next_step = &context.mSteps[step_idx + 1];
  300. step.mStartNextStep = inJobSystem->CreateJob("StartNextStep", cColorStartNextStep, [this, next_step]()
  301. {
  302. #ifdef _DEBUG
  303. // Validate that the cached bounds are correct
  304. mBodyManager.ValidateActiveBodyBounds();
  305. #endif // _DEBUG
  306. // Store the number of active bodies at the start of the step
  307. next_step->mNumActiveBodiesAtStepStart = mBodyManager.GetNumActiveBodies();
  308. // Clear the large island splitter
  309. TempAllocator *temp_allocator = next_step->mContext->mTempAllocator;
  310. mLargeIslandSplitter.Reset(temp_allocator);
  311. // Clear the island builder
  312. mIslandBuilder.ResetIslands(temp_allocator);
  313. // Setup island builder
  314. mIslandBuilder.PrepareContactConstraints(mContactManager.GetMaxConstraints(), temp_allocator);
  315. // Restart the contact manager
  316. mContactManager.RecycleConstraintBuffer();
  317. // Kick the jobs of the next step (in the same order as the first step)
  318. next_step->mBroadPhasePrepare.RemoveDependency();
  319. if (next_step->mStepListeners.empty())
  320. {
  321. // Kick the gravity and active constraints jobs immediately
  322. JobHandle::sRemoveDependencies(next_step->mApplyGravity);
  323. JobHandle::sRemoveDependencies(next_step->mDetermineActiveConstraints);
  324. }
  325. else
  326. {
  327. // Kick the step listeners job first
  328. JobHandle::sRemoveDependencies(next_step->mStepListeners);
  329. }
  330. }, max_concurrency + 3); // depends on: solve position constraints of the last step, body set island index, contact removed callbacks, finish building the previous step
  331. }
  332. // Create solve jobs for each of the integration sub steps
  333. for (int sub_step_idx = 0; sub_step_idx < inIntegrationSubSteps; ++sub_step_idx)
  334. {
  335. bool is_first_sub_step = sub_step_idx == 0;
  336. bool is_last_sub_step = sub_step_idx == inIntegrationSubSteps - 1;
  337. PhysicsUpdateContext::SubStep &sub_step = step.mSubSteps[sub_step_idx];
  338. sub_step.mStep = &step;
  339. sub_step.mIsFirst = is_first_sub_step;
  340. sub_step.mIsLast = is_last_sub_step;
  341. sub_step.mIsFirstOfAll = is_first_step && is_first_sub_step;
  342. sub_step.mIsLastOfAll = is_last_step && is_last_sub_step;
  343. // This job will solve the velocity constraints
  344. int num_dependencies_solve_velocity_constraints = is_first_sub_step? 3 : 2; // in first sub step depends on: finalize islands, setup velocity constraints, in later sub steps depends on: previous sub step finished. For both: finish building jobs.
  345. sub_step.mSolveVelocityConstraints.resize(max_concurrency);
  346. for (int i = 0; i < max_concurrency; ++i)
  347. sub_step.mSolveVelocityConstraints[i] = inJobSystem->CreateJob("SolveVelocityConstraints", cColorSolveVelocityConstraints, [&context, &sub_step]()
  348. {
  349. context.mPhysicsSystem->JobSolveVelocityConstraints(&context, &sub_step);
  350. sub_step.mPreIntegrateVelocity.RemoveDependency();
  351. }, num_dependencies_solve_velocity_constraints);
  352. // Unblock previous jobs
  353. if (is_first_sub_step)
  354. {
  355. // Kick find collisions after setup velocity constraints because the former job will use up all CPU cores
  356. step.mSetupVelocityConstraints.RemoveDependency();
  357. JobHandle::sRemoveDependencies(step.mFindCollisions);
  358. // Finalize islands is a dependency on find collisions so it can go last
  359. step.mFinalizeIslands.RemoveDependency();
  360. }
  361. else
  362. {
  363. step.mSubSteps[sub_step_idx - 1].mStartNextSubStep.RemoveDependency();
  364. }
  365. // This job will prepare the position update of all active bodies
  366. int num_dependencies_integrate_velocity = is_first_sub_step? 2 + max_concurrency : 1 + max_concurrency; // depends on: broadphase update finalize in first step, solve velocity constraints in all steps. For both: finish building jobs.
  367. sub_step.mPreIntegrateVelocity = inJobSystem->CreateJob("PreIntegrateVelocity", cColorPreIntegrateVelocity, [&context, &sub_step]()
  368. {
  369. context.mPhysicsSystem->JobPreIntegrateVelocity(&context, &sub_step);
  370. JobHandle::sRemoveDependencies(sub_step.mIntegrateVelocity);
  371. }, num_dependencies_integrate_velocity);
  372. // Unblock previous jobs
  373. if (is_first_sub_step)
  374. step.mUpdateBroadphaseFinalize.RemoveDependency();
  375. JobHandle::sRemoveDependencies(sub_step.mSolveVelocityConstraints);
  376. // This job will update the positions of all active bodies
  377. sub_step.mIntegrateVelocity.resize(num_integrate_velocity_jobs);
  378. for (int i = 0; i < num_integrate_velocity_jobs; ++i)
  379. sub_step.mIntegrateVelocity[i] = inJobSystem->CreateJob("IntegrateVelocity", cColorIntegrateVelocity, [&context, &sub_step]()
  380. {
  381. context.mPhysicsSystem->JobIntegrateVelocity(&context, &sub_step);
  382. sub_step.mPostIntegrateVelocity.RemoveDependency();
  383. }, 2); // depends on: pre integrate velocity, finish building jobs.
  384. // Unblock previous job
  385. sub_step.mPreIntegrateVelocity.RemoveDependency();
  386. // This job will finish the position update of all active bodies
  387. sub_step.mPostIntegrateVelocity = inJobSystem->CreateJob("PostIntegrateVelocity", cColorPostIntegrateVelocity, [&context, &sub_step]()
  388. {
  389. context.mPhysicsSystem->JobPostIntegrateVelocity(&context, &sub_step);
  390. sub_step.mResolveCCDContacts.RemoveDependency();
  391. }, num_integrate_velocity_jobs + 1); // depends on: integrate velocity, finish building jobs
  392. // Unblock previous jobs
  393. JobHandle::sRemoveDependencies(sub_step.mIntegrateVelocity);
  394. // This job will update the positions and velocities for all bodies that need continuous collision detection
  395. sub_step.mResolveCCDContacts = inJobSystem->CreateJob("ResolveCCDContacts", cColorResolveCCDContacts, [&context, &sub_step]()
  396. {
  397. context.mPhysicsSystem->JobResolveCCDContacts(&context, &sub_step);
  398. JobHandle::sRemoveDependencies(sub_step.mSolvePositionConstraints);
  399. }, 2); // depends on: integrate velocities, detect ccd contacts (added dynamically), finish building jobs.
  400. // Unblock previous job
  401. sub_step.mPostIntegrateVelocity.RemoveDependency();
  402. // Fixes up drift in positions and updates the broadphase with new body positions
  403. sub_step.mSolvePositionConstraints.resize(max_concurrency);
  404. for (int i = 0; i < max_concurrency; ++i)
  405. sub_step.mSolvePositionConstraints[i] = inJobSystem->CreateJob("SolvePositionConstraints", cColorSolvePositionConstraints, [&context, &sub_step]()
  406. {
  407. context.mPhysicsSystem->JobSolvePositionConstraints(&context, &sub_step);
  408. // Kick the next sub step
  409. if (sub_step.mStartNextSubStep.IsValid())
  410. sub_step.mStartNextSubStep.RemoveDependency();
  411. }, 2); // depends on: resolve ccd contacts, finish building jobs.
  412. // Unblock previous job.
  413. sub_step.mResolveCCDContacts.RemoveDependency();
  414. // This job starts the next sub step
  415. if (!is_last_sub_step)
  416. {
  417. PhysicsUpdateContext::SubStep &next_sub_step = step.mSubSteps[sub_step_idx + 1];
  418. sub_step.mStartNextSubStep = inJobSystem->CreateJob("StartNextSubStep", cColorStartNextSubStep, [&next_sub_step]()
  419. {
  420. // Kick velocity constraint solving for the next sub step
  421. JobHandle::sRemoveDependencies(next_sub_step.mSolveVelocityConstraints);
  422. }, max_concurrency + 1); // depends on: solve position constraints, finish building jobs.
  423. }
  424. else
  425. sub_step.mStartNextSubStep = step.mStartNextStep;
  426. // Unblock previous jobs
  427. JobHandle::sRemoveDependencies(sub_step.mSolvePositionConstraints);
  428. }
  429. }
  430. }
  431. // Build the list of jobs to wait for
  432. JobSystem::Barrier *barrier = context.mBarrier;
  433. {
  434. JPH_PROFILE("Build job barrier");
  435. StaticArray<JobHandle, cMaxPhysicsJobs> handles;
  436. for (const PhysicsUpdateContext::Step &step : context.mSteps)
  437. {
  438. if (step.mBroadPhasePrepare.IsValid())
  439. handles.push_back(step.mBroadPhasePrepare);
  440. for (const JobHandle &h : step.mStepListeners)
  441. handles.push_back(h);
  442. for (const JobHandle &h : step.mDetermineActiveConstraints)
  443. handles.push_back(h);
  444. for (const JobHandle &h : step.mApplyGravity)
  445. handles.push_back(h);
  446. for (const JobHandle &h : step.mFindCollisions)
  447. handles.push_back(h);
  448. if (step.mUpdateBroadphaseFinalize.IsValid())
  449. handles.push_back(step.mUpdateBroadphaseFinalize);
  450. handles.push_back(step.mSetupVelocityConstraints);
  451. handles.push_back(step.mBuildIslandsFromConstraints);
  452. handles.push_back(step.mFinalizeIslands);
  453. handles.push_back(step.mBodySetIslandIndex);
  454. for (const PhysicsUpdateContext::SubStep &sub_step : step.mSubSteps)
  455. {
  456. for (const JobHandle &h : sub_step.mSolveVelocityConstraints)
  457. handles.push_back(h);
  458. handles.push_back(sub_step.mPreIntegrateVelocity);
  459. for (const JobHandle &h : sub_step.mIntegrateVelocity)
  460. handles.push_back(h);
  461. handles.push_back(sub_step.mPostIntegrateVelocity);
  462. handles.push_back(sub_step.mResolveCCDContacts);
  463. for (const JobHandle &h : sub_step.mSolvePositionConstraints)
  464. handles.push_back(h);
  465. if (sub_step.mStartNextSubStep.IsValid())
  466. handles.push_back(sub_step.mStartNextSubStep);
  467. }
  468. handles.push_back(step.mContactRemovedCallbacks);
  469. }
  470. barrier->AddJobs(handles.data(), handles.size());
  471. }
  472. // Wait until all jobs finish
  473. // Note we don't just wait for the last job. If we would and another job
  474. // would be scheduled in between there is the possibility of a deadlock.
