SliderConstraint.h 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #pragma once
  4. #include <Physics/Constraints/TwoBodyConstraint.h>
  5. #include <Physics/Constraints/MotorSettings.h>
  6. #include <Physics/Constraints/ConstraintPart/DualAxisConstraintPart.h>
  7. #include <Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
  8. #include <Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
  9. namespace JPH {
  10. /// Slider constraint settings, used to create a slider constraint
  11. class SliderConstraintSettings final : public TwoBodyConstraintSettings
  12. {
  13. public:
  14. JPH_DECLARE_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  15. // See: ConstraintSettings::SaveBinaryState
  16. virtual void SaveBinaryState(StreamOut &inStream) const override;
  17. /// Create an an instance of this constraint
  18. virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
  19. /// Axis along which movement is possible (world space direction).
  20. Vec3 mSliderAxis = Vec3::sAxisX();
  21. /// Bodies are assumed to be placed so that the slider position = 0, movement will be limited between [mLimitsMin, mLimitsMax] where mLimitsMin e [-inf, 0] and mLimitsMax e [0, inf]
  22. float mLimitsMin = -FLT_MAX;
  23. float mLimitsMax = FLT_MAX;
  24. /// Maximum amount of friction force to apply (N) when not driven by a motor.
  25. float mMaxFrictionForce = 0.0f;
  26. /// In case the constraint is powered, this determines the motor settings around the sliding axis
  27. MotorSettings mMotorSettings;
  28. protected:
  29. // See: ConstraintSettings::RestoreBinaryState
  30. virtual void RestoreBinaryState(StreamIn &inStream) override;
  31. };
  32. /// A slider constraint allows movement in only 1 axis (and no rotation). Also known as a prismatic constraint.
  33. class SliderConstraint final : public TwoBodyConstraint
  34. {
  35. public:
  36. /// Construct slider constraint
  37. SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings);
  38. // Generic interface of a constraint
  39. virtual EConstraintType GetType() const override { return EConstraintType::Slider; }
  40. virtual void SetupVelocityConstraint(float inDeltaTime) override;
  41. virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
  42. virtual bool SolveVelocityConstraint(float inDeltaTime) override;
  43. virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
  44. #ifdef JPH_DEBUG_RENDERER
  45. virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
  46. virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
  47. #endif // JPH_DEBUG_RENDERER
  48. virtual void SaveState(StateRecorder &inStream) const override;
  49. virtual void RestoreState(StateRecorder &inStream) override;
  50. // See: TwoBodyConstraint
  51. virtual Mat44 GetConstraintToBody1Matrix() const override;
  52. virtual Mat44 GetConstraintToBody2Matrix() const override;
  53. /// Friction control
  54. void SetMaxFrictionForce(float inFrictionForce) { mMaxFrictionForce = inFrictionForce; }
  55. float GetMaxFrictionForce() const { return mMaxFrictionForce; }
  56. /// Motor settings
  57. MotorSettings & GetMotorSettings() { return mMotorSettings; }
  58. const MotorSettings & GetMotorSettings() const { return mMotorSettings; }
  59. // Motor controls
  60. void SetMotorState(EMotorState inState) { JPH_ASSERT(inState == EMotorState::Off || mMotorSettings.IsValid()); mMotorState = inState; }
  61. EMotorState GetMotorState() const { return mMotorState; }
  62. void SetTargetVelocity(float inVelocity) { mTargetVelocity = inVelocity; }
  63. float GetTargetVelocity() const { return mTargetVelocity; }
  64. void SetTargetPosition(float inPosition) { mTargetPosition = mHasLimits? Clamp(inPosition, mLimitsMin, mLimitsMax) : inPosition; }
  65. float GetTargetPosition() const { return mTargetPosition; }
  66. /// Update the limits of the slider constraint (see SliderConstraintSettings)
  67. void SetLimits(float inLimitsMin, float inLimitsMax);
  68. float GetLimitsMin() const { return mLimitsMin; }
  69. float GetLimitsMax() const { return mLimitsMax; }
  70. bool HasLimits() const { return mHasLimits; }
  71. ///@name Get Lagrange multiplier from last physics update (relates to how much force/torque was applied to satisfy the constraint)
  72. inline Vector<2> GetTotalLambdaPosition() const { return mPositionConstraintPart.GetTotalLambda(); }
  73. inline float GetTotalLambdaPositionLimits() const { return mPositionLimitsConstraintPart.GetTotalLambda(); }
  74. inline Vec3 GetTotalLambdaRotation() const { return mRotationConstraintPart.GetTotalLambda(); }
  75. inline float GetTotalLambdaMotor() const { return mMotorConstraintPart.GetTotalLambda(); }
  76. private:
  77. // Internal helper function to calculate the values below
  78. void CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2);
  79. void CalculateSlidingAxisAndPosition(Mat44Arg inRotation1);
  80. void CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2);
  81. void CalculatePositionLimitsConstraintProperties(float inDeltaTime, Mat44Arg inRotation1);
  82. void CalculateMotorConstraintProperties(float inDeltaTime);
  83. // CONFIGURATION PROPERTIES FOLLOW
  84. // Local space constraint positions
  85. Vec3 mLocalSpacePosition1;
  86. Vec3 mLocalSpacePosition2;
  87. // Local space sliding direction
  88. Vec3 mLocalSpaceSliderAxis1;
  89. // Local space normals to the sliding direction
  90. Vec3 mLocalSpaceNormal1;
  91. Vec3 mLocalSpaceNormal2;
  92. // Inverse of initial rotation from body 1 to body 2 in body 1 space
  93. Quat mInvInitialOrientation;
  94. // Slider limits
  95. bool mHasLimits;
  96. float mLimitsMin;
  97. float mLimitsMax;
  98. // Friction
  99. float mMaxFrictionForce;
  100. // Motor controls
  101. MotorSettings mMotorSettings;
  102. EMotorState mMotorState = EMotorState::Off;
  103. float mTargetVelocity = 0.0f;
  104. float mTargetPosition = 0.0f;
  105. // RUN TIME PROPERTIES FOLLOW
  106. // Positions where the point constraint acts on (middle point between center of masses)
  107. Vec3 mR1;
  108. Vec3 mR2;
  109. // X2 + R2 - X1 - R1
  110. Vec3 mU;
  111. // World space sliding direction
  112. Vec3 mWorldSpaceSliderAxis;
  113. // Normals to the slider axis
  114. Vec3 mN1;
  115. Vec3 mN2;
  116. // Distance along the slide axis
  117. float mD = 0.0f;
  118. // The constraint parts
  119. DualAxisConstraintPart mPositionConstraintPart;
  120. RotationEulerConstraintPart mRotationConstraintPart;
  121. AxisConstraintPart mPositionLimitsConstraintPart;
  122. AxisConstraintPart mMotorConstraintPart;
  123. };
  124. } // JPH