123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/Constraints/ConstraintPart/SpringPart.h>
- #include <Jolt/Physics/Constraints/SpringSettings.h>
- #include <Jolt/Physics/StateRecorder.h>
- #include <Jolt/Physics/DeterminismLog.h>
- JPH_NAMESPACE_BEGIN
- /// Constraint that constrains motion along 1 axis
- ///
- /// @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.1.1
- /// (we're not using the approximation of eq 27 but instead add the U term as in eq 55)
- ///
- /// Constraint equation (eq 25):
- ///
- /// \f[C = (p_2 - p_1) \cdot n\f]
- ///
- /// Jacobian (eq 28):
- ///
- /// \f[J = \begin{bmatrix} -n^T & (-(r_1 + u) \times n)^T & n^T & (r_2 \times n)^T \end{bmatrix}\f]
- ///
- /// Used terms (here and below, everything in world space):\n
- /// n = constraint axis (normalized).\n
- /// p1, p2 = constraint points.\n
- /// r1 = p1 - x1.\n
- /// r2 = p2 - x2.\n
- /// u = x2 + r2 - x1 - r1 = p2 - p1.\n
- /// x1, x2 = center of mass for the bodies.\n
- /// v = [v1, w1, v2, w2].\n
- /// v1, v2 = linear velocity of body 1 and 2.\n
- /// w1, w2 = angular velocity of body 1 and 2.\n
- /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
- /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
- /// b = velocity bias.\n
- /// \f$\beta\f$ = baumgarte constant.
- class AxisConstraintPart
- {
- /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
- template <EMotionType Type1, EMotionType Type2>
- JPH_INLINE bool ApplyVelocityStep(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inLambda) const
- {
- // Apply impulse if delta is not zero
- if (inLambda != 0.0f)
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- if constexpr (Type1 == EMotionType::Dynamic)
- {
- ioMotionProperties1->SubLinearVelocityStep((inLambda * mInverseMass1) * inWorldSpaceAxis);
- ioMotionProperties1->SubAngularVelocityStep(inLambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis));
- }
- if constexpr (Type2 == EMotionType::Dynamic)
- {
- ioMotionProperties2->AddLinearVelocityStep((inLambda * mInverseMass2) * inWorldSpaceAxis);
- ioMotionProperties2->AddAngularVelocityStep(inLambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis));
- }
- return true;
- }
- return false;
- }
- /// Internal helper function to calculate the inverse effective mass
- template <EMotionType Type1, EMotionType Type2>
- JPH_INLINE float TemplatedCalculateInverseEffectiveMass(float inInvMass1, Mat44Arg inInvI1, Vec3Arg inR1PlusU, float inInvMass2, Mat44Arg inInvI2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis)
- {
- JPH_ASSERT(inWorldSpaceAxis.IsNormalized(1.0e-5f));
- // Calculate properties used below
- Vec3 r1_plus_u_x_axis;
- if constexpr (Type1 != EMotionType::Static)
- {
- mInverseMass1 = inInvMass1;
- r1_plus_u_x_axis = inR1PlusU.Cross(inWorldSpaceAxis);
- r1_plus_u_x_axis.StoreFloat3(&mR1PlusUxAxis);
- }
- else
- {
- #ifdef _DEBUG
- Vec3::sNaN().StoreFloat3(&mR1PlusUxAxis);
- mInverseMass1 = numeric_limits<float>::quiet_NaN();
- #endif
- }
- Vec3 r2_x_axis;
- if constexpr (Type2 != EMotionType::Static)
- {
- mInverseMass2 = inInvMass2;
- r2_x_axis = inR2.Cross(inWorldSpaceAxis);
- r2_x_axis.StoreFloat3(&mR2xAxis);
- }
- else
- {
- #ifdef _DEBUG
- Vec3::sNaN().StoreFloat3(&mR2xAxis);
- mInverseMass2 = numeric_limits<float>::quiet_NaN();
- #endif
- }
- // Calculate inverse effective mass: K = J M^-1 J^T
- float inv_effective_mass;
- if constexpr (Type1 == EMotionType::Dynamic)
- {
- Vec3 invi1_r1_plus_u_x_axis = inInvI1.Multiply3x3(r1_plus_u_x_axis);
- invi1_r1_plus_u_x_axis.StoreFloat3(&mInvI1_R1PlusUxAxis);
- inv_effective_mass = mInverseMass1 + invi1_r1_plus_u_x_axis.Dot(r1_plus_u_x_axis);
- }
- else
- {
- (void)r1_plus_u_x_axis; // Fix compiler warning: Not using this (it's not calculated either)
- JPH_IF_DEBUG(Vec3::sNaN().StoreFloat3(&mInvI1_R1PlusUxAxis);)
- inv_effective_mass = 0.0f;
- }
- if constexpr (Type2 == EMotionType::Dynamic)
- {
- Vec3 invi2_r2_x_axis = inInvI2.Multiply3x3(r2_x_axis);
- invi2_r2_x_axis.StoreFloat3(&mInvI2_R2xAxis);
- inv_effective_mass += mInverseMass2 + invi2_r2_x_axis.Dot(r2_x_axis);