  475. // The other job could try to e.g. add/remove a body which would try to
  476. // lock a body mutex while this thread has already locked the mutex
  477. inJobSystem->WaitForJobs(barrier);
  478. // We're done with the barrier for this update
  479. inJobSystem->DestroyBarrier(barrier);
  480. #ifdef _DEBUG
  481. // Validate that the cached bounds are correct
  482. mBodyManager.ValidateActiveBodyBounds();
  483. #endif // _DEBUG
  484. // Clear the large island splitter
  485. mLargeIslandSplitter.Reset(inTempAllocator);
  486. // Clear the island builder
  487. mIslandBuilder.ResetIslands(inTempAllocator);
  488. // Clear the contact manager
  489. mContactManager.FinishConstraintBuffer();
  490. // Free active constraints
  491. inTempAllocator->Free(context.mActiveConstraints, mConstraintManager.GetNumConstraints() * sizeof(Constraint *));
  492. context.mActiveConstraints = nullptr;
  493. // Free body pairs
  494. inTempAllocator->Free(context.mBodyPairs, sizeof(BodyPair) * mPhysicsSettings.mMaxInFlightBodyPairs);
  495. context.mBodyPairs = nullptr;
  496. // Unlock the broadphase
  497. mBroadPhase->UnlockModifications();
  498. // Unlock all constraints
  499. mConstraintManager.UnlockAllConstraints();
  500. #ifdef JPH_ENABLE_ASSERTS
  501. // Allow write operations to the active bodies list
  502. mBodyManager.SetActiveBodiesLocked(false);
  503. #endif
  504. // Unlock all bodies
  505. mBodyManager.UnlockAllBodies();
  506. // Unlock step listeners
  507. mStepListenersMutex.unlock();
  508. }
  509. void PhysicsSystem::JobStepListeners(PhysicsUpdateContext::Step *ioStep)
  510. {
  511. #ifdef JPH_ENABLE_ASSERTS
  512. // Read positions (broadphase updates concurrently so we can't write), read/write velocities
  513. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  514. // Can activate bodies only (we cache the amount of active bodies at the beginning of the step in mNumActiveBodiesAtStepStart so we cannot deactivate here)
  515. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  516. #endif
  517. float step_time = ioStep->mContext->mStepDeltaTime;
  518. uint32 batch_size = mPhysicsSettings.mStepListenersBatchSize;
  519. for (;;)
  520. {
  521. // Get the start of a new batch
  522. uint32 batch = ioStep->mStepListenerReadIdx.fetch_add(batch_size);
  523. if (batch >= mStepListeners.size())
  524. break;
  525. // Call the listeners
  526. for (uint32 i = batch, i_end = min((uint32)mStepListeners.size(), batch + batch_size); i < i_end; ++i)
  527. mStepListeners[i]->OnStep(step_time, *this);
  528. }
  529. }
  530. void PhysicsSystem::JobDetermineActiveConstraints(PhysicsUpdateContext::Step *ioStep) const
  531. {
  532. #ifdef JPH_ENABLE_ASSERTS
  533. // No body access
  534. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  535. #endif
  536. uint32 num_constraints = mConstraintManager.GetNumConstraints();
  537. uint32 num_active_constraints;
  538. Constraint **active_constraints = (Constraint **)JPH_STACK_ALLOC(cDetermineActiveConstraintsBatchSize * sizeof(Constraint *));
  539. for (;;)
  540. {
  541. // Atomically fetch a batch of constraints
  542. uint32 constraint_idx = ioStep->mConstraintReadIdx.fetch_add(cDetermineActiveConstraintsBatchSize);
  543. if (constraint_idx >= num_constraints)
  544. break;
  545. // Calculate the end of the batch
  546. uint32 constraint_idx_end = min(num_constraints, constraint_idx + cDetermineActiveConstraintsBatchSize);
  547. // Store the active constraints at the start of the step (bodies get activated during the step which in turn may activate constraints leading to an inconsistent shapshot)
  548. mConstraintManager.GetActiveConstraints(constraint_idx, constraint_idx_end, active_constraints, num_active_constraints);
  549. // Copy the block of active constraints to the global list of active constraints
  550. if (num_active_constraints > 0)
  551. {
  552. uint32 active_constraint_idx = ioStep->mNumActiveConstraints.fetch_add(num_active_constraints);
  553. memcpy(ioStep->mContext->mActiveConstraints + active_constraint_idx, active_constraints, num_active_constraints * sizeof(Constraint *));
  554. }
  555. }
  556. }
  557. void PhysicsSystem::JobApplyGravity(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  558. {
  559. #ifdef JPH_ENABLE_ASSERTS
  560. // We update velocities and need the rotation to do so
  561. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  562. #endif
  563. // Get list of active bodies that we had at the start of the physics update.
  564. // Any body that is activated as part of the simulation step does not receive gravity this frame.
  565. // Note that bodies may be activated during this job but not deactivated, this means that only elements
  566. // will be added to the array. Since the array is made to not reallocate, this is a safe operation.
  567. const BodyID *active_bodies = mBodyManager.GetActiveBodiesUnsafe();
  568. uint32 num_active_bodies_at_step_start = ioStep->mNumActiveBodiesAtStepStart;
  569. // Fetch delta time once outside the loop
  570. float delta_time = ioContext->mSubStepDeltaTime;
  571. // Update velocities from forces
  572. for (;;)
  573. {
  574. // Atomically fetch a batch of bodies
  575. uint32 active_body_idx = ioStep->mApplyGravityReadIdx.fetch_add(cApplyGravityBatchSize);
  576. if (active_body_idx >= num_active_bodies_at_step_start)
  577. break;
  578. // Calculate the end of the batch
  579. uint32 active_body_idx_end = min(num_active_bodies_at_step_start, active_body_idx + cApplyGravityBatchSize);
  580. // Process the batch
  581. while (active_body_idx < active_body_idx_end)
  582. {
  583. Body &body = mBodyManager.GetBody(active_bodies[active_body_idx]);
  584. if (body.IsDynamic())
  585. body.GetMotionProperties()->ApplyForceTorqueAndDragInternal(body.GetRotation(), mGravity, delta_time);
  586. active_body_idx++;
  587. }
  588. }
  589. }
  590. void PhysicsSystem::JobSetupVelocityConstraints(float inDeltaTime, PhysicsUpdateContext::Step *ioStep) const
  591. {
  592. #ifdef JPH_ENABLE_ASSERTS
  593. // We only read positions
  594. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  595. #endif
  596. ConstraintManager::sSetupVelocityConstraints(ioStep->mContext->mActiveConstraints, ioStep->mNumActiveConstraints, inDeltaTime);
  597. }
  598. void PhysicsSystem::JobBuildIslandsFromConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  599. {
  600. #ifdef JPH_ENABLE_ASSERTS
  601. // We read constraints and positions
  602. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  603. // Can only activate bodies
  604. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  605. #endif
  606. // Prepare the island builder
  607. mIslandBuilder.PrepareNonContactConstraints(ioStep->mNumActiveConstraints, ioContext->mTempAllocator);
  608. // Build the islands
  609. ConstraintManager::sBuildIslands(ioStep->mContext->mActiveConstraints, ioStep->mNumActiveConstraints, mIslandBuilder, mBodyManager);
  610. }
  611. void PhysicsSystem::TrySpawnJobFindCollisions(PhysicsUpdateContext::Step *ioStep) const
  612. {
  613. // Get how many jobs we can spawn and check if we can spawn more
  614. uint max_jobs = ioStep->mBodyPairQueues.size();
  615. if (CountBits(ioStep->mActiveFindCollisionJobs) >= max_jobs)
  616. return;
  617. // Count how many body pairs we have waiting
  618. uint32 num_body_pairs = 0;
  619. for (const PhysicsUpdateContext::BodyPairQueue &queue : ioStep->mBodyPairQueues)
  620. num_body_pairs += queue.mWriteIdx - queue.mReadIdx;
  621. // Count how many active bodies we have waiting
  622. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies() - ioStep->mActiveBodyReadIdx;
  623. // Calculate how many jobs we would like
  624. uint desired_num_jobs = min((num_body_pairs + cNarrowPhaseBatchSize - 1) / cNarrowPhaseBatchSize + (num_active_bodies + cActiveBodiesBatchSize - 1) / cActiveBodiesBatchSize, max_jobs);
  625. for (;;)
  626. {
  627. // Get the bit mask of active jobs and see if we can spawn more
  628. PhysicsUpdateContext::JobMask current_active_jobs = ioStep->mActiveFindCollisionJobs;
  629. if (CountBits(current_active_jobs) >= desired_num_jobs)
  630. break;
  631. // Loop through all possible job indices
  632. for (uint job_index = 0; job_index < max_jobs; ++job_index)
  633. {
  634. // Test if it has been started
  635. PhysicsUpdateContext::JobMask job_mask = PhysicsUpdateContext::JobMask(1) << job_index;
  636. if ((current_active_jobs & job_mask) == 0)
  637. {
  638. // Try to claim the job index
  639. PhysicsUpdateContext::JobMask prev_value = ioStep->mActiveFindCollisionJobs.fetch_or(job_mask);
  640. if ((prev_value & job_mask) == 0)
  641. {
  642. // Add dependencies from the find collisions job to the next jobs
  643. ioStep->mUpdateBroadphaseFinalize.AddDependency();
  644. ioStep->mFinalizeIslands.AddDependency();
  645. // Start the job
  646. JobHandle job = ioStep->mContext->mJobSystem->CreateJob("FindCollisions", cColorFindCollisions, [step = ioStep, job_index]()
  647. {
  648. step->mContext->mPhysicsSystem->JobFindCollisions(step, job_index);
  649. });
  650. // Add the job to the job barrier so the main updating thread can execute the job too
  651. ioStep->mContext->mBarrier->AddJob(job);
  652. // Spawn only 1 extra job at a time
  653. return;
  654. }
  655. }
  656. }
  657. }
  658. }
  659. void PhysicsSystem::JobFindCollisions(PhysicsUpdateContext::Step *ioStep, int inJobIndex)
  660. {
  661. #ifdef JPH_ENABLE_ASSERTS
  662. // We read positions and read velocities (for elastic collisions)
  663. BodyAccess::Grant grant(BodyAccess::EAccess::Read, BodyAccess::EAccess::Read);
  664. // Can only activate bodies
  665. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  666. #endif
  667. // Allocation context for allocating new contact points
  668. ContactAllocator contact_allocator(mContactManager.GetContactAllocator());
  669. // Determine initial queue to read pairs from if no broadphase work can be done
  670. // (always start looking at results from the next job)
  671. int read_queue_idx = (inJobIndex + 1) % ioStep->mBodyPairQueues.size();
  672. for (;;)
  673. {
  674. // Check if there are active bodies to be processed
  675. uint32 active_bodies_read_idx = ioStep->mActiveBodyReadIdx;
  676. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  677. if (active_bodies_read_idx < num_active_bodies)
  678. {
  679. // Take a batch of active bodies
  680. uint32 active_bodies_read_idx_end = min(num_active_bodies, active_bodies_read_idx + cActiveBodiesBatchSize);
  681. if (ioStep->mActiveBodyReadIdx.compare_exchange_strong(active_bodies_read_idx, active_bodies_read_idx_end))
  682. {
  683. // Callback when a new body pair is found
  684. class MyBodyPairCallback : public BodyPairCollector
  685. {
  686. public:
  687. // Constructor
  688. MyBodyPairCallback(PhysicsUpdateContext::Step *inStep, ContactAllocator &ioContactAllocator, int inJobIndex) :
  689. mStep(inStep),
  690. mContactAllocator(ioContactAllocator),
  691. mJobIndex(inJobIndex)
  692. {
  693. }
  694. // Callback function when a body pair is found
  695. virtual void AddHit(const BodyPair &inPair) override
  696. {
  697. // Check if we have space in our write queue
  698. PhysicsUpdateContext::BodyPairQueue &queue = mStep->mBodyPairQueues[mJobIndex];
  699. uint32 body_pairs_in_queue = queue.mWriteIdx - queue.mReadIdx;
  700. if (body_pairs_in_queue >= mStep->mMaxBodyPairsPerQueue)
  701. {
  702. // Buffer full, process the pair now
  703. mStep->mContext->mPhysicsSystem->ProcessBodyPair(mContactAllocator, inPair);
  704. }
  705. else
  706. {
  707. // Store the pair in our own queue
  708. mStep->mContext->mBodyPairs[mJobIndex * mStep->mMaxBodyPairsPerQueue + queue.mWriteIdx % mStep->mMaxBodyPairsPerQueue] = inPair;
  709. ++queue.mWriteIdx;
  710. }
  711. }
  712. private:
  713. PhysicsUpdateContext::Step * mStep;
  714. ContactAllocator & mContactAllocator;
  715. int mJobIndex;
  716. };
  717. MyBodyPairCallback add_pair(ioStep, contact_allocator, inJobIndex);
  718. // Copy active bodies to temporary array, broadphase will reorder them
  719. uint32 batch_size = active_bodies_read_idx_end - active_bodies_read_idx;
  720. BodyID *active_bodies = (BodyID *)JPH_STACK_ALLOC(batch_size * sizeof(BodyID));
  721. memcpy(active_bodies, mBodyManager.GetActiveBodiesUnsafe() + active_bodies_read_idx, batch_size * sizeof(BodyID));
  722. // Find pairs in the broadphase
  723. mBroadPhase->FindCollidingPairs(active_bodies, batch_size, mPhysicsSettings.mSpeculativeContactDistance, *mObjectVsBroadPhaseLayerFilter, *mObjectLayerPairFilter, add_pair);
  724. // Check if we have enough pairs in the buffer to start a new job
