SixDOFConstraint.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Constraints/SixDOFConstraint.h>
  5. #include <Physics/Body/Body.h>
  6. #include <Geometry/Ellipse.h>
  7. #include <ObjectStream/TypeDeclarations.h>
  8. #include <Core/StreamIn.h>
  9. #include <Core/StreamOut.h>
  10. #ifdef JPH_DEBUG_RENDERER
  11. #include <Renderer/DebugRenderer.h>
  12. #endif // JPH_DEBUG_RENDERER
  13. namespace JPH {
  14. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SixDOFConstraintSettings)
  15. {
  16. JPH_ADD_BASE_CLASS(SixDOFConstraintSettings, TwoBodyConstraintSettings)
  17. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition1)
  18. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX1)
  19. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY1)
  20. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition2)
  21. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX2)
  22. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY2)
  23. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMaxFriction)
  24. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMin)
  25. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMax)
  26. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMotorSettings)
  27. }
  28. void SixDOFConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  29. {
  30. ConstraintSettings::SaveBinaryState(inStream);
  31. inStream.Write(mPosition1);
  32. inStream.Write(mAxisX1);
  33. inStream.Write(mAxisY1);
  34. inStream.Write(mPosition2);
  35. inStream.Write(mAxisX2);
  36. inStream.Write(mAxisY2);
  37. inStream.Write(mMaxFriction);
  38. inStream.Write(mLimitMin);
  39. inStream.Write(mLimitMax);
  40. for (const MotorSettings &m : mMotorSettings)
  41. m.SaveBinaryState(inStream);
  42. }
  43. void SixDOFConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  44. {
  45. ConstraintSettings::RestoreBinaryState(inStream);
  46. inStream.Read(mPosition1);
  47. inStream.Read(mAxisX1);
  48. inStream.Read(mAxisY1);
  49. inStream.Read(mPosition2);
  50. inStream.Read(mAxisX2);
  51. inStream.Read(mAxisY2);
  52. inStream.Read(mMaxFriction);
  53. inStream.Read(mLimitMin);
  54. inStream.Read(mLimitMax);
  55. for (MotorSettings &m : mMotorSettings)
  56. m.RestoreBinaryState(inStream);
  57. }
  58. TwoBodyConstraint *SixDOFConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  59. {
  60. return new SixDOFConstraint(inBody1, inBody2, *this);
  61. }
  62. void SixDOFConstraint::UpdateRotationLimits()
  63. {
  64. // Make values sensible
  65. for (int i = 3; i < 6; ++i)
  66. if (IsAxisFixed((EAxis)i))
  67. mLimitMin[i] = mLimitMax[i] = 0.0f;
  68. else
  69. {
  70. mLimitMin[i] = max(-JPH_PI, mLimitMin[i]);
  71. mLimitMax[i] = min(JPH_PI, mLimitMax[i]);
  72. }
  73. // The swing twist constraint part requires symmetrical rotations around Y and Z
  74. JPH_ASSERT(mLimitMin[EAxis::RotationY] == -mLimitMax[EAxis::RotationY]);
  75. JPH_ASSERT(mLimitMin[EAxis::RotationZ] == -mLimitMax[EAxis::RotationZ]);
  76. // Pass limits on to constraint part
  77. mSwingTwistConstraintPart.SetLimits(mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ]);
  78. }
  79. SixDOFConstraint::SixDOFConstraint(Body &inBody1, Body &inBody2, const SixDOFConstraintSettings &inSettings) :
  80. TwoBodyConstraint(inBody1, inBody2, inSettings)
  81. {
  82. // Assert that input adheres to the limitations of this class
  83. JPH_ASSERT(inSettings.mLimitMin[EAxis::RotationY] == -inSettings.mLimitMax[EAxis::RotationY]);
  84. JPH_ASSERT(inSettings.mLimitMin[EAxis::RotationZ] == -inSettings.mLimitMax[EAxis::RotationZ]);