- }
- else
- {
- (void)r2_x_axis; // Fix compiler warning: Not using this (it's not calculated either)
- JPH_IF_DEBUG(Vec3::sNaN().StoreFloat3(&mInvI2_R2xAxis);)
- }
- return inv_effective_mass;
- }
- /// Internal helper function to calculate the inverse effective mass
- JPH_INLINE float CalculateInverseEffectiveMass(const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis)
- {
- // Dispatch to the correct templated form
- switch (inBody1.GetMotionType())
- {
- case EMotionType::Dynamic:
- {
- const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
- Mat44 invi1 = inBody1.GetInverseInertia();
- switch (inBody2.GetMotionType())
- {
- case EMotionType::Dynamic:
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Dynamic>(mp1->GetInverseMass(), invi1, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
- case EMotionType::Kinematic:
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Kinematic>(mp1->GetInverseMass(), invi1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
- case EMotionType::Static:
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Dynamic, EMotionType::Static>(mp1->GetInverseMass(), invi1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis);
- default:
- break;
- }
- break;
- }
- case EMotionType::Kinematic:
- JPH_ASSERT(inBody2.IsDynamic());
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Kinematic, EMotionType::Dynamic>(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
- case EMotionType::Static:
- JPH_ASSERT(inBody2.IsDynamic());
- return TemplatedCalculateInverseEffectiveMass<EMotionType::Static, EMotionType::Dynamic>(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis);
- default:
- break;
- }
- JPH_ASSERT(false);
- return 0.0f;
- }
- public:
- /// Templated form of CalculateConstraintProperties with the motion types baked in
- template <EMotionType Type1, EMotionType Type2>
- JPH_INLINE void TemplatedCalculateConstraintProperties(float inInvMass1, Mat44Arg inInvI1, Vec3Arg inR1PlusU, float inInvMass2, Mat44Arg inInvI2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f)
- {
- mEffectiveMass = 1.0f / TemplatedCalculateInverseEffectiveMass<Type1, Type2>(inInvMass1, inInvI1, inR1PlusU, inInvMass2, inInvI2, inR2, inWorldSpaceAxis);
- mSpringPart.CalculateSpringPropertiesWithBias(inBias);
- JPH_DET_LOG("TemplatedCalculateConstraintProperties: invM1: " << inInvMass1 << " invI1: " << inInvI1 << " r1PlusU: " << inR1PlusU << " invM2: " << inInvMass2 << " invI2: " << inInvI2 << " r2: " << inR2 << " bias: " << inBias << " r1PlusUxAxis: " << mR1PlusUxAxis << " r2xAxis: " << mR2xAxis << " invI1_R1PlusUxAxis: " << mInvI1_R1PlusUxAxis << " invI2_R2xAxis: " << mInvI2_R2xAxis << " effectiveMass: " << mEffectiveMass << " totalLambda: " << mTotalLambda);
- }
- /// Calculate properties used during the functions below
- /// @param inBody1 The first body that this constraint is attached to
- /// @param inBody2 The second body that this constraint is attached to
- /// @param inR1PlusU See equations above (r1 + u)
- /// @param inR2 See equations above (r2)
- /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2)
- /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
- inline void CalculateConstraintProperties(const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f)
- {
- float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis);
- if (inv_effective_mass == 0.0f)
- Deactivate();
- else
- {
- mEffectiveMass = 1.0f / inv_effective_mass;
- mSpringPart.CalculateSpringPropertiesWithBias(inBias);
- }
- }
- /// Calculate properties used during the functions below
- /// @param inDeltaTime Time step
- /// @param inBody1 The first body that this constraint is attached to
- /// @param inBody2 The second body that this constraint is attached to
- /// @param inR1PlusU See equations above (r1 + u)
- /// @param inR2 See equations above (r2)
- /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2)
- /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
- /// @param inC Value of the constraint equation (C).