  725. const PhysicsUpdateContext::BodyPairQueue &queue = ioStep->mBodyPairQueues[inJobIndex];
  726. uint32 body_pairs_in_queue = queue.mWriteIdx - queue.mReadIdx;
  727. if (body_pairs_in_queue >= cNarrowPhaseBatchSize)
  728. TrySpawnJobFindCollisions(ioStep);
  729. }
  730. }
  731. else
  732. {
  733. // Lockless loop to get the next body pair from the pairs buffer
  734. const PhysicsUpdateContext *context = ioStep->mContext;
  735. int first_read_queue_idx = read_queue_idx;
  736. for (;;)
  737. {
  738. PhysicsUpdateContext::BodyPairQueue &queue = ioStep->mBodyPairQueues[read_queue_idx];
  739. // Get the next pair to process
  740. uint32 pair_idx = queue.mReadIdx;
  741. // If the pair hasn't been written yet
  742. if (pair_idx >= queue.mWriteIdx)
  743. {
  744. // Go to the next queue
  745. read_queue_idx = (read_queue_idx + 1) % ioStep->mBodyPairQueues.size();
  746. // If we're back at the first queue, we've looked at all of them and found nothing
  747. if (read_queue_idx == first_read_queue_idx)
  748. {
  749. // Atomically accumulate the number of found manifolds and body pairs
  750. ioStep->mNumBodyPairs += contact_allocator.mNumBodyPairs;
  751. ioStep->mNumManifolds += contact_allocator.mNumManifolds;
  752. // Mark this job as inactive
  753. ioStep->mActiveFindCollisionJobs.fetch_and(~PhysicsUpdateContext::JobMask(1 << inJobIndex));
  754. // Trigger the next jobs
  755. ioStep->mUpdateBroadphaseFinalize.RemoveDependency();
  756. ioStep->mFinalizeIslands.RemoveDependency();
  757. return;
  758. }
  759. // Try again reading from the next queue
  760. continue;
  761. }
  762. // Copy the body pair out of the buffer
  763. const BodyPair bp = context->mBodyPairs[read_queue_idx * ioStep->mMaxBodyPairsPerQueue + pair_idx % ioStep->mMaxBodyPairsPerQueue];
  764. // Mark this pair as taken
  765. if (queue.mReadIdx.compare_exchange_strong(pair_idx, pair_idx + 1))
  766. {
  767. // Process the actual body pair
  768. ProcessBodyPair(contact_allocator, bp);
  769. break;
  770. }
  771. }
  772. }
  773. }
  774. }
  775. void PhysicsSystem::ProcessBodyPair(ContactAllocator &ioContactAllocator, const BodyPair &inBodyPair)
  776. {
  777. JPH_PROFILE_FUNCTION();
  778. // Fetch body pair
  779. Body *body1 = &mBodyManager.GetBody(inBodyPair.mBodyA);
  780. Body *body2 = &mBodyManager.GetBody(inBodyPair.mBodyB);
  781. JPH_ASSERT(body1->IsActive());
  782. JPH_DET_LOG("ProcessBodyPair: id1: " << inBodyPair.mBodyA << " id2: " << inBodyPair.mBodyB << " p1: " << body1->GetCenterOfMassPosition() << " p2: " << body2->GetCenterOfMassPosition() << " r1: " << body1->GetRotation() << " r2: " << body2->GetRotation());
  783. // Ensure that body1 is dynamic, this ensures that we do the collision detection in the space of a moving body, which avoids accuracy problems when testing a very large static object against a small dynamic object
  784. // Ensure that body1 id < body2 id for dynamic vs dynamic
  785. // Keep body order unchanged when colliding with a sensor
  786. if ((!body1->IsDynamic() || (body2->IsDynamic() && inBodyPair.mBodyB < inBodyPair.mBodyA))
  787. && !body2->IsSensor())
  788. swap(body1, body2);
  789. JPH_ASSERT(body1->IsDynamic() || (body1->IsKinematic() && body2->IsSensor()));
  790. // Check if the contact points from the previous frame are reusable and if so copy them
  791. bool pair_handled = false, constraint_created = false;
  792. if (mPhysicsSettings.mUseBodyPairContactCache && !(body1->IsCollisionCacheInvalid() || body2->IsCollisionCacheInvalid()))
  793. mContactManager.GetContactsFromCache(ioContactAllocator, *body1, *body2, pair_handled, constraint_created);
  794. // If the cache hasn't handled this body pair do actual collision detection
  795. if (!pair_handled)
  796. {
  797. // Create entry in the cache for this body pair
  798. // Needs to happen irrespective if we found a collision or not (we want to remember that no collision was found too)
  799. ContactConstraintManager::BodyPairHandle body_pair_handle = mContactManager.AddBodyPair(ioContactAllocator, *body1, *body2);
  800. if (body_pair_handle == nullptr)
  801. return; // Out of cache space
  802. // Create the query settings
  803. CollideShapeSettings settings;
  804. settings.mCollectFacesMode = ECollectFacesMode::CollectFaces;
  805. settings.mActiveEdgeMode = mPhysicsSettings.mCheckActiveEdges? EActiveEdgeMode::CollideOnlyWithActive : EActiveEdgeMode::CollideWithAll;
  806. settings.mMaxSeparationDistance = mPhysicsSettings.mSpeculativeContactDistance;
  807. settings.mActiveEdgeMovementDirection = body1->GetLinearVelocity() - body2->GetLinearVelocity();
  808. // Get transforms relative to body1
  809. RVec3 offset = body1->GetCenterOfMassPosition();
  810. Mat44 transform1 = Mat44::sRotation(body1->GetRotation());
  811. Mat44 transform2 = body2->GetCenterOfMassTransform().PostTranslated(-offset).ToMat44();
  812. if (mPhysicsSettings.mUseManifoldReduction // Check global flag
  813. && body1->GetUseManifoldReductionWithBody(*body2)) // Check body flag
  814. {
  815. // Version WITH contact manifold reduction
  816. class MyManifold : public ContactManifold
  817. {
  818. public:
  819. Vec3 mFirstWorldSpaceNormal;
  820. };
  821. // A temporary structure that allows us to keep track of the all manifolds between this body pair
  822. using Manifolds = StaticArray<MyManifold, 32>;
  823. // Create collector
  824. class ReductionCollideShapeCollector : public CollideShapeCollector
  825. {
  826. public:
  827. ReductionCollideShapeCollector(PhysicsSystem *inSystem, const Body *inBody1, const Body *inBody2) :
  828. mSystem(inSystem),
  829. mBody1(inBody1),
  830. mBody2(inBody2)
  831. {
  832. }
  833. virtual void AddHit(const CollideShapeResult &inResult) override
  834. {
  835. // One of the following should be true:
  836. // - Body 1 is dynamic and body 2 may be dynamic, static or kinematic
  837. // - Body 1 is kinematic in which case body 2 should be a sensor
  838. JPH_ASSERT(mBody1->IsDynamic() || (mBody1->IsKinematic() && mBody2->IsSensor()));
  839. JPH_ASSERT(!ShouldEarlyOut());
  840. // Test if we want to accept this hit
  841. if (mValidateBodyPair)
  842. {
  843. switch (mSystem->mContactManager.ValidateContactPoint(*mBody1, *mBody2, mBody1->GetCenterOfMassPosition(), inResult))
  844. {
  845. case ValidateResult::AcceptContact:
  846. // We're just accepting this one, nothing to do
  847. break;
  848. case ValidateResult::AcceptAllContactsForThisBodyPair:
  849. // Accept and stop calling the validate callback
  850. mValidateBodyPair = false;
  851. break;
  852. case ValidateResult::RejectContact:
  853. // Skip this contact
  854. return;
  855. case ValidateResult::RejectAllContactsForThisBodyPair:
  856. // Skip this and early out
  857. ForceEarlyOut();
  858. return;
  859. }
  860. }
  861. // Calculate normal
  862. Vec3 world_space_normal = inResult.mPenetrationAxis.Normalized();
  863. // Check if we can add it to an existing manifold
  864. Manifolds::iterator manifold;
  865. float contact_normal_cos_max_delta_rot = mSystem->mPhysicsSettings.mContactNormalCosMaxDeltaRotation;
  866. for (manifold = mManifolds.begin(); manifold != mManifolds.end(); ++manifold)
  867. if (world_space_normal.Dot(manifold->mFirstWorldSpaceNormal) >= contact_normal_cos_max_delta_rot)
  868. {
  869. // Update average normal
  870. manifold->mWorldSpaceNormal += world_space_normal;
  871. manifold->mPenetrationDepth = max(manifold->mPenetrationDepth, inResult.mPenetrationDepth);
  872. break;
  873. }
  874. if (manifold == mManifolds.end())
  875. {
  876. // Check if array is full
  877. if (mManifolds.size() == mManifolds.capacity())
  878. {
  879. // Full, find manifold with least amount of penetration
  880. manifold = mManifolds.begin();
  881. for (Manifolds::iterator m = mManifolds.begin() + 1; m < mManifolds.end(); ++m)
  882. if (m->mPenetrationDepth < manifold->mPenetrationDepth)
  883. manifold = m;
  884. // If this contacts penetration is smaller than the smallest manifold, we skip this contact
  885. if (inResult.mPenetrationDepth < manifold->mPenetrationDepth)
  886. return;
  887. // Replace the manifold
  888. *manifold = { { mBody1->GetCenterOfMassPosition(), world_space_normal, inResult.mPenetrationDepth, inResult.mSubShapeID1, inResult.mSubShapeID2, { }, { } }, world_space_normal };
  889. }
  890. else
  891. {
  892. // Not full, create new manifold
  893. mManifolds.push_back({ { mBody1->GetCenterOfMassPosition(), world_space_normal, inResult.mPenetrationDepth, inResult.mSubShapeID1, inResult.mSubShapeID2, { }, { } }, world_space_normal });
  894. manifold = mManifolds.end() - 1;
  895. }
  896. }
  897. // Determine contact points
  898. const PhysicsSettings &settings = mSystem->mPhysicsSettings;
  899. ManifoldBetweenTwoFaces(inResult.mContactPointOn1, inResult.mContactPointOn2, inResult.mPenetrationAxis, Square(settings.mSpeculativeContactDistance) + settings.mManifoldToleranceSq, inResult.mShape1Face, inResult.mShape2Face, manifold->mRelativeContactPointsOn1, manifold->mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, mBody1->GetCenterOfMassPosition()));
  900. // Prune if we have more than 32 points (this means we could run out of space in the next iteration)
  901. if (manifold->mRelativeContactPointsOn1.size() > 32)
  902. PruneContactPoints(manifold->mFirstWorldSpaceNormal, manifold->mRelativeContactPointsOn1, manifold->mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold->mBaseOffset));
  903. }
  904. PhysicsSystem * mSystem;
  905. const Body * mBody1;
  906. const Body * mBody2;
  907. bool mValidateBodyPair = true;
  908. Manifolds mManifolds;
  909. };
  910. ReductionCollideShapeCollector collector(this, body1, body2);
  911. // Perform collision detection between the two shapes
  912. SubShapeIDCreator part1, part2;
  913. CollisionDispatch::sCollideShapeVsShape(body1->GetShape(), body2->GetShape(), Vec3::sReplicate(1.0f), Vec3::sReplicate(1.0f), transform1, transform2, part1, part2, settings, collector);
  914. // Add the contacts
  915. for (ContactManifold &manifold : collector.mManifolds)
  916. {
  917. // Normalize the normal (is a sum of all normals from merged manifolds)
  918. manifold.mWorldSpaceNormal = manifold.mWorldSpaceNormal.Normalized();
  919. // If we still have too many points, prune them now
  920. if (manifold.mRelativeContactPointsOn1.size() > 4)
  921. PruneContactPoints(manifold.mWorldSpaceNormal, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  922. // Actually add the contact points to the manager
  923. constraint_created |= mContactManager.AddContactConstraint(ioContactAllocator, body_pair_handle, *body1, *body2, manifold);
  924. }
  925. }
  926. else
  927. {
  928. // Version WITHOUT contact manifold reduction
  929. // Create collector
  930. class NonReductionCollideShapeCollector : public CollideShapeCollector
  931. {
  932. public:
  933. NonReductionCollideShapeCollector(PhysicsSystem *inSystem, ContactAllocator &ioContactAllocator, Body *inBody1, Body *inBody2, const ContactConstraintManager::BodyPairHandle &inPairHandle) :
  934. mSystem(inSystem),
  935. mContactAllocator(ioContactAllocator),
  936. mBody1(inBody1),
  937. mBody2(inBody2),
  938. mBodyPairHandle(inPairHandle)
  939. {
  940. }
  941. virtual void AddHit(const CollideShapeResult &inResult) override
  942. {
  943. // One of the following should be true:
  944. // - Body 1 is dynamic and body 2 may be dynamic, static or kinematic
  945. // - Body 1 is kinematic in which case body 2 should be a sensor
  946. JPH_ASSERT(mBody1->IsDynamic() || (mBody1->IsKinematic() && mBody2->IsSensor()));
  947. JPH_ASSERT(!ShouldEarlyOut());
  948. // Test if we want to accept this hit
  949. if (mValidateBodyPair)
  950. {
  951. switch (mSystem->mContactManager.ValidateContactPoint(*mBody1, *mBody2, mBody1->GetCenterOfMassPosition(), inResult))
  952. {
  953. case ValidateResult::AcceptContact:
  954. // We're just accepting this one, nothing to do
  955. break;
  956. case ValidateResult::AcceptAllContactsForThisBodyPair:
  957. // Accept and stop calling the validate callback
  958. mValidateBodyPair = false;
  959. break;
  960. case ValidateResult::RejectContact:
  961. // Skip this contact
  962. return;
  963. case ValidateResult::RejectAllContactsForThisBodyPair:
  964. // Skip this and early out
  965. ForceEarlyOut();
  966. return;
  967. }
  968. }
  969. // Determine contact points
  970. ContactManifold manifold;
  971. manifold.mBaseOffset = mBody1->GetCenterOfMassPosition();
  972. const PhysicsSettings &settings = mSystem->mPhysicsSettings;
  973. ManifoldBetweenTwoFaces(inResult.mContactPointOn1, inResult.mContactPointOn2, inResult.mPenetrationAxis, Square(settings.mSpeculativeContactDistance) + settings.mManifoldToleranceSq, inResult.mShape1Face, inResult.mShape2Face, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  974. // Calculate normal