  85. // Calculate position of the constraint in body1 local space
  86. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  87. mLocalSpacePosition1 = inv_transform1 * inSettings.mPosition1;
  88. // Calculate position of the constraint in body2 local space
  89. Mat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  90. mLocalSpacePosition2 = inv_transform2 * inSettings.mPosition2;
  91. // Calculate rotation needed to go from constraint space to body1 local space
  92. Vec3 axis_z1 = inSettings.mAxisX1.Cross(inSettings.mAxisY1);
  93. Mat44 c_to_b1(Vec4(inSettings.mAxisX1, 0), Vec4(inSettings.mAxisY1, 0), Vec4(axis_z1, 0), Vec4(0, 0, 0, 1));
  94. mConstraintToBody1 = inBody1.GetRotation().Conjugated() * c_to_b1.GetQuaternion();
  95. // Calculate rotation needed to go from constraint space to body2 local space
  96. Vec3 axis_z2 = inSettings.mAxisX2.Cross(inSettings.mAxisY2);
  97. Mat44 c_to_b2(Vec4(inSettings.mAxisX2, 0), Vec4(inSettings.mAxisY2, 0), Vec4(axis_z2, 0), Vec4(0, 0, 0, 1));
  98. mConstraintToBody2 = inBody2.GetRotation().Conjugated() * c_to_b2.GetQuaternion();
  99. // Cache which axis are fixed and which ones are free
  100. mFreeAxis = 0;
  101. mFixedAxis = 0;
  102. for (int a = 0; a < EAxis::Num; ++a)
  103. {
  104. if (inSettings.IsFixedAxis((EAxis)a))
  105. mFixedAxis |= 1 << a;
  106. if (inSettings.IsFreeAxis((EAxis)a))
  107. mFreeAxis |= 1 << a;
  108. }
  109. // Copy translation and rotation limits
  110. memcpy(mLimitMin, inSettings.mLimitMin, sizeof(mLimitMin));
  111. memcpy(mLimitMax, inSettings.mLimitMax, sizeof(mLimitMax));
  112. UpdateRotationLimits();
  113. // Store friction settings
  114. memcpy(mMaxFriction, inSettings.mMaxFriction, sizeof(mMaxFriction));
  115. // Store motor settings
  116. for (int i = 0; i < EAxis::Num; ++i)
  117. mMotorSettings[i] = inSettings.mMotorSettings[i];
  118. }
  119. void SixDOFConstraint::SetTranslationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  120. {
  121. mLimitMin[EAxis::TranslationX] = inLimitMin.GetX();
  122. mLimitMin[EAxis::TranslationY] = inLimitMin.GetY();
  123. mLimitMin[EAxis::TranslationZ] = inLimitMin.GetZ();
  124. mLimitMax[EAxis::TranslationX] = inLimitMax.GetX();
  125. mLimitMax[EAxis::TranslationY] = inLimitMax.GetY();
  126. mLimitMax[EAxis::TranslationZ] = inLimitMax.GetZ();
  127. }
  128. void SixDOFConstraint::SetRotationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  129. {
  130. mLimitMin[EAxis::RotationX] = inLimitMin.GetX();
  131. mLimitMin[EAxis::RotationY] = inLimitMin.GetY();
  132. mLimitMin[EAxis::RotationZ] = inLimitMin.GetZ();
  133. mLimitMax[EAxis::RotationX] = inLimitMax.GetX();
  134. mLimitMax[EAxis::RotationY] = inLimitMax.GetY();
  135. mLimitMax[EAxis::RotationZ] = inLimitMax.GetZ();
  136. UpdateRotationLimits();
  137. }
  138. void SixDOFConstraint::GetPositionConstraintProperties(Vec3 &outR1PlusU, Vec3 &outR2, Vec3 &outU) const
  139. {
  140. Vec3 p1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  141. Vec3 p2 = mBody2->GetCenterOfMassTransform() * mLocalSpacePosition2;
  142. outR1PlusU = p2 - mBody1->GetCenterOfMassPosition(); // r1 + u = (p1 - x1) + (p2 - p1) = p2 - x1
  143. outR2 = p2 - mBody2->GetCenterOfMassPosition();
  144. outU = p2 - p1;
  145. }
  146. Quat SixDOFConstraint::GetRotationInConstraintSpace() const
  147. {
  148. // Let b1, b2 be the center of mass transform of body1 and body2 (For body1 this is mBody1->GetCenterOfMassTransform())
  149. // Let c1, c2 be the transform that takes a vector from constraint space to local space of body1 and body2 (For body1 this is Mat44::sRotationTranslation(mConstraintToBody1, mLocalSpacePosition1))
