HingeConstraint.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Constraints/HingeConstraint.h>
  5. #include <Physics/Body/Body.h>
  6. #include <ObjectStream/TypeDeclarations.h>
  7. #include <Core/StreamIn.h>
  8. #include <Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. namespace JPH {
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
  17. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
  18. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
  19. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
  20. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
  21. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
  22. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
  23. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
  24. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
  25. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
  26. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
  27. }
  28. void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  29. {
  30. ConstraintSettings::SaveBinaryState(inStream);
  31. inStream.Write(mSpace);
  32. inStream.Write(mPoint1);
  33. inStream.Write(mHingeAxis1);
  34. inStream.Write(mNormalAxis1);
  35. inStream.Write(mPoint2);
  36. inStream.Write(mHingeAxis2);
  37. inStream.Write(mNormalAxis2);
  38. inStream.Write(mLimitsMin);
  39. inStream.Write(mLimitsMax);
  40. inStream.Write(mMaxFrictionTorque);
  41. mMotorSettings.SaveBinaryState(inStream);
  42. }
  43. void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  44. {
  45. ConstraintSettings::RestoreBinaryState(inStream);
  46. inStream.Read(mSpace);
  47. inStream.Read(mPoint1);
  48. inStream.Read(mHingeAxis1);
  49. inStream.Read(mNormalAxis1);
  50. inStream.Read(mPoint2);
  51. inStream.Read(mHingeAxis2);
  52. inStream.Read(mNormalAxis2);
  53. inStream.Read(mLimitsMin);
  54. inStream.Read(mLimitsMax);
  55. inStream.Read(mMaxFrictionTorque);
  56. mMotorSettings.RestoreBinaryState(inStream);}
  57. TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  58. {
  59. return new HingeConstraint(inBody1, inBody2, *this);
  60. }
  61. HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
  62. TwoBodyConstraint(inBody1, inBody2, inSettings),
  63. mLocalSpacePosition1(inSettings.mPoint1),
  64. mLocalSpacePosition2(inSettings.mPoint2),
  65. mLocalSpaceHingeAxis1(inSettings.mHingeAxis1),
  66. mLocalSpaceHingeAxis2(inSettings.mHingeAxis2),
  67. mLocalSpaceNormalAxis1(inSettings.mNormalAxis1),
  68. mLocalSpaceNormalAxis2(inSettings.mNormalAxis2),
  69. mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
  70. mMotorSettings(inSettings.mMotorSettings)
  71. {
  72. // Store limits
  73. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint in this case");
  74. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  75. // Store inverse of initial rotation from body 1 to body 2 in body 1 space:
  76. //
  77. // q20 = q10 r0
  78. // <=> r0 = q10^-1 q20
  79. // <=> r0^-1 = q20^-1 q10
  80. //
  81. // where:
  82. //
  83. // q10, q20 = world space initial orientation of body 1 and 2
  84. // r0 = initial rotation rotation from body 1 to body 2 in local space of body 1
  85. //
  86. // We can also write this in terms of the constraint matrices:
  87. //
  88. // q20 c2 = q10 c1
  89. // <=> q20 = q10 c1 c2^-1
  90. // => r0 = c1 c2^-1
  91. // <=> r0^-1 = c2 c1^-1
  92. //
  93. // where:
  94. //
  95. // c1, c2 = matrix that takes us from body 1 and 2 COM to constraint space 1 and 2
  96. if (inSettings.mHingeAxis1 == inSettings.mHingeAxis2 && inSettings.mNormalAxis1 == inSettings.mNormalAxis2)
  97. {
  98. // Axis are the same -> identity transform
  99. mInvInitialOrientation = Quat::sIdentity();
  100. }
  101. else
  102. {
  103. Mat44 constraint1(Vec4(inSettings.mNormalAxis1, 0), Vec4(inSettings.mHingeAxis1.Cross(inSettings.mNormalAxis1), 0), Vec4(inSettings.mHingeAxis1, 0), Vec4(0, 0, 0, 1));
  104. Mat44 constraint2(Vec4(inSettings.mNormalAxis2, 0), Vec4(inSettings.mHingeAxis2.Cross(inSettings.mNormalAxis2), 0), Vec4(inSettings.mHingeAxis2, 0), Vec4(0, 0, 0, 1));
  105. mInvInitialOrientation = constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated();
  106. }
  107. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  108. {
  109. // If all properties were specified in world space, take them to local space now
  110. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  111. mLocalSpacePosition1 = inv_transform1 * mLocalSpacePosition1;
  112. mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(mLocalSpaceHingeAxis1).Normalized();
  113. mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(mLocalSpaceNormalAxis1).Normalized();
  114. Mat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  115. mLocalSpacePosition2 = inv_transform2 * mLocalSpacePosition2;
  116. mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(mLocalSpaceHingeAxis2).Normalized();
  117. mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(mLocalSpaceNormalAxis2).Normalized();
  118. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  119. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  120. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  121. }
  122. }
  123. void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  124. {
  125. JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
  126. JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
  127. mLimitsMin = inLimitsMin;
  128. mLimitsMax = inLimitsMax;
  129. mHasLimits = mLimitsMin > -JPH_PI && mLimitsMax < JPH_PI;
  130. }
  131. void HingeConstraint::CalculateA1AndTheta()
  132. {
  133. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
  134. {
  135. Quat rotation1 = mBody1->GetRotation();
  136. // Calculate relative rotation in world space
  137. //
  138. // The rest rotation is:
  139. //
  140. // q2 = q1 r0
  141. //
  142. // But the actual rotation is
  143. //
  144. // q2 = diff q1 r0
  145. // <=> diff = q2 r0^-1 q1^-1
  146. //
  147. // Where:
  148. // q1 = current rotation of body 1
  149. // q2 = current rotation of body 2
  150. // diff = relative rotation in world space
  151. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  152. // Calculate hinge axis in world space
  153. mA1 = rotation1 * mLocalSpaceHingeAxis1;
  154. // Get rotation angle around the hinge axis
  155. mTheta = diff.GetRotationAngle(mA1);
  156. }
  157. }
  158. void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
  159. {