  975. manifold.mWorldSpaceNormal = inResult.mPenetrationAxis.Normalized();
  976. // Store penetration depth
  977. manifold.mPenetrationDepth = inResult.mPenetrationDepth;
  978. // Prune if we have more than 4 points
  979. if (manifold.mRelativeContactPointsOn1.size() > 4)
  980. PruneContactPoints(manifold.mWorldSpaceNormal, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  981. // Set other properties
  982. manifold.mSubShapeID1 = inResult.mSubShapeID1;
  983. manifold.mSubShapeID2 = inResult.mSubShapeID2;
  984. // Actually add the contact points to the manager
  985. mConstraintCreated |= mSystem->mContactManager.AddContactConstraint(mContactAllocator, mBodyPairHandle, *mBody1, *mBody2, manifold);
  986. }
  987. PhysicsSystem * mSystem;
  988. ContactAllocator & mContactAllocator;
  989. Body * mBody1;
  990. Body * mBody2;
  991. ContactConstraintManager::BodyPairHandle mBodyPairHandle;
  992. bool mValidateBodyPair = true;
  993. bool mConstraintCreated = false;
  994. };
  995. NonReductionCollideShapeCollector collector(this, ioContactAllocator, body1, body2, body_pair_handle);
  996. // Perform collision detection between the two shapes
  997. SubShapeIDCreator part1, part2;
  998. CollisionDispatch::sCollideShapeVsShape(body1->GetShape(), body2->GetShape(), Vec3::sReplicate(1.0f), Vec3::sReplicate(1.0f), transform1, transform2, part1, part2, settings, collector);
  999. constraint_created = collector.mConstraintCreated;
  1000. }
  1001. }
  1002. // If a contact constraint was created, we need to do some extra work
  1003. if (constraint_created)
  1004. {
  1005. // Wake up sleeping bodies
  1006. BodyID body_ids[2];
  1007. int num_bodies = 0;
  1008. if (body1->IsDynamic() && !body1->IsActive())
  1009. body_ids[num_bodies++] = body1->GetID();
  1010. if (body2->IsDynamic() && !body2->IsActive())
  1011. body_ids[num_bodies++] = body2->GetID();
  1012. if (num_bodies > 0)
  1013. mBodyManager.ActivateBodies(body_ids, num_bodies);
  1014. // Link the two bodies
  1015. mIslandBuilder.LinkBodies(body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
  1016. }
  1017. }
  1018. void PhysicsSystem::JobFinalizeIslands(PhysicsUpdateContext *ioContext)
  1019. {
  1020. #ifdef JPH_ENABLE_ASSERTS
  1021. // We only touch island data
  1022. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1023. #endif
  1024. // Finish collecting the islands, at this point the active body list doesn't change so it's safe to access
  1025. mIslandBuilder.Finalize(mBodyManager.GetActiveBodiesUnsafe(), mBodyManager.GetNumActiveBodies(), mContactManager.GetNumConstraints(), ioContext->mTempAllocator);
  1026. // Prepare the large island splitter
  1027. if (ioContext->mUseLargeIslandSplitter)
  1028. mLargeIslandSplitter.Prepare(mIslandBuilder, mBodyManager.GetNumActiveBodies(), ioContext->mTempAllocator);
  1029. }
  1030. void PhysicsSystem::JobBodySetIslandIndex()
  1031. {
  1032. #ifdef JPH_ENABLE_ASSERTS
  1033. // We only touch island data
  1034. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1035. #endif
  1036. // Loop through the result and tag all bodies with an island index
  1037. for (uint32 island_idx = 0, n = mIslandBuilder.GetNumIslands(); island_idx < n; ++island_idx)
  1038. {
  1039. BodyID *body_start, *body_end;
  1040. mIslandBuilder.GetBodiesInIsland(island_idx, body_start, body_end);
  1041. for (const BodyID *body = body_start; body < body_end; ++body)
  1042. mBodyManager.GetBody(*body).GetMotionProperties()->SetIslandIndexInternal(island_idx);
  1043. }
  1044. }
  1045. void PhysicsSystem::JobSolveVelocityConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1046. {
  1047. #ifdef JPH_ENABLE_ASSERTS
  1048. // We update velocities and need to read positions to do so
  1049. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  1050. #endif
  1051. float delta_time = ioContext->mSubStepDeltaTime;
  1052. Constraint **active_constraints = ioContext->mActiveConstraints;
  1053. bool first_sub_step = ioSubStep->mIsFirst;
  1054. bool last_sub_step = ioSubStep->mIsLast;
  1055. // Only the first sub step of the first step needs to correct for the delta time difference in the previous update
  1056. float warm_start_impulse_ratio = ioSubStep->mIsFirstOfAll? ioContext->mWarmStartImpulseRatio : 1.0f;
  1057. bool check_islands = true, check_split_islands = ioContext->mUseLargeIslandSplitter;
  1058. do
  1059. {
  1060. // First try to get work from large islands
  1061. if (check_split_islands)
  1062. {
  1063. bool first_iteration;
  1064. uint split_island_index;
  1065. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1066. switch (mLargeIslandSplitter.FetchNextBatch(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, first_iteration))
  1067. {
  1068. case LargeIslandSplitter::EStatus::BatchRetrieved:
  1069. {
  1070. if (first_iteration)
  1071. {
  1072. // Iteration 0 is used to warm start the batch (we added 1 to the number of iterations in LargeIslandSplitter::SplitIsland)
  1073. ConstraintManager::sWarmStartVelocityConstraints(active_constraints, constraints_begin, constraints_end, warm_start_impulse_ratio);
  1074. mContactManager.WarmStartVelocityConstraints(contacts_begin, contacts_end, warm_start_impulse_ratio);
  1075. }
  1076. else
  1077. {
  1078. // Solve velocity constraints
  1079. ConstraintManager::sSolveVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1080. mContactManager.SolveVelocityConstraints(contacts_begin, contacts_end);
  1081. }
  1082. // Mark the batch as processed
  1083. bool last_iteration, final_batch;
  1084. mLargeIslandSplitter.MarkBatchProcessed(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, last_iteration, final_batch);
  1085. // Save back the lambdas in the contact cache for the warm start of the next physics update
  1086. if (last_sub_step && last_iteration)
  1087. mContactManager.StoreAppliedImpulses(contacts_begin, contacts_end);
  1088. // We processed work, loop again
  1089. continue;
  1090. }
  1091. case LargeIslandSplitter::EStatus::WaitingForBatch:
  1092. break;
  1093. case LargeIslandSplitter::EStatus::AllBatchesDone:
  1094. check_split_islands = false;
  1095. break;
  1096. }
  1097. }
  1098. // If that didn't succeed try to process an island
  1099. if (check_islands)
  1100. {
  1101. // Next island
  1102. uint32 island_idx = ioSubStep->mSolveVelocityConstraintsNextIsland++;
  1103. if (island_idx >= mIslandBuilder.GetNumIslands())
  1104. {
  1105. // We processed all islands, stop checking islands
  1106. check_islands = false;
  1107. continue;
  1108. }
  1109. JPH_PROFILE("Island");
  1110. // Get iterators for this island
  1111. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1112. bool has_constraints = mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end);
  1113. bool has_contacts = mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end);
  1114. if (first_sub_step)
  1115. {
  1116. // If we don't have any contacts or constraints, we know that none of the following islands have any contacts or constraints
  1117. // (because they're sorted by most constraints first). This means we're done.
  1118. if (!has_contacts && !has_constraints)
  1119. {
  1120. #ifdef JPH_ENABLE_ASSERTS
  1121. // Validate our assumption that the next islands don't have any constraints or contacts
  1122. for (; island_idx < mIslandBuilder.GetNumIslands(); ++island_idx)
  1123. {
  1124. JPH_ASSERT(!mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end));
  1125. JPH_ASSERT(!mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end));
  1126. }
  1127. #endif // JPH_ENABLE_ASSERTS
  1128. check_islands = false;
  1129. continue;
  1130. }
  1131. // Sorting is costly but needed for a deterministic simulation, allow the user to turn this off
  1132. if (mPhysicsSettings.mDeterministicSimulation)
  1133. {
  1134. // Sort constraints to give a deterministic simulation
  1135. ConstraintManager::sSortConstraints(active_constraints, constraints_begin, constraints_end);
  1136. // Sort contacts to give a deterministic simulation
  1137. mContactManager.SortContacts(contacts_begin, contacts_end);
  1138. }
  1139. }
  1140. else
  1141. {
  1142. {
  1143. JPH_PROFILE("Apply Gravity");
  1144. // Get bodies in this island
  1145. BodyID *bodies_begin, *bodies_end;
  1146. mIslandBuilder.GetBodiesInIsland(island_idx, bodies_begin, bodies_end);
  1147. // Apply gravity. In the first step this is done in a separate job.
  1148. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1149. {
  1150. Body &body = mBodyManager.GetBody(*body_id);
  1151. if (body.IsDynamic())
  1152. body.GetMotionProperties()->ApplyForceTorqueAndDragInternal(body.GetRotation(), mGravity, delta_time);
  1153. }
  1154. }
  1155. // If we don't have any contacts or constraints, we don't need to run the solver, but we do need to process
  1156. // the next island in order to apply gravity
  1157. if (!has_contacts && !has_constraints)
  1158. continue;
  1159. // Prepare velocity constraints. In the first step this is done when adding the contact constraints.
  1160. ConstraintManager::sSetupVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1161. mContactManager.SetupVelocityConstraints(contacts_begin, contacts_end, delta_time);
  1162. }
  1163. // Split up large islands
  1164. int num_velocity_steps = mPhysicsSettings.mNumVelocitySteps;
  1165. if (ioContext->mUseLargeIslandSplitter
  1166. && mLargeIslandSplitter.SplitIsland(island_idx, mIslandBuilder, mBodyManager, mContactManager, active_constraints, num_velocity_steps, mPhysicsSettings.mNumPositionSteps))
  1167. continue; // Loop again to try to fetch the newly split island
  1168. // We didn't create a split, just run the solver now for this entire island. Begin by warm starting.
  1169. ConstraintManager::sWarmStartVelocityConstraints(active_constraints, constraints_begin, constraints_end, warm_start_impulse_ratio, num_velocity_steps);
  1170. mContactManager.WarmStartVelocityConstraints(contacts_begin, contacts_end, warm_start_impulse_ratio);
  1171. // Solve velocity constraints
  1172. for (int velocity_step = 0; velocity_step < num_velocity_steps; ++velocity_step)
  1173. {
  1174. bool applied_impulse = ConstraintManager::sSolveVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1175. applied_impulse |= mContactManager.SolveVelocityConstraints(contacts_begin, contacts_end);
  1176. if (!applied_impulse)
  1177. break;
  1178. }
  1179. // Save back the lambdas in the contact cache for the warm start of the next physics update
  1180. if (last_sub_step)
  1181. mContactManager.StoreAppliedImpulses(contacts_begin, contacts_end);
  1182. // We processed work, loop again
  1183. continue;
  1184. }
  1185. // If we didn't find any work, give up a time slice
  1186. std::this_thread::yield();
  1187. }
  1188. while (check_islands || check_split_islands);
  1189. }
  1190. void PhysicsSystem::JobPreIntegrateVelocity(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1191. {
  1192. // Reserve enough space for all bodies that may need a cast
  1193. TempAllocator *temp_allocator = ioContext->mTempAllocator;
  1194. JPH_ASSERT(ioSubStep->mCCDBodies == nullptr);
  1195. ioSubStep->mCCDBodiesCapacity = mBodyManager.GetNumActiveCCDBodies();
  1196. ioSubStep->mCCDBodies = (CCDBody *)temp_allocator->Allocate(ioSubStep->mCCDBodiesCapacity * sizeof(CCDBody));
  1197. // Initialize the mapping table between active body and CCD body
  1198. JPH_ASSERT(ioSubStep->mActiveBodyToCCDBody == nullptr);
  1199. ioSubStep->mNumActiveBodyToCCDBody = mBodyManager.GetNumActiveBodies();
  1200. ioSubStep->mActiveBodyToCCDBody = (int *)temp_allocator->Allocate(ioSubStep->mNumActiveBodyToCCDBody * sizeof(int));
  1201. // Prepare the split island builder for solving the position constraints
  1202. mLargeIslandSplitter.PrepareForSolvePositions();
  1203. }
  1204. void PhysicsSystem::JobIntegrateVelocity(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1205. {
  1206. #ifdef JPH_ENABLE_ASSERTS
  1207. // We update positions and need velocity to do so, we also clamp velocities so need to write to them
  1208. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::ReadWrite);
  1209. #endif
  1210. float delta_time = ioContext->mSubStepDeltaTime;
  1211. const BodyID *active_bodies = mBodyManager.GetActiveBodiesUnsafe();
  1212. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  1213. uint32 num_active_bodies_after_find_collisions = ioSubStep->mStep->mActiveBodyReadIdx;
  1214. // We can move bodies that are not part of an island. In this case we need to notify the broadphase of the movement.