  150. // Let q be the rotation of the constraint in constraint space
  151. // b2 takes a vector from the local space of body2 to world space
  152. // To express this in terms of b1: b2 = b1 * c1 * q * c2^-1
  153. // c2^-1 goes from local body 2 space to constraint space
  154. // q rotates the constraint
  155. // c1 goes from constraint space to body 1 local space
  156. // b1 goes from body 1 local space to world space
  157. // So when the body rotations are given, q = (b1 * c1)^-1 * b2 c2
  158. // Or: q = (q1 * c1)^-1 * (q2 * c2) if we're only interested in rotations
  159. return (mBody1->GetRotation() * mConstraintToBody1).Conjugated() * mBody2->GetRotation() * mConstraintToBody2;
  160. }
  161. void SixDOFConstraint::SetMotorState(EAxis inAxis, EMotorState inState)
  162. {
  163. JPH_ASSERT(inState == EMotorState::Off || mMotorSettings[inAxis].IsValid());
  164. if (mMotorState[inAxis] != inState)
  165. {
  166. mMotorState[inAxis] = inState;
  167. // Ensure that warm starting next frame doesn't apply any impulses (motor parts are repurposed for different modes)
  168. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  169. {
  170. mMotorTranslationConstraintPart[inAxis - EAxis::TranslationX].Deactivate();
  171. // Test if any of the motors or friction are active
  172. mTranslationMotorActive = mMotorState[EAxis::TranslationX] != EMotorState::Off
  173. || mMotorState[EAxis::TranslationY] != EMotorState::Off
  174. || mMotorState[EAxis::TranslationZ] != EMotorState::Off
  175. || mMaxFriction[EAxis::TranslationX] > 0.0f
  176. || mMaxFriction[EAxis::TranslationY] > 0.0f
  177. || mMaxFriction[EAxis::TranslationZ] > 0.0f;
  178. }
  179. else
  180. {
  181. JPH_ASSERT(inAxis >= EAxis::RotationX && inAxis <= EAxis::RotationZ);
  182. mMotorRotationConstraintPart[inAxis - EAxis::RotationX].Deactivate();
  183. mRotationMotorActive = mMotorState[EAxis::RotationX] != EMotorState::Off
  184. || mMotorState[EAxis::RotationY] != EMotorState::Off
  185. || mMotorState[EAxis::RotationZ] != EMotorState::Off
  186. || mMaxFriction[EAxis::RotationX] > 0.0f
  187. || mMaxFriction[EAxis::RotationY] > 0.0f
  188. || mMaxFriction[EAxis::RotationZ] > 0.0f;
  189. mRotationPositionMotorActive = 0;
  190. for (int i = 0; i < 3; ++i)
  191. if (mMotorState[EAxis::RotationX + i] == EMotorState::Position)
  192. mRotationPositionMotorActive |= 1 << i;
  193. }
  194. }
  195. }
  196. void SixDOFConstraint::SetTargetOrientationCS(QuatArg inOrientation)
  197. {
  198. Quat q_swing, q_twist;
  199. inOrientation.GetSwingTwist(q_swing, q_twist);
  200. bool twist_clamped, swing_y_clamped, swing_z_clamped;
  201. mSwingTwistConstraintPart.ClampSwingTwist(q_swing, swing_y_clamped, swing_z_clamped, q_twist, twist_clamped);
  202. if (twist_clamped || swing_y_clamped || swing_z_clamped)
  203. mTargetOrientation = q_swing * q_twist;
  204. else
  205. mTargetOrientation = inOrientation;
  206. }
  207. void SixDOFConstraint::SetupVelocityConstraint(float inDeltaTime)
  208. {
  209. // Get body rotations
  210. Quat rotation1 = mBody1->GetRotation();
  211. Quat rotation2 = mBody2->GetRotation();
  212. // Quaternion that rotates from body1's constraint space to world space
  213. Quat constraint_body1_to_world = rotation1 * mConstraintToBody1;
  214. // Store world space axis of constraint space
  215. Mat44 translation_axis_mat = Mat44::sRotation(constraint_body1_to_world);
  216. for (int i = 0; i < 3; ++i)
  217. mTranslationAxis[i] = translation_axis_mat.GetColumn3(i);
  218. if (IsTranslationFullyConstrained())
  219. {
  220. // All translation locked: Setup point constraint