- /// @param inFrequency Oscillation frequency (Hz).
- /// @param inDamping Damping factor (0 = no damping, 1 = critical damping).
- inline void CalculateConstraintPropertiesWithFrequencyAndDamping(float inDeltaTime, const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inFrequency, float inDamping)
- {
- float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis);
- if (inv_effective_mass == 0.0f)
- Deactivate();
- else
- mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inFrequency, inDamping, mEffectiveMass);
- }
- /// Calculate properties used during the functions below
- /// @param inDeltaTime Time step
- /// @param inBody1 The first body that this constraint is attached to
- /// @param inBody2 The second body that this constraint is attached to
- /// @param inR1PlusU See equations above (r1 + u)
- /// @param inR2 See equations above (r2)
- /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2)
- /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
- /// @param inC Value of the constraint equation (C).
- /// @param inStiffness Spring stiffness k.
- /// @param inDamping Spring damping coefficient c.
- inline void CalculateConstraintPropertiesWithStiffnessAndDamping(float inDeltaTime, const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inStiffness, float inDamping)
- {
- float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis);
- if (inv_effective_mass == 0.0f)
- Deactivate();
- else
- mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inStiffness, inDamping, mEffectiveMass);
- }
- /// Selects one of the above functions based on the spring settings
- inline void CalculateConstraintPropertiesWithSettings(float inDeltaTime, const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, const SpringSettings &inSpringSettings)
- {
- float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis);
- if (inv_effective_mass == 0.0f)
- Deactivate();
- else if (inSpringSettings.mMode == ESpringMode::FrequencyAndDamping)
- mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mFrequency, inSpringSettings.mDamping, mEffectiveMass);
- else
- mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mStiffness, inSpringSettings.mDamping, mEffectiveMass);
- }
- /// Deactivate this constraint
- inline void Deactivate()
- {
- mEffectiveMass = 0.0f;
- mTotalLambda = 0.0f;
- }
- /// Check if constraint is active
- inline bool IsActive() const
- {
- return mEffectiveMass != 0.0f;
- }
- /// Templated form of WarmStart with the motion types baked in
- template <EMotionType Type1, EMotionType Type2>
- inline void TemplatedWarmStart(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis, mTotalLambda);
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized)
- /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
- inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inWarmStartImpulseRatio)
- {
- EMotionType motion_type1 = ioBody1.GetMotionType();
- MotionProperties *motion_properties1 = ioBody1.GetMotionPropertiesUnchecked();
- EMotionType motion_type2 = ioBody2.GetMotionType();
- MotionProperties *motion_properties2 = ioBody2.GetMotionPropertiesUnchecked();
- // Dispatch to the correct templated form
- // Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies
- if (motion_type1 == EMotionType::Dynamic)
- {
- if (motion_type2 == EMotionType::Dynamic)
- TemplatedWarmStart<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inWarmStartImpulseRatio);
- else
- TemplatedWarmStart<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, motion_properties2, inWorldSpaceAxis, inWarmStartImpulseRatio);
- }
- else
- {
- JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
- TemplatedWarmStart<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inWarmStartImpulseRatio);
- }
- }
- /// Templated form of SolveVelocityConstraint with the motion types baked in, part 1: get the total lambda
- template <EMotionType Type1, EMotionType Type2>
- JPH_INLINE float TemplatedSolveVelocityConstraintGetTotalLambda(const MotionProperties *ioMotionProperties1, const MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis) const
- {
- // Calculate jacobian multiplied by linear velocity
- float jv;
- if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static)
- jv = inWorldSpaceAxis.Dot(ioMotionProperties1->GetLinearVelocity() - ioMotionProperties2->GetLinearVelocity());
- else if constexpr (Type1 != EMotionType::Static)
- jv = inWorldSpaceAxis.Dot(ioMotionProperties1->GetLinearVelocity());
- else if constexpr (Type2 != EMotionType::Static)
- jv = inWorldSpaceAxis.Dot(-ioMotionProperties2->GetLinearVelocity());
- else
- JPH_ASSERT(false); // Static vs static is nonsensical!