  1215. static constexpr int cBodiesBatch = 64;
  1216. BodyID *bodies_to_update_bounds = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1217. int num_bodies_to_update_bounds = 0;
  1218. for (;;)
  1219. {
  1220. // Atomically fetch a batch of bodies
  1221. uint32 active_body_idx = ioSubStep->mIntegrateVelocityReadIdx.fetch_add(cIntegrateVelocityBatchSize);
  1222. if (active_body_idx >= num_active_bodies)
  1223. break;
  1224. // Calculate the end of the batch
  1225. uint32 active_body_idx_end = min(num_active_bodies, active_body_idx + cIntegrateVelocityBatchSize);
  1226. // Process the batch
  1227. while (active_body_idx < active_body_idx_end)
  1228. {
  1229. // Update the positions using an Symplectic Euler step (which integrates using the updated velocity v1' rather
  1230. // than the original velocity v1):
  1231. // x1' = x1 + h * v1'
  1232. // At this point the active bodies list does not change, so it is safe to access the array.
  1233. BodyID body_id = active_bodies[active_body_idx];
  1234. Body &body = mBodyManager.GetBody(body_id);
  1235. MotionProperties *mp = body.GetMotionProperties();
  1236. JPH_DET_LOG("JobIntegrateVelocity: id: " << body_id << " v: " << body.GetLinearVelocity() << " w: " << body.GetAngularVelocity());
  1237. // Clamp velocities (not for kinematic bodies)
  1238. if (body.IsDynamic())
  1239. {
  1240. mp->ClampLinearVelocity();
  1241. mp->ClampAngularVelocity();
  1242. }
  1243. // Update the rotation of the body according to the angular velocity
  1244. // For motion type discrete we need to do this anyway, for motion type linear cast we have multiple choices
  1245. // 1. Rotate the body first and then sweep
  1246. // 2. First sweep and then rotate the body at the end
  1247. // 3. Pick some inbetween rotation (e.g. half way), then sweep and finally rotate the remainder
  1248. // (1) has some clear advantages as when a long thin body hits a surface away from the center of mass, this will result in a large angular velocity and a limited reduction in linear velocity.
  1249. // When simulation the rotation first before doing the translation, the body will be able to rotate away from the contact point allowing the center of mass to approach the surface. When using
  1250. // approach (2) in this case what will happen is that we will immediately detect the same collision again (the body has not rotated and the body was already colliding at the end of the previous
  1251. // time step) resulting in a lot of stolen time and the body appearing to be frozen in an unnatural pose (like it is glued at an angle to the surface). (2) obviously has some negative side effects
  1252. // too as simulating the rotation first may cause it to tunnel through a small object that the linear cast might have otherwise dectected. In any case a linear cast is not good for detecting
  1253. // tunneling due to angular rotation, so we don't care about that too much (you'd need a full cast to take angular effects into account).
  1254. body.AddRotationStep(body.GetAngularVelocity() * delta_time);
  1255. // Get delta position
  1256. Vec3 delta_pos = body.GetLinearVelocity() * delta_time;
  1257. // If the position should be updated (or if it is delayed because of CCD)
  1258. bool update_position = true;
  1259. switch (mp->GetMotionQuality())
  1260. {
  1261. case EMotionQuality::Discrete:
  1262. // No additional collision checking to be done
  1263. break;
  1264. case EMotionQuality::LinearCast:
  1265. if (body.IsDynamic() // Kinematic bodies cannot be stopped
  1266. && !body.IsSensor()) // We don't support CCD sensors
  1267. {
  1268. // Determine inner radius (the smallest sphere that fits into the shape)
  1269. float inner_radius = body.GetShape()->GetInnerRadius();
  1270. JPH_ASSERT(inner_radius > 0.0f, "The shape has no inner radius, this makes the shape unsuitable for the linear cast motion quality as we cannot move it without risking tunneling.");
  1271. // Measure translation in this step and check if it above the treshold to perform a linear cast
  1272. float linear_cast_threshold_sq = Square(mPhysicsSettings.mLinearCastThreshold * inner_radius);
  1273. if (delta_pos.LengthSq() > linear_cast_threshold_sq)
  1274. {
  1275. // This body needs a cast
  1276. uint32 ccd_body_idx = ioSubStep->mNumCCDBodies++;
  1277. ioSubStep->mActiveBodyToCCDBody[active_body_idx] = ccd_body_idx;
  1278. new (&ioSubStep->mCCDBodies[ccd_body_idx]) CCDBody(body_id, delta_pos, linear_cast_threshold_sq, min(mPhysicsSettings.mPenetrationSlop, mPhysicsSettings.mLinearCastMaxPenetration * inner_radius));
  1279. update_position = false;
  1280. }
  1281. }
  1282. break;
  1283. }
  1284. if (update_position)
  1285. {
  1286. // Move the body now
  1287. body.AddPositionStep(delta_pos);
  1288. // If the body was activated due to an earlier CCD step it will have an index in the active
  1289. // body list that it higher than the highest one we processed during FindCollisions
  1290. // which means it hasn't been assigned an island and will not be updated by an island
  1291. // this means that we need to update its bounds manually
  1292. if (mp->GetIndexInActiveBodiesInternal() >= num_active_bodies_after_find_collisions)
  1293. {
  1294. body.CalculateWorldSpaceBoundsInternal();
  1295. bodies_to_update_bounds[num_bodies_to_update_bounds++] = body.GetID();
  1296. if (num_bodies_to_update_bounds == cBodiesBatch)
  1297. {
  1298. // Buffer full, flush now
  1299. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds);
  1300. num_bodies_to_update_bounds = 0;
  1301. }
  1302. }
  1303. // We did not create a CCD body
  1304. ioSubStep->mActiveBodyToCCDBody[active_body_idx] = -1;
  1305. }
  1306. active_body_idx++;
  1307. }
  1308. }
  1309. // Notify change bounds on requested bodies
  1310. if (num_bodies_to_update_bounds > 0)
  1311. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds, false);
  1312. }
  1313. void PhysicsSystem::JobPostIntegrateVelocity(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep) const
  1314. {
  1315. // Validate that our reservations were correct
  1316. JPH_ASSERT(ioSubStep->mNumCCDBodies <= mBodyManager.GetNumActiveCCDBodies());
  1317. if (ioSubStep->mNumCCDBodies == 0)
  1318. {
  1319. // No continous collision detection jobs -> kick the next job ourselves
  1320. if (ioSubStep->mIsLast)
  1321. ioSubStep->mStep->mContactRemovedCallbacks.RemoveDependency();
  1322. }
  1323. else
  1324. {
  1325. // Run the continous collision detection jobs
  1326. int num_continuous_collision_jobs = min(int(ioSubStep->mNumCCDBodies + cNumCCDBodiesPerJob - 1) / cNumCCDBodiesPerJob, ioContext->GetMaxConcurrency());
  1327. ioSubStep->mResolveCCDContacts.AddDependency(num_continuous_collision_jobs);
  1328. if (ioSubStep->mIsLast)
  1329. ioSubStep->mStep->mContactRemovedCallbacks.AddDependency(num_continuous_collision_jobs - 1); // Already had 1 dependency
  1330. for (int i = 0; i < num_continuous_collision_jobs; ++i)
  1331. {
  1332. JobHandle job = ioContext->mJobSystem->CreateJob("FindCCDContacts", cColorFindCCDContacts, [ioContext, ioSubStep]()
  1333. {
  1334. ioContext->mPhysicsSystem->JobFindCCDContacts(ioContext, ioSubStep);
  1335. ioSubStep->mResolveCCDContacts.RemoveDependency();
  1336. if (ioSubStep->mIsLast)
  1337. ioSubStep->mStep->mContactRemovedCallbacks.RemoveDependency();
  1338. });
  1339. ioContext->mBarrier->AddJob(job);
  1340. }
  1341. }
  1342. }
  1343. // Helper function to calculate the motion of a body during this CCD step
  1344. inline static Vec3 sCalculateBodyMotion(const Body &inBody, float inDeltaTime)
  1345. {
  1346. // If the body is linear casting, the body has not yet moved so we need to calculate its motion
  1347. if (inBody.IsDynamic() && inBody.GetMotionProperties()->GetMotionQuality() == EMotionQuality::LinearCast)
  1348. return inDeltaTime * inBody.GetLinearVelocity();
  1349. // Body has already moved, so we don't need to correct for anything
  1350. return Vec3::sZero();
  1351. }
  1352. // Helper function that finds the CCD body corresponding to a body (if it exists)
  1353. inline static PhysicsUpdateContext::SubStep::CCDBody *sGetCCDBody(const Body &inBody, PhysicsUpdateContext::SubStep *inSubStep)
  1354. {
  1355. // If the body has no motion properties it cannot have a CCD body
  1356. const MotionProperties *motion_properties = inBody.GetMotionPropertiesUnchecked();
  1357. if (motion_properties == nullptr)
  1358. return nullptr;
  1359. // If it is not active it cannot have a CCD body
  1360. uint32 active_index = motion_properties->GetIndexInActiveBodiesInternal();
  1361. if (active_index == Body::cInactiveIndex)
  1362. return nullptr;
  1363. // Check if the active body has a corresponding CCD body
  1364. JPH_ASSERT(active_index < inSubStep->mNumActiveBodyToCCDBody); // Ensure that the body has a mapping to CCD body
  1365. int ccd_index = inSubStep->mActiveBodyToCCDBody[active_index];
  1366. if (ccd_index < 0)
  1367. return nullptr;
  1368. PhysicsUpdateContext::SubStep::CCDBody *ccd_body = &inSubStep->mCCDBodies[ccd_index];
  1369. JPH_ASSERT(ccd_body->mBodyID1 == inBody.GetID(), "We found the wrong CCD body!");
  1370. return ccd_body;
  1371. }
  1372. void PhysicsSystem::JobFindCCDContacts(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1373. {
  1374. #ifdef JPH_ENABLE_ASSERTS
  1375. // We only read positions, but the validate callback may read body positions and velocities
  1376. BodyAccess::Grant grant(BodyAccess::EAccess::Read, BodyAccess::EAccess::Read);
  1377. #endif
  1378. // Allocation context for allocating new contact points
  1379. ContactAllocator contact_allocator(mContactManager.GetContactAllocator());
  1380. // Settings
  1381. ShapeCastSettings settings;
  1382. settings.mUseShrunkenShapeAndConvexRadius = true;
  1383. settings.mBackFaceModeTriangles = EBackFaceMode::IgnoreBackFaces;
  1384. settings.mBackFaceModeConvex = EBackFaceMode::IgnoreBackFaces;
  1385. settings.mReturnDeepestPoint = true;
  1386. settings.mCollectFacesMode = ECollectFacesMode::CollectFaces;
  1387. settings.mActiveEdgeMode = mPhysicsSettings.mCheckActiveEdges? EActiveEdgeMode::CollideOnlyWithActive : EActiveEdgeMode::CollideWithAll;
  1388. for (;;)
  1389. {
  1390. // Fetch the next body to cast
  1391. uint32 idx = ioSubStep->mNextCCDBody++;
  1392. if (idx >= ioSubStep->mNumCCDBodies)
  1393. break;
  1394. CCDBody &ccd_body = ioSubStep->mCCDBodies[idx];
  1395. const Body &body = mBodyManager.GetBody(ccd_body.mBodyID1);
  1396. // Filter out layers
  1397. DefaultBroadPhaseLayerFilter broadphase_layer_filter = GetDefaultBroadPhaseLayerFilter(body.GetObjectLayer());
  1398. DefaultObjectLayerFilter object_layer_filter = GetDefaultLayerFilter(body.GetObjectLayer());
  1399. #ifdef JPH_DEBUG_RENDERER
  1400. // Draw start and end shape of cast
  1401. if (sDrawMotionQualityLinearCast)
  1402. {
  1403. RMat44 com = body.GetCenterOfMassTransform();
  1404. body.GetShape()->Draw(DebugRenderer::sInstance, com, Vec3::sReplicate(1.0f), Color::sGreen, false, true);
  1405. DebugRenderer::sInstance->DrawArrow(com.GetTranslation(), com.GetTranslation() + ccd_body.mDeltaPosition, Color::sGreen, 0.1f);
  1406. body.GetShape()->Draw(DebugRenderer::sInstance, com.PostTranslated(ccd_body.mDeltaPosition), Vec3::sReplicate(1.0f), Color::sRed, false, true);
  1407. }
  1408. #endif // JPH_DEBUG_RENDERER
  1409. // Create a collector that will find the maximum distance allowed to travel while not penetrating more than 'max penetration'
  1410. class CCDNarrowPhaseCollector : public CastShapeCollector
  1411. {
  1412. public:
  1413. CCDNarrowPhaseCollector(const BodyManager &inBodyManager, ContactConstraintManager &inContactConstraintManager, CCDBody &inCCDBody, ShapeCastResult &inResult, float inDeltaTime) :
  1414. mBodyManager(inBodyManager),
  1415. mContactConstraintManager(inContactConstraintManager),
  1416. mCCDBody(inCCDBody),
  1417. mResult(inResult),
  1418. mDeltaTime(inDeltaTime)
  1419. {
  1420. }
  1421. virtual void AddHit(const ShapeCastResult &inResult) override
  1422. {
  1423. JPH_PROFILE_FUNCTION();
  1424. // Check if this is a possible earlier hit than the one before
  1425. float fraction = inResult.mFraction;
  1426. if (fraction < mCCDBody.mFractionPlusSlop)
  1427. {
  1428. // Normalize normal
  1429. Vec3 normal = inResult.mPenetrationAxis.Normalized();
  1430. // Calculate how much we can add to the fraction to penetrate the collision point by mMaxPenetration.
