SliderConstraint.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Constraints/SliderConstraint.h>
  5. #include <Physics/Body/Body.h>
  6. #include <ObjectStream/TypeDeclarations.h>
  7. #include <Core/StreamIn.h>
  8. #include <Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. namespace JPH {
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis)
  17. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  21. }
  22. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  23. {
  24. ConstraintSettings::SaveBinaryState(inStream);
  25. inStream.Write(mSliderAxis);
  26. inStream.Write(mLimitsMin);
  27. inStream.Write(mLimitsMax);
  28. inStream.Write(mMaxFrictionForce);
  29. mMotorSettings.SaveBinaryState(inStream);
  30. }
  31. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  32. {
  33. ConstraintSettings::RestoreBinaryState(inStream);
  34. inStream.Read(mSliderAxis);
  35. inStream.Read(mLimitsMin);
  36. inStream.Read(mLimitsMax);
  37. inStream.Read(mMaxFrictionForce);
  38. mMotorSettings.RestoreBinaryState(inStream);
  39. }
  40. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  41. {
  42. return new SliderConstraint(inBody1, inBody2, *this);
  43. }
  44. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  45. TwoBodyConstraint(inBody1, inBody2, inSettings),
  46. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  47. mMotorSettings(inSettings.mMotorSettings)
  48. {
  49. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  50. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point, otherwise use the mid point between the two center of masses
  51. Vec3 anchor;
  52. if (!mBody1->CanBeKinematicOrDynamic())
  53. anchor = mBody2->GetCenterOfMassPosition();
  54. else if (!mBody2->CanBeKinematicOrDynamic())
  55. anchor = mBody1->GetCenterOfMassPosition();
  56. else
  57. anchor = 0.5f * (mBody1->GetCenterOfMassPosition() + mBody2->GetCenterOfMassPosition());
  58. // Store local positions
  59. mLocalSpacePosition1 = inv_transform1 * anchor;
  60. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * anchor;
  61. // Store local sliding axis
  62. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(inSettings.mSliderAxis).Normalized();
  63. // Store local space normals
  64. mLocalSpaceNormal1 = mLocalSpaceSliderAxis1.GetNormalizedPerpendicular();
  65. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  66. // Inverse of initial rotation from body 1 to body 2 in body 1 space
  67. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientation(inBody1, inBody2);
  68. // Store limits
  69. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint");
  70. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  71. }
  72. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  73. {
  74. JPH_ASSERT(inLimitsMin <= 0.0f);
  75. JPH_ASSERT(inLimitsMax >= 0.0f);
  76. mLimitsMin = inLimitsMin;
  77. mLimitsMax = inLimitsMax;
  78. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  79. }
  80. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  81. {
  82. // Calculate points relative to body
  83. mR1 = inRotation1 * mLocalSpacePosition1;
  84. mR2 = inRotation2 * mLocalSpacePosition2;
  85. // Calculate X2 + R2 - X1 - R1
  86. mU = mBody2->GetCenterOfMassPosition() + mR2 - mBody1->GetCenterOfMassPosition() - mR1;
  87. }
  88. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  89. {
  90. // Calculate world space normals
  91. mN1 = inRotation1 * mLocalSpaceNormal1;
  92. mN2 = inRotation1 * mLocalSpaceNormal2;
  93. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  94. }
  95. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  96. {
  97. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  98. {
  99. // Calculate world space slider axis
  100. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  101. // Calculate slide distance along axis
  102. mD = mU.Dot(mWorldSpaceSliderAxis);
  103. }
  104. }
  105. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime, Mat44Arg inRotation1)
  106. {
  107. // Check if distance is within limits
  108. if (mHasLimits && (mD <= mLimitsMin || mD >= mLimitsMax))
  109. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  110. else
  111. mPositionLimitsConstraintPart.Deactivate();
  112. }
  113. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  114. {
  115. switch (mMotorState)
  116. {
  117. case EMotorState::Off:
  118. if (mMaxFrictionForce > 0.0f)
  119. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  120. else
  121. mMotorConstraintPart.Deactivate();
  122. break;
  123. case EMotorState::Velocity:
  124. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  125. break;
  126. case EMotorState::Position:
  127. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  128. break;
  129. }
  130. }
  131. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  132. {
  133. // Calculate constraint properties that are constant while bodies don't move
  134. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  135. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  136. CalculateR1R2U(rotation1, rotation2);
  137. CalculatePositionConstraintProperties(rotation1, rotation2);
  138. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  139. CalculateSlidingAxisAndPosition(rotation1);
  140. CalculatePositionLimitsConstraintProperties(inDeltaTime, rotation1);
  141. CalculateMotorConstraintProperties(inDeltaTime);
  142. }
  143. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  144. {
  145. // Warm starting: Apply previous frame impulse
  146. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  147. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  148. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  149. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  150. }