  221. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(rotation1), mLocalSpacePosition1, *mBody2, Mat44::sRotation(rotation2), mLocalSpacePosition2);
  222. }
  223. else if (IsTranslationConstrained() || mTranslationMotorActive)
  224. {
  225. // Update world space positions (the bodies may have moved)
  226. Vec3 r1_plus_u, r2, u;
  227. GetPositionConstraintProperties(r1_plus_u, r2, u);
  228. // Setup axis constraint parts
  229. for (int i = 0; i < 3; ++i)
  230. {
  231. EAxis axis = EAxis(EAxis::TranslationX + i);
  232. Vec3 translation_axis = mTranslationAxis[i];
  233. // Setup limit constraint
  234. bool constraint_active = false;
  235. if (IsAxisFixed(axis))
  236. {
  237. // When constraint is fixed it is always active
  238. constraint_active = true;
  239. }
  240. else if (!IsAxisFree(axis))
  241. {
  242. // When constraint is limited, it is only active when outside of the allowed range
  243. float d = translation_axis.Dot(u);
  244. constraint_active = d <= mLimitMin[i] || d >= mLimitMax[i];
  245. mDisplacement[i] = d; // Store for SolveVelocityConstraint
  246. }
  247. if (constraint_active)
  248. mTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  249. else
  250. mTranslationConstraintPart[i].Deactivate();
  251. // Setup motor constraint
  252. switch (mMotorState[i])
  253. {
  254. case EMotorState::Off:
  255. if (mMaxFriction[i] > 0.0f)
  256. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  257. else
  258. mMotorTranslationConstraintPart[i].Deactivate();
  259. break;
  260. case EMotorState::Velocity:
  261. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, -mTargetVelocity[i]);
  262. break;
  263. case EMotorState::Position:
  264. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, 0.0f, translation_axis.Dot(u) - mTargetPosition[i], mMotorSettings[i].mFrequency, mMotorSettings[i].mDamping);
  265. break;
  266. }
  267. }
  268. }
  269. // Setup rotation constraints
  270. if (IsRotationFullyConstrained())
  271. {
  272. // All rotation locked: Setup rotation contraint
  273. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  274. }
  275. else if (IsRotationConstrained() || mRotationMotorActive)
  276. {
  277. // GetRotationInConstraintSpace without redoing the calculation of constraint_body1_to_world
  278. Quat constraint_body2_to_world = mBody2->GetRotation() * mConstraintToBody2;
  279. Quat q = constraint_body1_to_world.Conjugated() * constraint_body2_to_world;
  280. // Use swing twist constraint part
  281. if (IsRotationConstrained())
  282. mSwingTwistConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, q, constraint_body1_to_world);
  283. else
  284. mSwingTwistConstraintPart.Deactivate();
  285. if (mRotationMotorActive)
  286. {
  287. // Calculate rotation motor axis
  288. Mat44 ws_axis = Mat44::sRotation(constraint_body2_to_world);
  289. for (int i = 0; i < 3; ++i)
  290. mRotationAxis[i] = ws_axis.GetColumn3(i);
  291. // Get target orientation along the shortest path from q
  292. Quat target_orientation = q.Dot(mTargetOrientation) > 0.0f? mTargetOrientation : -mTargetOrientation;
  293. // The definition of the constraint rotation q:
  294. // R2 * ConstraintToBody2 = R1 * ConstraintToBody1 * q (1)
  295. //
  296. // R2' is the rotation of body 2 when reaching the target_orientation:
  297. // R2' * ConstraintToBody2 = R1 * ConstraintToBody1 * target_orientation (2)
  298. //
  299. // The difference in body 2 space:
  300. // R2' = R2 * diff_body2 (3)
  301. //
  302. // We want to specify the difference in the constraint space of body 2:
  303. // diff_body2 = ConstraintToBody2 * diff * ConstraintToBody2^* (4)
  304. //
  305. // Extracting R2' from 2: R2' = R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* (5)
  306. // Combining 3 & 4: R2' = R2 * ConstraintToBody2 * diff * ConstraintToBody2^* (6)
  307. // Combining 1 & 6: R2' = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^* (7)
  308. // Combining 5 & 7: R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^*
  309. // <=> target_orientation = q * diff
  310. // <=> diff = q^* * target_orientation
  311. Quat diff = q.Conjugated() * target_orientation;
  312. // Project diff so that only rotation around axis that have a position motor are remaining
  313. Quat projected_diff;
  314. switch (mRotationPositionMotorActive)
  315. {
  316. case 0b001:
  317. // Keep only rotation around X
  318. projected_diff = diff.GetTwist(Vec3::sAxisX());
  319. break;
  320. case 0b010:
  321. // Keep only rotation around Y
  322. projected_diff = diff.GetTwist(Vec3::sAxisY());
  323. break;
  324. case 0b100:
  325. // Keep only rotation around Z
  326. projected_diff = diff.GetTwist(Vec3::sAxisZ());
  327. break;
  328. case 0b011:
  329. // Remove rotation around Z
  330. // q = swing_xy * twist_z <=> swing_xy = q * twist_z^*
  331. projected_diff = diff * diff.GetTwist(Vec3::sAxisZ()).Conjugated();
  332. break;
  333. case 0b101:
  334. // Remove rotation around Y
  335. // q = swing_xz * twist_y <=> swing_xz = q * twist_y^*
  336. projected_diff = diff * diff.GetTwist(Vec3::sAxisY()).Conjugated();
  337. break;
  338. case 0b110:
  339. // Remove rotation around X
  340. // q = swing_yz * twist_x <=> swing_yz = q * twist_x^*
  341. projected_diff = diff * diff.GetTwist(Vec3::sAxisX()).Conjugated();
  342. break;
  343. case 0b111:
  344. // Keep entire rotation
  345. projected_diff = diff;
  346. break;
  347. }
  348. // Approximate error angles
  349. // The imaginary part of a quaternion is rotation_axis * sin(angle / 2)
  350. // If angle is small, sin(x) = x so angle[i] ~ 2.0f * rotation_axis[i]
  351. // We'll be making small time steps, so if the angle is not small at least the sign will be correct and we'll move in the right direction
  352. Vec3 rotation_error = -2.0f * projected_diff.GetXYZ();
  353. // Setup motors
  354. for (int i = 0; i < 3; ++i)
  355. {
  356. EAxis axis = EAxis(EAxis::RotationX + i);
  357. Vec3 rotation_axis = mRotationAxis[i];
  358. switch (mMotorState[axis])
  359. {
  360. case EMotorState::Off:
  361. if (mMaxFriction[axis] > 0.0f)
  362. mMotorRotationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, rotation_axis);
  363. else
  364. mMotorRotationConstraintPart[i].Deactivate();
  365. break;
  366. case EMotorState::Velocity:
  367. mMotorRotationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, rotation_axis, -mTargetAngularVelocity[i]);
  368. break;
  369. case EMotorState::Position:
  370. mMotorRotationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, rotation_axis, 0.0f, rotation_error[i], mMotorSettings[axis].mFrequency, mMotorSettings[axis].mDamping);
  371. break;
  372. }
  373. }
  374. }
  375. }
  376. }
  377. void SixDOFConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  378. {
  379. // Warm start translation motors
  380. if (mTranslationMotorActive)
  381. for (int i = 0; i < 3; ++i)
  382. if (mMotorTranslationConstraintPart[i].IsActive())
  383. mMotorTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  384. // Warm start rotation motors
  385. if (mRotationMotorActive)
  386. for (int i = 0; i < 3; ++i)
  387. if (mMotorRotationConstraintPart[i].IsActive())