  1431. // Note that the normal is pointing towards body 2!
  1432. // Let the extra distance that we can travel along delta_pos be 'dist': mMaxPenetration / dist = cos(angle between normal and delta_pos) = normal . delta_pos / |delta_pos|
  1433. // <=> dist = mMaxPenetration * |delta_pos| / normal . delta_pos
  1434. // Converting to a faction: delta_fraction = dist / |delta_pos| = mLinearCastTreshold / normal . delta_pos
  1435. float denominator = normal.Dot(mCCDBody.mDeltaPosition);
  1436. if (denominator > mCCDBody.mMaxPenetration) // Avoid dividing by zero, if extra hit fraction > 1 there's also no point in continuing
  1437. {
  1438. float fraction_plus_slop = fraction + mCCDBody.mMaxPenetration / denominator;
  1439. if (fraction_plus_slop < mCCDBody.mFractionPlusSlop)
  1440. {
  1441. const Body &body2 = mBodyManager.GetBody(inResult.mBodyID2);
  1442. // Check if we've already accepted all hits from this body
  1443. if (mValidateBodyPair)
  1444. {
  1445. // Validate the contact result
  1446. const Body &body1 = mBodyManager.GetBody(mCCDBody.mBodyID1);
  1447. ValidateResult validate_result = mContactConstraintManager.ValidateContactPoint(body1, body2, body1.GetCenterOfMassPosition(), inResult); // Note that the center of mass of body 1 is the start of the sweep and is used as base offset below
  1448. switch (validate_result)
  1449. {
  1450. case ValidateResult::AcceptContact:
  1451. // Just continue
  1452. break;
  1453. case ValidateResult::AcceptAllContactsForThisBodyPair:
  1454. // Accept this and all following contacts from this body
  1455. mValidateBodyPair = false;
  1456. break;
  1457. case ValidateResult::RejectContact:
  1458. return;
  1459. case ValidateResult::RejectAllContactsForThisBodyPair:
  1460. // Reject this and all following contacts from this body
  1461. mRejectAll = true;
  1462. ForceEarlyOut();
  1463. return;
  1464. }
  1465. }
  1466. // This is the earliest hit so far, store it
  1467. mCCDBody.mContactNormal = normal;
  1468. mCCDBody.mBodyID2 = inResult.mBodyID2;
  1469. mCCDBody.mFraction = fraction;
  1470. mCCDBody.mFractionPlusSlop = fraction_plus_slop;
  1471. mResult = inResult;
  1472. // Result was assuming body 2 is not moving, but it is, so we need to correct for it
  1473. Vec3 movement2 = fraction * sCalculateBodyMotion(body2, mDeltaTime);
  1474. if (!movement2.IsNearZero())
  1475. {
  1476. mResult.mContactPointOn1 += movement2;
  1477. mResult.mContactPointOn2 += movement2;
  1478. for (Vec3 &v : mResult.mShape1Face)
  1479. v += movement2;
  1480. for (Vec3 &v : mResult.mShape2Face)
  1481. v += movement2;
  1482. }
  1483. // Update early out fraction
  1484. CastShapeCollector::UpdateEarlyOutFraction(fraction_plus_slop);
  1485. }
  1486. }
  1487. }
  1488. }
  1489. bool mValidateBodyPair; ///< If we still have to call the ValidateContactPoint for this body pair
  1490. bool mRejectAll; ///< Reject all further contacts between this body pair
  1491. private:
  1492. const BodyManager & mBodyManager;
  1493. ContactConstraintManager & mContactConstraintManager;
  1494. CCDBody & mCCDBody;
  1495. ShapeCastResult & mResult;
  1496. float mDeltaTime;
  1497. BodyID mAcceptedBodyID;
  1498. };
  1499. // Narrowphase collector
  1500. ShapeCastResult cast_shape_result;
  1501. CCDNarrowPhaseCollector np_collector(mBodyManager, mContactManager, ccd_body, cast_shape_result, ioContext->mSubStepDeltaTime);
  1502. // This collector wraps the narrowphase collector and collects the closest hit
  1503. class CCDBroadPhaseCollector : public CastShapeBodyCollector
  1504. {
  1505. public:
  1506. CCDBroadPhaseCollector(const CCDBody &inCCDBody, const Body &inBody1, const RShapeCast &inShapeCast, ShapeCastSettings &inShapeCastSettings, CCDNarrowPhaseCollector &ioCollector, const BodyManager &inBodyManager, PhysicsUpdateContext::SubStep *inSubStep, float inDeltaTime) :
  1507. mCCDBody(inCCDBody),
  1508. mBody1(inBody1),
  1509. mBody1Extent(inShapeCast.mShapeWorldBounds.GetExtent()),
  1510. mShapeCast(inShapeCast),
  1511. mShapeCastSettings(inShapeCastSettings),
  1512. mCollector(ioCollector),
  1513. mBodyManager(inBodyManager),
  1514. mSubStep(inSubStep),
  1515. mDeltaTime(inDeltaTime)
  1516. {
  1517. }
  1518. virtual void AddHit(const BroadPhaseCastResult &inResult) override
  1519. {
  1520. JPH_PROFILE_FUNCTION();
  1521. JPH_ASSERT(inResult.mFraction <= GetEarlyOutFraction(), "This hit should not have been passed on to the collector");
  1522. // Test if we're colliding with ourselves
  1523. if (mBody1.GetID() == inResult.mBodyID)
  1524. return;
  1525. // Avoid treating duplicates, if both bodies are doing CCD then only consider collision if body ID < other body ID
  1526. const Body &body2 = mBodyManager.GetBody(inResult.mBodyID);
  1527. const CCDBody *ccd_body2 = sGetCCDBody(body2, mSubStep);
  1528. if (ccd_body2 != nullptr && mCCDBody.mBodyID1 > ccd_body2->mBodyID1)
  1529. return;
  1530. // Test group filter
  1531. if (!mBody1.GetCollisionGroup().CanCollide(body2.GetCollisionGroup()))
  1532. return;
  1533. // TODO: For now we ignore sensors
  1534. if (body2.IsSensor())
  1535. return;
  1536. // Get relative movement of these two bodies
  1537. Vec3 direction = mShapeCast.mDirection - sCalculateBodyMotion(body2, mDeltaTime);
  1538. // Test if the remaining movement is less than our movement threshold
  1539. if (direction.LengthSq() < mCCDBody.mLinearCastThresholdSq)
  1540. return;
  1541. // Get the bounds of 2, widen it by the extent of 1 and test a ray to see if it hits earlier than the current early out fraction
  1542. AABox bounds = body2.GetWorldSpaceBounds();
  1543. bounds.mMin -= mBody1Extent;
  1544. bounds.mMax += mBody1Extent;
  1545. float hit_fraction = RayAABox(Vec3(mShapeCast.mCenterOfMassStart.GetTranslation()), RayInvDirection(direction), bounds.mMin, bounds.mMax);
  1546. if (hit_fraction > max(FLT_MIN, GetEarlyOutFraction())) // If early out fraction <= 0, we have the possibility of finding a deeper hit so we need to clamp the early out fraction
  1547. return;
  1548. // Reset collector (this is a new body pair)
  1549. mCollector.ResetEarlyOutFraction(GetEarlyOutFraction());
  1550. mCollector.mValidateBodyPair = true;
  1551. mCollector.mRejectAll = false;
  1552. // Provide direction as hint for the active edges algorithm
  1553. mShapeCastSettings.mActiveEdgeMovementDirection = direction;
  1554. // Do narrow phase collision check
  1555. RShapeCast relative_cast(mShapeCast.mShape, mShapeCast.mScale, mShapeCast.mCenterOfMassStart, direction, mShapeCast.mShapeWorldBounds);
  1556. body2.GetTransformedShape().CastShape(relative_cast, mShapeCastSettings, mShapeCast.mCenterOfMassStart.GetTranslation(), mCollector);
  1557. // Update early out fraction based on narrow phase collector
  1558. if (!mCollector.mRejectAll)
  1559. UpdateEarlyOutFraction(mCollector.GetEarlyOutFraction());
  1560. }
  1561. const CCDBody & mCCDBody;
  1562. const Body & mBody1;
  1563. Vec3 mBody1Extent;
  1564. RShapeCast mShapeCast;
  1565. ShapeCastSettings & mShapeCastSettings;
  1566. CCDNarrowPhaseCollector & mCollector;
  1567. const BodyManager & mBodyManager;
  1568. PhysicsUpdateContext::SubStep *mSubStep;
  1569. float mDeltaTime;
  1570. };
  1571. // Check if we collide with any other body. Note that we use the non-locking interface as we know the broadphase cannot be modified at this point.