- // Calculate jacobian multiplied by angular velocity
- if constexpr (Type1 != EMotionType::Static)
- jv += Vec3::sLoadFloat3Unsafe(mR1PlusUxAxis).Dot(ioMotionProperties1->GetAngularVelocity());
- if constexpr (Type2 != EMotionType::Static)
- jv -= Vec3::sLoadFloat3Unsafe(mR2xAxis).Dot(ioMotionProperties2->GetAngularVelocity());
- // Lagrange multiplier is:
- //
- // lambda = -K^-1 (J v + b)
- float lambda = mEffectiveMass * (jv - mSpringPart.GetBias(mTotalLambda));
- // Return the total accumulated lambda
- return mTotalLambda + lambda;
- }
- /// Templated form of SolveVelocityConstraint with the motion types baked in, part 2: apply new lambda
- template <EMotionType Type1, EMotionType Type2>
- JPH_INLINE bool TemplatedSolveVelocityConstraintApplyLambda(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inTotalLambda)
- {
- float delta_lambda = inTotalLambda - mTotalLambda; // Calculate change in lambda
- mTotalLambda = inTotalLambda; // Store accumulated impulse
- return ApplyVelocityStep<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis, delta_lambda);
- }
- /// Templated form of SolveVelocityConstraint with the motion types baked in
- template <EMotionType Type1, EMotionType Type2>
- inline bool TemplatedSolveVelocityConstraint(MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda)
- {
- float total_lambda = TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis);
- // Clamp impulse to specified range
- total_lambda = Clamp(total_lambda, inMinLambda, inMaxLambda);
- return TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis, total_lambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized)
- /// @param inMinLambda Minimum value of constraint impulse to apply (N s)
- /// @param inMaxLambda Maximum value of constraint impulse to apply (N s)
- inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda)
- {
- EMotionType motion_type1 = ioBody1.GetMotionType();
- MotionProperties *motion_properties1 = ioBody1.GetMotionPropertiesUnchecked();
- EMotionType motion_type2 = ioBody2.GetMotionType();
- MotionProperties *motion_properties2 = ioBody2.GetMotionPropertiesUnchecked();
- // Dispatch to the correct templated form
- switch (motion_type1)
- {
- case EMotionType::Dynamic:
- switch (motion_type2)
- {
- case EMotionType::Dynamic:
- return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
- case EMotionType::Kinematic:
- return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
- case EMotionType::Static:
- return TemplatedSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
- default:
- JPH_ASSERT(false);
- break;
- }
- break;
- case EMotionType::Kinematic:
- JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
- return TemplatedSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
- case EMotionType::Static:
- JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
- return TemplatedSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(motion_properties1, motion_properties2, inWorldSpaceAxis, inMinLambda, inMaxLambda);
- default:
- JPH_ASSERT(false);
- break;
- }
- return false;
- }
- /// Iteratively update the position constraint. Makes sure C(...) = 0.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized)
- /// @param inC Value of the constraint equation (C)
- /// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inC, float inBaumgarte) const
- {
- // Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
- if (inC != 0.0f && !mSpringPart.IsActive())
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- float lambda = -mEffectiveMass * inBaumgarte * inC;
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- if (ioBody1.IsDynamic())
- {
- ioBody1.SubPositionStep((lambda * mInverseMass1) * inWorldSpaceAxis);
- ioBody1.SubRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis));
- }
- if (ioBody2.IsDynamic())
- {
- ioBody2.AddPositionStep((lambda * mInverseMass2) * inWorldSpaceAxis);
- ioBody2.AddRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis));
- }
- return true;
- }
- return false;
- }
- /// Override total lagrange multiplier, can be used to set the initial value for warm starting
- inline void SetTotalLambda(float inLambda)
- {
- mTotalLambda = inLambda;
- }
- /// Return lagrange multiplier
- inline float GetTotalLambda() const
- {
- return mTotalLambda;
- }
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Float3 mR1PlusUxAxis;
- Float3 mR2xAxis;
- Float3 mInvI1_R1PlusUxAxis;
- Float3 mInvI2_R2xAxis;
- float mInverseMass1;
- float mInverseMass2;
- float mEffectiveMass = 0.0f;
- SpringPart mSpringPart;
- float mTotalLambda = 0.0f;
- };
- JPH_NAMESPACE_END
|