  160. // Apply constraint if outside of limits
  161. if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
  162. mRotationLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  163. else
  164. mRotationLimitsConstraintPart.Deactivate();
  165. }
  166. void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  167. {
  168. switch (mMotorState)
  169. {
  170. case EMotorState::Off:
  171. if (mMaxFrictionTorque > 0.0f)
  172. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  173. else
  174. mMotorConstraintPart.Deactivate();
  175. break;
  176. case EMotorState::Velocity:
  177. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, -mTargetAngularVelocity);
  178. break;
  179. case EMotorState::Position:
  180. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mFrequency, mMotorSettings.mDamping);
  181. break;
  182. }
  183. }
  184. void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
  185. {
  186. // Cache constraint values that are valid until the bodies move
  187. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  188. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  189. mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
  190. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  191. CalculateA1AndTheta();
  192. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  193. CalculateMotorConstraintProperties(inDeltaTime);
  194. }
  195. void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  196. {
  197. // Warm starting: Apply previous frame impulse
  198. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  199. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  200. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  201. mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  202. }
  203. float HingeConstraint::GetSmallestAngleToLimit() const
  204. {
  205. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  206. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  207. return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
  208. }
  209. bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
  210. {
  211. // Solve motor
  212. bool motor = false;
  213. if (mMotorConstraintPart.IsActive())
  214. {
  215. switch (mMotorState)
  216. {
  217. case EMotorState::Off:
  218. {
  219. float max_lambda = mMaxFrictionTorque * inDeltaTime;
  220. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
  221. break;
  222. }
  223. case EMotorState::Velocity:
  224. case EMotorState::Position:
  225. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
  226. break;
  227. }
  228. }
  229. // Solve point constraint
  230. bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  231. // Solve rotation constraint
  232. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  233. // Solve rotation limits
  234. bool limit = false;
  235. if (mRotationLimitsConstraintPart.IsActive())
  236. {
  237. if (GetSmallestAngleToLimit() < 0.0f)
  238. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, 0, FLT_MAX);
  239. else
  240. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -FLT_MAX, 0);
  241. }
  242. return motor || pos || rot || limit;
  243. }
  244. bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  245. {
  246. // Motor operates on velocities only, don't call SolvePositionConstraint
  247. // Solve point constraint
  248. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  249. bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  250. // Solve rotation constraint
  251. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
  252. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  253. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  254. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  255. // Solve rotation limits
  256. bool limit = false;
  257. CalculateA1AndTheta();
  258. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  259. if (mRotationLimitsConstraintPart.IsActive())
  260. limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
  261. return pos || rot || limit;
  262. }
  263. #ifdef JPH_DEBUG_RENDERER
  264. void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  265. {
  266. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  267. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  268. // Draw constraint
  269. Vec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
  270. inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
  271. inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
  272. Vec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
  273. inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
  274. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
  275. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
  276. }
  277. void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  278. {
  279. if (mHasLimits && mLimitsMax > mLimitsMin)
  280. {
  281. // Get constraint properties in world space
  282. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  283. Vec3 position1 = transform1 * mLocalSpacePosition1;
  284. Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
  285. Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
  286. inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
  287. }
  288. }
  289. #endif // JPH_DEBUG_RENDERER
  290. void HingeConstraint::SaveState(StateRecorder &inStream) const
  291. {
  292. TwoBodyConstraint::SaveState(inStream);
  293. mMotorConstraintPart.SaveState(inStream);
  294. mRotationConstraintPart.SaveState(inStream);
  295. mPointConstraintPart.SaveState(inStream);
  296. mRotationLimitsConstraintPart.SaveState(inStream);
  297. inStream.Write(mMotorState);
  298. inStream.Write(mTargetAngularVelocity);
  299. inStream.Write(mTargetAngle);
  300. }
  301. void HingeConstraint::RestoreState(StateRecorder &inStream)
  302. {
  303. TwoBodyConstraint::RestoreState(inStream);
  304. mMotorConstraintPart.RestoreState(inStream);
  305. mRotationConstraintPart.RestoreState(inStream);
  306. mPointConstraintPart.RestoreState(inStream);
  307. mRotationLimitsConstraintPart.RestoreState(inStream);
  308. inStream.Read(mMotorState);
  309. inStream.Read(mTargetAngularVelocity);
  310. inStream.Read(mTargetAngle);
  311. }
  312. Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
  313. {
  314. return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
  315. }
  316. Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
  317. {
  318. return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
  319. }
  320. } // JPH