  1572. RShapeCast shape_cast(body.GetShape(), Vec3::sReplicate(1.0f), body.GetCenterOfMassTransform(), ccd_body.mDeltaPosition);
  1573. CCDBroadPhaseCollector bp_collector(ccd_body, body, shape_cast, settings, np_collector, mBodyManager, ioSubStep, ioContext->mSubStepDeltaTime);
  1574. mBroadPhase->CastAABoxNoLock({ shape_cast.mShapeWorldBounds, shape_cast.mDirection }, bp_collector, broadphase_layer_filter, object_layer_filter);
  1575. // Check if there was a hit
  1576. if (ccd_body.mFractionPlusSlop < 1.0f)
  1577. {
  1578. const Body &body2 = mBodyManager.GetBody(ccd_body.mBodyID2);
  1579. // Determine contact manifold
  1580. ContactManifold manifold;
  1581. manifold.mBaseOffset = shape_cast.mCenterOfMassStart.GetTranslation();
  1582. ManifoldBetweenTwoFaces(cast_shape_result.mContactPointOn1, cast_shape_result.mContactPointOn2, cast_shape_result.mPenetrationAxis, mPhysicsSettings.mManifoldToleranceSq, cast_shape_result.mShape1Face, cast_shape_result.mShape2Face, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  1583. manifold.mSubShapeID1 = cast_shape_result.mSubShapeID1;
  1584. manifold.mSubShapeID2 = cast_shape_result.mSubShapeID2;
  1585. manifold.mPenetrationDepth = cast_shape_result.mPenetrationDepth;
  1586. manifold.mWorldSpaceNormal = ccd_body.mContactNormal;
  1587. // Call contact point callbacks
  1588. mContactManager.OnCCDContactAdded(contact_allocator, body, body2, manifold, ccd_body.mContactSettings);
  1589. // Calculate the average position from the manifold (this will result in the same impulse applied as when we apply impulses to all contact points)
  1590. if (manifold.mRelativeContactPointsOn2.size() > 1)
  1591. {
  1592. Vec3 average_contact_point = Vec3::sZero();
  1593. for (const Vec3 &v : manifold.mRelativeContactPointsOn2)
  1594. average_contact_point += v;
  1595. average_contact_point /= (float)manifold.mRelativeContactPointsOn2.size();
  1596. ccd_body.mContactPointOn2 = manifold.mBaseOffset + average_contact_point;
  1597. }
  1598. else
  1599. ccd_body.mContactPointOn2 = manifold.mBaseOffset + cast_shape_result.mContactPointOn2;
  1600. }
  1601. }
  1602. // Atomically accumulate the number of found manifolds and body pairs
  1603. ioSubStep->mStep->mNumBodyPairs += contact_allocator.mNumBodyPairs;
  1604. ioSubStep->mStep->mNumManifolds += contact_allocator.mNumManifolds;
  1605. }
  1606. void PhysicsSystem::JobResolveCCDContacts(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1607. {
  1608. #ifdef JPH_ENABLE_ASSERTS
  1609. // Read/write body access
  1610. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::ReadWrite);
  1611. // We activate bodies that we collide with
  1612. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  1613. #endif
  1614. uint32 num_active_bodies_after_find_collisions = ioSubStep->mStep->mActiveBodyReadIdx;
  1615. TempAllocator *temp_allocator = ioContext->mTempAllocator;
  1616. // Check if there's anything to do
  1617. uint num_ccd_bodies = ioSubStep->mNumCCDBodies;
  1618. if (num_ccd_bodies > 0)
  1619. {
  1620. // Sort on fraction so that we process earliest collisions first
  1621. // This is needed to make the simulation deterministic and also to be able to stop contact processing
  1622. // between body pairs if an earlier hit was found involving the body by another CCD body
  1623. // (if it's body ID < this CCD body's body ID - see filtering logic in CCDBroadPhaseCollector)
  1624. CCDBody **sorted_ccd_bodies = (CCDBody **)temp_allocator->Allocate(num_ccd_bodies * sizeof(CCDBody *));
  1625. {
  1626. JPH_PROFILE("Sort");
  1627. // We don't want to copy the entire struct (it's quite big), so we create a pointer array first
  1628. CCDBody *src_ccd_bodies = ioSubStep->mCCDBodies;
  1629. CCDBody **dst_ccd_bodies = sorted_ccd_bodies;
  1630. CCDBody **dst_ccd_bodies_end = dst_ccd_bodies + num_ccd_bodies;
  1631. while (dst_ccd_bodies < dst_ccd_bodies_end)
  1632. *(dst_ccd_bodies++) = src_ccd_bodies++;
  1633. // Which we then sort
  1634. QuickSort(sorted_ccd_bodies, sorted_ccd_bodies + num_ccd_bodies, [](const CCDBody *inBody1, const CCDBody *inBody2)
  1635. {
  1636. if (inBody1->mFractionPlusSlop != inBody2->mFractionPlusSlop)
  1637. return inBody1->mFractionPlusSlop < inBody2->mFractionPlusSlop;
  1638. return inBody1->mBodyID1 < inBody2->mBodyID1;
  1639. });
  1640. }
  1641. // We can collide with bodies that are not active, we track them here so we can activate them in one go at the end.
  1642. // This is also needed because we can't modify the active body array while we iterate it.
  1643. static constexpr int cBodiesBatch = 64;
  1644. BodyID *bodies_to_activate = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1645. int num_bodies_to_activate = 0;
  1646. // We can move bodies that are not part of an island. In this case we need to notify the broadphase of the movement.
  1647. BodyID *bodies_to_update_bounds = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1648. int num_bodies_to_update_bounds = 0;
  1649. for (uint i = 0; i < num_ccd_bodies; ++i)
  1650. {
  1651. const CCDBody *ccd_body = sorted_ccd_bodies[i];
  1652. Body &body1 = mBodyManager.GetBody(ccd_body->mBodyID1);
  1653. MotionProperties *body_mp = body1.GetMotionProperties();
  1654. // If there was a hit
  1655. if (!ccd_body->mBodyID2.IsInvalid())
  1656. {
  1657. Body &body2 = mBodyManager.GetBody(ccd_body->mBodyID2);
  1658. // Determine if the other body has a CCD body
  1659. CCDBody *ccd_body2 = sGetCCDBody(body2, ioSubStep);
  1660. if (ccd_body2 != nullptr)
  1661. {
  1662. JPH_ASSERT(ccd_body2->mBodyID2 != ccd_body->mBodyID1, "If we collided with another body, that other body should have ignored collisions with us!");
  1663. // Check if the other body found a hit that is further away
  1664. if (ccd_body2->mFraction > ccd_body->mFraction)
  1665. {
  1666. // Reset the colliding body of the other CCD body. The other body will shorten its distance travelled and will not do any collision response (we'll do that).
  1667. // This means that at this point we have triggered a contact point add/persist for our further hit by accident for the other body.
  1668. // We accept this as calling the contact point callbacks here would require persisting the manifolds up to this point and doing the callbacks single threaded.
  1669. ccd_body2->mBodyID2 = BodyID();
  1670. ccd_body2->mFractionPlusSlop = ccd_body->mFraction;
  1671. }
  1672. }
  1673. // If the other body moved less than us before hitting something, we're not colliding with it so we again have triggered contact point add/persist callbacks by accident.
  1674. // We'll just move to the collision position anyway (as that's the last position we know is good), but we won't do any collision response.
  1675. if (ccd_body2 == nullptr || ccd_body2->mFraction >= ccd_body->mFraction)
  1676. {
  1677. // Calculate contact points relative to center of mass of both bodies
  1678. Vec3 r1_plus_u = Vec3(ccd_body->mContactPointOn2 - (body1.GetCenterOfMassPosition() + ccd_body->mFraction * ccd_body->mDeltaPosition));
  1679. Vec3 r2 = Vec3(ccd_body->mContactPointOn2 - body2.GetCenterOfMassPosition());
  1680. // Calculate velocity of collision points
  1681. Vec3 v1 = body1.GetPointVelocityCOM(r1_plus_u);
  1682. Vec3 v2 = body2.GetPointVelocityCOM(r2);
  1683. Vec3 relative_velocity = v2 - v1;
  1684. float normal_velocity = relative_velocity.Dot(ccd_body->mContactNormal);
  1685. // Calculate velocity bias due to restitution
  1686. float normal_velocity_bias;
  1687. if (ccd_body->mContactSettings.mCombinedRestitution > 0.0f && normal_velocity < -mPhysicsSettings.mMinVelocityForRestitution)
  1688. normal_velocity_bias = ccd_body->mContactSettings.mCombinedRestitution * normal_velocity;
  1689. else
  1690. normal_velocity_bias = 0.0f;
  1691. // Solve contact constraint
  1692. AxisConstraintPart contact_constraint;
  1693. contact_constraint.CalculateConstraintProperties(ioContext->mSubStepDeltaTime, body1, r1_plus_u, body2, r2, ccd_body->mContactNormal, normal_velocity_bias);
  1694. contact_constraint.SolveVelocityConstraint(body1, body2, ccd_body->mContactNormal, -FLT_MAX, FLT_MAX);
  1695. // Apply friction
  1696. if (ccd_body->mContactSettings.mCombinedFriction > 0.0f)
  1697. {
  1698. Vec3 tangent1 = ccd_body->mContactNormal.GetNormalizedPerpendicular();
  1699. Vec3 tangent2 = ccd_body->mContactNormal.Cross(tangent1);
  1700. float max_lambda_f = ccd_body->mContactSettings.mCombinedFriction * contact_constraint.GetTotalLambda();
  1701. AxisConstraintPart friction1;
  1702. friction1.CalculateConstraintProperties(ioContext->mSubStepDeltaTime, body1, r1_plus_u, body2, r2, tangent1, 0.0f);
  1703. friction1.SolveVelocityConstraint(body1, body2, tangent1, -max_lambda_f, max_lambda_f);
  1704. AxisConstraintPart friction2;
  1705. friction2.CalculateConstraintProperties(ioContext->mSubStepDeltaTime, body1, r1_plus_u, body2, r2, tangent2, 0.0f);
  1706. friction2.SolveVelocityConstraint(body1, body2, tangent2, -max_lambda_f, max_lambda_f);
  1707. }
  1708. // Clamp velocities
  1709. body_mp->ClampLinearVelocity();
  1710. body_mp->ClampAngularVelocity();
  1711. if (body2.IsDynamic())
  1712. {
  1713. MotionProperties *body2_mp = body2.GetMotionProperties();
  1714. body2_mp->ClampLinearVelocity();
  1715. body2_mp->ClampAngularVelocity();
  1716. // Activate the body if it is not already active
  1717. if (!body2.IsActive())
  1718. {
  1719. bodies_to_activate[num_bodies_to_activate++] = ccd_body->mBodyID2;
  1720. if (num_bodies_to_activate == cBodiesBatch)
  1721. {
  1722. // Batch is full, activate now
  1723. mBodyManager.ActivateBodies(bodies_to_activate, num_bodies_to_activate);
  1724. num_bodies_to_activate = 0;
  1725. }
  1726. }
  1727. }
  1728. #ifdef JPH_DEBUG_RENDERER
  1729. if (sDrawMotionQualityLinearCast)
  1730. {
  1731. // Draw the collision location
  1732. RMat44 collision_transform = body1.GetCenterOfMassTransform().PostTranslated(ccd_body->mFraction * ccd_body->mDeltaPosition);
  1733. body1.GetShape()->Draw(DebugRenderer::sInstance, collision_transform, Vec3::sReplicate(1.0f), Color::sYellow, false, true);
  1734. // Draw the collision location + slop
  1735. RMat44 collision_transform_plus_slop = body1.GetCenterOfMassTransform().PostTranslated(ccd_body->mFractionPlusSlop * ccd_body->mDeltaPosition);
  1736. body1.GetShape()->Draw(DebugRenderer::sInstance, collision_transform_plus_slop, Vec3::sReplicate(1.0f), Color::sOrange, false, true);
  1737. // Draw contact normal
  1738. DebugRenderer::sInstance->DrawArrow(ccd_body->mContactPointOn2, ccd_body->mContactPointOn2 - ccd_body->mContactNormal, Color::sYellow, 0.1f);
  1739. // Draw post contact velocity
  1740. DebugRenderer::sInstance->DrawArrow(collision_transform.GetTranslation(), collision_transform.GetTranslation() + body1.GetLinearVelocity(), Color::sOrange, 0.1f);
  1741. DebugRenderer::sInstance->DrawArrow(collision_transform.GetTranslation(), collision_transform.GetTranslation() + body1.GetAngularVelocity(), Color::sPurple, 0.1f);
  1742. }
  1743. #endif // JPH_DEBUG_RENDERER
  1744. }
  1745. }
  1746. // Update body position
  1747. body1.AddPositionStep(ccd_body->mDeltaPosition * ccd_body->mFractionPlusSlop);
  1748. // If the body was activated due to an earlier CCD step it will have an index in the active
  1749. // body list that it higher than the highest one we processed during FindCollisions
  1750. // which means it hasn't been assigned an island and will not be updated by an island
  1751. // this means that we need to update its bounds manually
  1752. if (body_mp->GetIndexInActiveBodiesInternal() >= num_active_bodies_after_find_collisions)
  1753. {
  1754. body1.CalculateWorldSpaceBoundsInternal();
  1755. bodies_to_update_bounds[num_bodies_to_update_bounds++] = body1.GetID();
  1756. if (num_bodies_to_update_bounds == cBodiesBatch)
  1757. {
  1758. // Buffer full, flush now
  1759. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds);
  1760. num_bodies_to_update_bounds = 0;
  1761. }
  1762. }
  1763. }
  1764. // Activate the requested bodies
  1765. if (num_bodies_to_activate > 0)
  1766. mBodyManager.ActivateBodies(bodies_to_activate, num_bodies_to_activate);
  1767. // Notify change bounds on requested bodies
  1768. if (num_bodies_to_update_bounds > 0)
  1769. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds, false);
  1770. // Free the sorted ccd bodies
  1771. temp_allocator->Free(sorted_ccd_bodies, num_ccd_bodies * sizeof(CCDBody *));
  1772. }
  1773. // Ensure we free the CCD bodies array now, will not call the destructor!