  388. mMotorRotationConstraintPart[i].WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  389. // Warm start rotation constraints
  390. if (IsRotationFullyConstrained())
  391. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  392. else if (IsRotationConstrained())
  393. mSwingTwistConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  394. // Warm start translation constraints
  395. if (IsTranslationFullyConstrained())
  396. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  397. else if (IsTranslationConstrained())
  398. for (int i = 0; i < 3; ++i)
  399. if (mTranslationConstraintPart[i].IsActive())
  400. mTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  401. }
  402. bool SixDOFConstraint::SolveVelocityConstraint(float inDeltaTime)
  403. {
  404. bool impulse = false;
  405. // Solve translation motor
  406. if (mTranslationMotorActive)
  407. for (int i = 0; i < 3; ++i)
  408. if (mMotorTranslationConstraintPart[i].IsActive())
  409. switch (mMotorState[i])
  410. {
  411. case EMotorState::Off:
  412. {
  413. // Apply friction only
  414. float max_lambda = mMaxFriction[i] * inDeltaTime;
  415. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], -max_lambda, max_lambda);
  416. break;
  417. }
  418. case EMotorState::Velocity:
  419. case EMotorState::Position:
  420. // Drive motor
  421. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], inDeltaTime * mMotorSettings[i].mMinForceLimit, inDeltaTime * mMotorSettings[i].mMaxForceLimit);
  422. break;
  423. }
  424. // Solve rotation motor
  425. if (mRotationMotorActive)
  426. for (int i = 0; i < 3; ++i)
  427. {
  428. EAxis axis = EAxis(EAxis::RotationX + i);
  429. if (mMotorRotationConstraintPart[i].IsActive())
  430. switch (mMotorState[axis])
  431. {
  432. case EMotorState::Off:
  433. {
  434. // Apply friction only
  435. float max_lambda = mMaxFriction[axis] * inDeltaTime;
  436. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], -max_lambda, max_lambda);
  437. break;
  438. }
  439. case EMotorState::Velocity:
  440. case EMotorState::Position:
  441. // Drive motor
  442. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], inDeltaTime * mMotorSettings[axis].mMinTorqueLimit, inDeltaTime * mMotorSettings[axis].mMaxTorqueLimit);
  443. break;
  444. }
  445. }
  446. // Solve rotation constraint
  447. if (IsRotationFullyConstrained())
  448. impulse |= mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  449. else if (IsRotationConstrained())
  450. impulse |= mSwingTwistConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  451. // Solve position constraint
  452. if (IsTranslationFullyConstrained())
  453. impulse |= mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  454. else if (IsTranslationConstrained())
  455. for (int i = 0; i < 3; ++i)
  456. if (mTranslationConstraintPart[i].IsActive())
  457. {
  458. // If the axis is not fixed it must be limited (or else the constraint would not be active)
  459. // Calculate the min and max constraint force based on on which side we're limited
  460. float limit_min = -FLT_MAX, limit_max = FLT_MAX;
  461. if (!IsAxisFixed(EAxis(EAxis::TranslationX + i)))
  462. {
  463. JPH_ASSERT(!IsAxisFree(EAxis(EAxis::TranslationX + i)));
  464. if (mDisplacement[i] <= mLimitMin[i])
  465. limit_min = 0;
  466. else if (mDisplacement[i] >= mLimitMax[i])
  467. limit_max = 0;
  468. }
  469. impulse |= mTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], limit_min, limit_max);
  470. }
  471. return impulse;
  472. }
  473. bool SixDOFConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  474. {
  475. bool impulse = false;
  476. if (IsRotationFullyConstrained())