  151. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  152. {
  153. // Solve motor
  154. bool motor = false;
  155. if (mMotorConstraintPart.IsActive())
  156. {
  157. switch (mMotorState)
  158. {
  159. case EMotorState::Off:
  160. {
  161. float max_lambda = mMaxFrictionForce * inDeltaTime;
  162. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  163. break;
  164. }
  165. case EMotorState::Velocity:
  166. case EMotorState::Position:
  167. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  168. break;
  169. }
  170. }
  171. // Solve position constraint along 2 axis
  172. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  173. // Solve rotation constraint
  174. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  175. // Solve limits along slider axis
  176. bool limit = false;
  177. if (mPositionLimitsConstraintPart.IsActive())
  178. {
  179. if (mD <= mLimitsMin)
  180. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  181. else
  182. {
  183. JPH_ASSERT(mD >= mLimitsMax);
  184. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  185. }
  186. }
  187. return motor || pos || rot || limit;
  188. }
  189. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  190. {
  191. // Motor operates on velocities only, don't call SolvePositionConstraint
  192. // Solve position constraint along 2 axis
  193. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  194. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  195. CalculateR1R2U(rotation1, rotation2);
  196. CalculatePositionConstraintProperties(rotation1, rotation2);
  197. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  198. // Solve rotation constraint
  199. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  200. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  201. // Solve limits along slider axis
  202. bool limit = false;
  203. if (mHasLimits)
  204. {
  205. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  206. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  207. CalculateR1R2U(rotation1, rotation2);
  208. CalculateSlidingAxisAndPosition(rotation1);
  209. CalculatePositionLimitsConstraintProperties(inDeltaTime, rotation1);
  210. if (mPositionLimitsConstraintPart.IsActive())
  211. {
  212. if (mD <= mLimitsMin)
  213. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  214. else
  215. {
  216. JPH_ASSERT(mD >= mLimitsMax);
  217. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  218. }
  219. }
  220. }
  221. return pos || rot || limit;
  222. }
  223. #ifdef JPH_DEBUG_RENDERER
  224. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  225. {
  226. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  227. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  228. // Transform the local positions into world space
  229. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  230. Vec3 position1 = transform1 * mLocalSpacePosition1;
  231. Vec3 position2 = transform2 * mLocalSpacePosition2;
  232. // Draw constraint
  233. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  234. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  235. inRenderer->DrawLine(position1, position2, Color::sGreen);
  236. // Draw motor
  237. switch (mMotorState)
  238. {
  239. case EMotorState::Position:
  240. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  241. break;
  242. case EMotorState::Velocity:
  243. {
  244. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  245. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  246. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  247. break;
  248. }
  249. case EMotorState::Off:
  250. break;
  251. }
  252. }
  253. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  254. {
  255. if (mHasLimits)
  256. {
  257. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  258. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  259. // Transform the local positions into world space
  260. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  261. Vec3 position1 = transform1 * mLocalSpacePosition1;
  262. Vec3 position2 = transform2 * mLocalSpacePosition2;
  263. // Calculate the limits in world space
  264. Vec3 limits_min = position1 + mLimitsMin * slider_axis;
  265. Vec3 limits_max = position1 + mLimitsMax * slider_axis;
  266. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  267. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  268. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  269. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  270. }
  271. }
  272. #endif // JPH_DEBUG_RENDERER
  273. void SliderConstraint::SaveState(StateRecorder &inStream) const
  274. {
  275. TwoBodyConstraint::SaveState(inStream);
  276. mMotorConstraintPart.SaveState(inStream);
  277. mPositionConstraintPart.SaveState(inStream);
  278. mRotationConstraintPart.SaveState(inStream);
  279. mPositionLimitsConstraintPart.SaveState(inStream);
  280. inStream.Write(mMotorState);
  281. inStream.Write(mTargetVelocity);
  282. inStream.Write(mTargetPosition);
  283. }
  284. void SliderConstraint::RestoreState(StateRecorder &inStream)
  285. {
  286. TwoBodyConstraint::RestoreState(inStream);
  287. mMotorConstraintPart.RestoreState(inStream);
  288. mPositionConstraintPart.RestoreState(inStream);
  289. mRotationConstraintPart.RestoreState(inStream);
  290. mPositionLimitsConstraintPart.RestoreState(inStream);
  291. inStream.Read(mMotorState);
  292. inStream.Read(mTargetVelocity);
  293. inStream.Read(mTargetPosition);
  294. }
  295. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  296. {
  297. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  298. }
  299. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  300. {
  301. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  302. mat.SetTranslation(mLocalSpacePosition2);
  303. return mat;
  304. }
  305. } // JPH