  1774. temp_allocator->Free(ioSubStep->mActiveBodyToCCDBody, ioSubStep->mNumActiveBodyToCCDBody * sizeof(int));
  1775. ioSubStep->mActiveBodyToCCDBody = nullptr;
  1776. ioSubStep->mNumActiveBodyToCCDBody = 0;
  1777. temp_allocator->Free(ioSubStep->mCCDBodies, ioSubStep->mCCDBodiesCapacity * sizeof(CCDBody));
  1778. ioSubStep->mCCDBodies = nullptr;
  1779. ioSubStep->mCCDBodiesCapacity = 0;
  1780. }
  1781. void PhysicsSystem::JobContactRemovedCallbacks(const PhysicsUpdateContext::Step *ioStep)
  1782. {
  1783. #ifdef JPH_ENABLE_ASSERTS
  1784. // We don't touch any bodies
  1785. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1786. #endif
  1787. // Reset the Body::EFlags::InvalidateContactCache flag for all bodies
  1788. mBodyManager.ValidateContactCacheForAllBodies();
  1789. // Finalize the contact cache (this swaps the read and write versions of the contact cache)
  1790. // Trigger all contact removed callbacks by looking at last step contact points that have not been flagged as reused
  1791. mContactManager.FinalizeContactCacheAndCallContactPointRemovedCallbacks(ioStep->mNumBodyPairs, ioStep->mNumManifolds);
  1792. }
  1793. class PhysicsSystem::BodiesToSleep : public NonCopyable
  1794. {
  1795. public:
  1796. static constexpr int cBodiesToSleepSize = 512;
  1797. static constexpr int cMaxBodiesToPutInBuffer = 128;
  1798. inline BodiesToSleep(BodyManager &inBodyManager, BodyID *inBodiesToSleepBuffer) : mBodyManager(inBodyManager), mBodiesToSleepBuffer(inBodiesToSleepBuffer), mBodiesToSleepCur(inBodiesToSleepBuffer) { }
  1799. inline ~BodiesToSleep()
  1800. {
  1801. // Flush the bodies to sleep buffer
  1802. int num_bodies_in_buffer = int(mBodiesToSleepCur - mBodiesToSleepBuffer);
  1803. if (num_bodies_in_buffer > 0)
  1804. mBodyManager.DeactivateBodies(mBodiesToSleepBuffer, num_bodies_in_buffer);
  1805. }
  1806. inline void PutToSleep(const BodyID *inBegin, const BodyID *inEnd)
  1807. {
  1808. int num_bodies_to_sleep = int(inEnd - inBegin);
  1809. if (num_bodies_to_sleep > cMaxBodiesToPutInBuffer)
  1810. {
  1811. // Too many bodies, deactivate immediately
  1812. mBodyManager.DeactivateBodies(inBegin, num_bodies_to_sleep);
  1813. }
  1814. else
  1815. {
  1816. // Check if there's enough space in the bodies to sleep buffer
  1817. int num_bodies_in_buffer = int(mBodiesToSleepCur - mBodiesToSleepBuffer);
  1818. if (num_bodies_in_buffer + num_bodies_to_sleep > cBodiesToSleepSize)
  1819. {
  1820. // Flush the bodies to sleep buffer
  1821. mBodyManager.DeactivateBodies(mBodiesToSleepBuffer, num_bodies_in_buffer);
  1822. mBodiesToSleepCur = mBodiesToSleepBuffer;
  1823. }
  1824. // Copy the bodies in the buffer
  1825. memcpy(mBodiesToSleepCur, inBegin, num_bodies_to_sleep * sizeof(BodyID));
  1826. mBodiesToSleepCur += num_bodies_to_sleep;
  1827. }
  1828. }
  1829. private:
  1830. BodyManager & mBodyManager;
  1831. BodyID * mBodiesToSleepBuffer;
  1832. BodyID * mBodiesToSleepCur;
  1833. };
  1834. void PhysicsSystem::CheckSleepAndUpdateBounds(uint32 inIslandIndex, const PhysicsUpdateContext *ioContext, const PhysicsUpdateContext::SubStep *ioSubStep, BodiesToSleep &ioBodiesToSleep)
  1835. {
  1836. // Get the bodies that belong to this island
  1837. BodyID *bodies_begin, *bodies_end;
  1838. mIslandBuilder.GetBodiesInIsland(inIslandIndex, bodies_begin, bodies_end);
  1839. // Only check sleeping in the last sub step of the last step
  1840. // Also resets force and torque used during the apply gravity phase
  1841. if (ioSubStep->mIsLastOfAll)
  1842. {
  1843. JPH_PROFILE("Check Sleeping");
  1844. static_assert(int(Body::ECanSleep::CannotSleep) == 0 && int(Body::ECanSleep::CanSleep) == 1, "Loop below makes this assumption");
  1845. int all_can_sleep = mPhysicsSettings.mAllowSleeping? int(Body::ECanSleep::CanSleep) : int(Body::ECanSleep::CannotSleep);
  1846. float time_before_sleep = mPhysicsSettings.mTimeBeforeSleep;
  1847. float max_movement = mPhysicsSettings.mPointVelocitySleepThreshold * time_before_sleep;
  1848. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1849. {
  1850. Body &body = mBodyManager.GetBody(*body_id);
  1851. // Update bounding box
  1852. body.CalculateWorldSpaceBoundsInternal();
  1853. // Update sleeping
  1854. all_can_sleep &= int(body.UpdateSleepStateInternal(ioContext->mSubStepDeltaTime, max_movement, time_before_sleep));
  1855. // Reset force and torque
  1856. body.GetMotionProperties()->ResetForceAndTorqueInternal();
  1857. }
  1858. // If all bodies indicate they can sleep we can deactivate them
  1859. if (all_can_sleep == int(Body::ECanSleep::CanSleep))
  1860. ioBodiesToSleep.PutToSleep(bodies_begin, bodies_end);
  1861. }
  1862. else
  1863. {
  1864. JPH_PROFILE("Update Bounds");
  1865. // Update bounding box only for all other sub steps
  1866. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1867. {
  1868. Body &body = mBodyManager.GetBody(*body_id);
  1869. body.CalculateWorldSpaceBoundsInternal();
  1870. }
  1871. }
  1872. // Notify broadphase of changed objects (find ccd contacts can do linear casts in the next step, so
  1873. // we need to do this every sub step)
  1874. // Note: Shuffles the BodyID's around!!!
  1875. mBroadPhase->NotifyBodiesAABBChanged(bodies_begin, int(bodies_end - bodies_begin), false);
  1876. }
  1877. void PhysicsSystem::JobSolvePositionConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1878. {
  1879. #ifdef JPH_ENABLE_ASSERTS
  1880. // We fix up position errors
  1881. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::ReadWrite);
  1882. // Can only deactivate bodies
  1883. BodyManager::GrantActiveBodiesAccess grant_active(false, true);
  1884. #endif
  1885. float delta_time = ioContext->mSubStepDeltaTime;
  1886. float baumgarte = mPhysicsSettings.mBaumgarte;
  1887. Constraint **active_constraints = ioContext->mActiveConstraints;
  1888. // Keep a buffer of bodies that need to go to sleep in order to not constantly lock the active bodies mutex and create contention between all solving threads
  1889. BodiesToSleep bodies_to_sleep(mBodyManager, (BodyID *)JPH_STACK_ALLOC(BodiesToSleep::cBodiesToSleepSize * sizeof(BodyID)));
  1890. bool check_islands = true, check_split_islands = ioContext->mUseLargeIslandSplitter;
  1891. do
  1892. {
  1893. // First try to get work from large islands
  1894. if (check_split_islands)
  1895. {
  1896. bool first_iteration;
  1897. uint split_island_index;
  1898. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1899. switch (mLargeIslandSplitter.FetchNextBatch(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, first_iteration))
  1900. {
  1901. case LargeIslandSplitter::EStatus::BatchRetrieved:
  1902. // Solve the batch
  1903. ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte);
  1904. mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1905. // Mark the batch as processed
  1906. bool last_iteration, final_batch;
  1907. mLargeIslandSplitter.MarkBatchProcessed(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, last_iteration, final_batch);
  1908. // The final batch will update all bounds and check sleeping
  1909. if (final_batch)
  1910. CheckSleepAndUpdateBounds(mLargeIslandSplitter.GetIslandIndex(split_island_index), ioContext, ioSubStep, bodies_to_sleep);
  1911. // We processed work, loop again
  1912. continue;
  1913. case LargeIslandSplitter::EStatus::WaitingForBatch:
  1914. break;
  1915. case LargeIslandSplitter::EStatus::AllBatchesDone:
  1916. check_split_islands = false;
  1917. break;
  1918. }
  1919. }
  1920. // If that didn't succeed try to process an island
  1921. if (check_islands)
  1922. {
  1923. // Next island
  1924. uint32 island_idx = ioSubStep->mSolvePositionConstraintsNextIsland++;
  1925. if (island_idx >= mIslandBuilder.GetNumIslands())
  1926. {
  1927. // We processed all islands, stop checking islands
  1928. check_islands = false;
  1929. continue;
  1930. }
  1931. JPH_PROFILE("Island");
  1932. // Get iterators for this island
  1933. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1934. mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end);
  1935. mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end);
  1936. // If this island is a large island, it will be picked up as a batch and we don't need to do anything here
  1937. uint num_items = uint(constraints_end - constraints_begin) + uint(contacts_end - contacts_begin);
  1938. if (ioContext->mUseLargeIslandSplitter
  1939. && num_items >= LargeIslandSplitter::cLargeIslandTreshold)
  1940. continue;
  1941. // Check if this island needs solving
  1942. if (num_items > 0)
  1943. {
  1944. // First iteration
  1945. int num_position_steps = mPhysicsSettings.mNumPositionSteps;
  1946. if (num_position_steps > 0)
  1947. {
  1948. // In the first iteration also calculate the number of position steps (this way we avoid pulling all constraints into the cache twice)
  1949. bool applied_impulse = ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte, num_position_steps);
  1950. applied_impulse |= mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1951. // If no impulses were applied we can stop, otherwise we already did 1 iteration
  1952. if (!applied_impulse)
  1953. num_position_steps = 0;
  1954. else
  1955. --num_position_steps;
  1956. }
  1957. else
  1958. {
  1959. // Iterate the constraints to see if they override the number of position steps
  1960. for (const uint32 *c = constraints_begin; c < constraints_end; ++c)
  1961. num_position_steps = max(num_position_steps, active_constraints[*c]->GetNumPositionStepsOverride());
  1962. }
  1963. // Further iterations
  1964. for (int position_step = 0; position_step < num_position_steps; ++position_step)
  1965. {
  1966. bool applied_impulse = ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte);
  1967. applied_impulse |= mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1968. if (!applied_impulse)
  1969. break;
  1970. }
  1971. }
  1972. // After solving we will update all bounds and check sleeping
  1973. CheckSleepAndUpdateBounds(island_idx, ioContext, ioSubStep, bodies_to_sleep);
  1974. // We processed work, loop again
  1975. continue;
  1976. }
  1977. // If we didn't find any work, give up a time slice
  1978. std::this_thread::yield();
  1979. }
  1980. while (check_islands || check_split_islands);
  1981. }
  1982. void PhysicsSystem::SaveState(StateRecorder &inStream) const
  1983. {
  1984. JPH_PROFILE_FUNCTION();
  1985. inStream.Write(mPreviousSubStepDeltaTime);
  1986. inStream.Write(mGravity);
  1987. mBodyManager.SaveState(inStream);
  1988. mContactManager.SaveState(inStream);
  1989. mConstraintManager.SaveState(inStream);
  1990. }
  1991. bool PhysicsSystem::RestoreState(StateRecorder &inStream)
  1992. {
  1993. JPH_PROFILE_FUNCTION();
  1994. inStream.Read(mPreviousSubStepDeltaTime);
  1995. inStream.Read(mGravity);
  1996. if (!mBodyManager.RestoreState(inStream))
  1997. return false;
  1998. if (!mContactManager.RestoreState(inStream))
  1999. return false;
  2000. if (!mConstraintManager.RestoreState(inStream))
  2001. return false;
  2002. // Update bounding boxes for all bodies in the broadphase
  2003. Array<BodyID> bodies;
  2004. for (const Body *b : mBodyManager.GetBodies())
  2005. if (BodyManager::sIsValidBodyPointer(b) && b->IsInBroadPhase())
  2006. bodies.push_back(b->GetID());
  2007. if (!bodies.empty())
  2008. mBroadPhase->NotifyBodiesAABBChanged(&bodies[0], (int)bodies.size());
  2009. return true;
  2010. }
  2011. JPH_NAMESPACE_END