  477. {
  478. // Rotation locked: Solve rotation constraint
  479. // Inverse of initial rotation from body 1 to body 2 in body 1 space
  480. // Definition of initial orientation r0: q2 = q1 r0
  481. // Initial rotation (see: GetRotationInConstraintSpace): q2 = q1 c1 c2^-1
  482. // So: r0^-1 = (c1 c2^-1)^-1 = c2 * c1^-1
  483. Quat inv_initial_orientation = mConstraintToBody2 * mConstraintToBody1.Conjugated();
  484. // Solve rotation violations
  485. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  486. impulse |= mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inv_initial_orientation, inBaumgarte);
  487. }
  488. else if (IsRotationConstrained())
  489. {
  490. // Rotation partially constraint
  491. // Solve rotation violations
  492. Quat q = GetRotationInConstraintSpace();
  493. impulse |= mSwingTwistConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, q, mConstraintToBody1, mConstraintToBody2, inBaumgarte);
  494. }
  495. // Solve position violations
  496. if (IsTranslationFullyConstrained())
  497. {
  498. // Translation locked: Solve point constraint
  499. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  500. impulse |= mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  501. }
  502. else if (IsTranslationConstrained())
  503. {
  504. // Translation partially locked: Solve per axis
  505. for (int i = 0; i < 3; ++i)
  506. {
  507. // Update world space positions (the bodies may have moved)
  508. Vec3 r1_plus_u, r2, u;
  509. GetPositionConstraintProperties(r1_plus_u, r2, u);
  510. // Quaternion that rotates from body1's constraint space to world space
  511. Quat constraint_body1_to_world = mBody1->GetRotation() * mConstraintToBody1;
  512. // Calculate axis
  513. Vec3 translation_axis;
  514. switch (i)
  515. {
  516. case 0: translation_axis = constraint_body1_to_world.RotateAxisX(); break;
  517. case 1: translation_axis = constraint_body1_to_world.RotateAxisY(); break;
  518. default: JPH_ASSERT(i == 2); translation_axis = constraint_body1_to_world.RotateAxisZ(); break;
  519. }
  520. // Determine position error
  521. float error = 0.0f;
  522. EAxis axis(EAxis(EAxis::TranslationX + i));
  523. if (IsAxisFixed(axis))
  524. error = u.Dot(translation_axis);
  525. else if (!IsAxisFree(axis))
  526. {
  527. float displacement = u.Dot(translation_axis);
  528. if (displacement <= mLimitMin[axis])
  529. error = displacement - mLimitMin[axis];
  530. else if (displacement >= mLimitMax[axis])
  531. error = displacement - mLimitMax[axis];
  532. }
  533. if (error != 0.0f)
  534. {
  535. // Setup axis constraint part and solve it
  536. mTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  537. impulse |= mTranslationConstraintPart[i].SolvePositionConstraint(*mBody1, *mBody2, translation_axis, error, inBaumgarte);
  538. }
  539. }
  540. }
  541. return impulse;
  542. }
  543. #ifdef JPH_DEBUG_RENDERER
  544. void SixDOFConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  545. {
  546. // Get constraint properties in world space
  547. Vec3 position1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  548. Quat rotation1 = mBody1->GetRotation() * mConstraintToBody1;
  549. Quat rotation2 = mBody2->GetRotation() * mConstraintToBody2;
  550. // Draw constraint orientation
  551. inRenderer->DrawCoordinateSystem(Mat44::sRotationTranslation(rotation1, position1), mDrawConstraintSize);
  552. if ((IsRotationConstrained() || mRotationPositionMotorActive != 0) && !IsRotationFullyConstrained())
  553. {
  554. // Draw current swing and twist
  555. Quat q = GetRotationInConstraintSpace();
  556. Quat q_swing, q_twist;
  557. q.GetSwingTwist(q_swing, q_twist);
  558. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_twist).RotateAxisY(), Color::sWhite);
  559. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_swing).RotateAxisX(), Color::sWhite);
  560. }
  561. // Draw target rotation
  562. Quat m_swing, m_twist;
  563. mTargetOrientation.GetSwingTwist(m_swing, m_twist);
  564. if (mMotorState[EAxis::RotationX] == EMotorState::Position)
  565. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_twist).RotateAxisY(), Color::sYellow);
  566. if (mMotorState[EAxis::RotationY] == EMotorState::Position || mMotorState[EAxis::RotationZ] == EMotorState::Position)
  567. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_swing).RotateAxisX(), Color::sYellow);
  568. // Draw target angular velocity
  569. Vec3 target_angular_velocity = Vec3::sZero();
  570. for (int i = 0; i < 3; ++i)
  571. if (mMotorState[EAxis::RotationX + i] == EMotorState::Velocity)
  572. target_angular_velocity.SetComponent(i, mTargetAngularVelocity[i]);
  573. if (target_angular_velocity != Vec3::sZero())
  574. inRenderer->DrawArrow(position1, position1 + rotation2 * target_angular_velocity, Color::sRed, 0.1f);
  575. }
  576. void SixDOFConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  577. {
  578. // Get matrix that transforms from constraint space to world space
  579. Mat44 constraint_body1_to_world = Mat44::sRotationTranslation(mBody1->GetRotation() * mConstraintToBody1, mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1);
  580. // Draw limits
  581. inRenderer->DrawSwingLimits(constraint_body1_to_world, mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ], mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
  582. inRenderer->DrawPie(constraint_body1_to_world.GetTranslation(), mDrawConstraintSize, constraint_body1_to_world.GetAxisX(), constraint_body1_to_world.GetAxisY(), mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], Color::sPurple, DebugRenderer::ECastShadow::Off);
  583. }
  584. #endif // JPH_DEBUG_RENDERER
  585. void SixDOFConstraint::SaveState(StateRecorder &inStream) const
  586. {
  587. TwoBodyConstraint::SaveState(inStream);
  588. for (int i = 0; i < 3; ++i)
  589. mTranslationConstraintPart[i].SaveState(inStream);
  590. mPointConstraintPart.SaveState(inStream);
  591. mSwingTwistConstraintPart.SaveState(inStream);
  592. mRotationConstraintPart.SaveState(inStream);
  593. for (int i = 0; i < 3; ++i)
  594. mMotorTranslationConstraintPart[i].SaveState(inStream);
  595. for (int i = 0; i < 3; ++i)
  596. mMotorRotationConstraintPart[i].SaveState(inStream);
  597. inStream.Write(mMotorState);
  598. inStream.Write(mTargetVelocity);
  599. inStream.Write(mTargetAngularVelocity);
  600. inStream.Write(mTargetPosition);
  601. inStream.Write(mTargetOrientation);
  602. }
  603. void SixDOFConstraint::RestoreState(StateRecorder &inStream)
  604. {
  605. TwoBodyConstraint::RestoreState(inStream);
  606. for (int i = 0; i < 3; ++i)
  607. mTranslationConstraintPart[i].RestoreState(inStream);
  608. mPointConstraintPart.RestoreState(inStream);
  609. mSwingTwistConstraintPart.RestoreState(inStream);
  610. mRotationConstraintPart.RestoreState(inStream);
  611. for (int i = 0; i < 3; ++i)
  612. mMotorTranslationConstraintPart[i].RestoreState(inStream);
  613. for (int i = 0; i < 3; ++i)
  614. mMotorRotationConstraintPart[i].RestoreState(inStream);
  615. inStream.Read(mMotorState);
  616. inStream.Read(mTargetVelocity);
  617. inStream.Read(mTargetAngularVelocity);
  618. inStream.Read(mTargetPosition);
  619. inStream.Read(mTargetOrientation);
  620. }
  621. } // JPH