| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- JPH_NAMESPACE_BEGIN
- void MotionProperties::MoveKinematic(Vec3Arg inDeltaPosition, QuatArg inDeltaRotation, float inDeltaTime)
- {
- JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sVelocityAccess(), BodyAccess::EAccess::ReadWrite));
- JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess(), BodyAccess::EAccess::Read));
- JPH_ASSERT(mCachedBodyType == EBodyType::RigidBody);
- JPH_ASSERT(mCachedMotionType != EMotionType::Static);
- // Calculate required linear velocity
- mLinearVelocity = LockTranslation(inDeltaPosition / inDeltaTime);
- // Calculate required angular velocity
- Vec3 axis;
- float angle;
- inDeltaRotation.GetAxisAngle(axis, angle);
- mAngularVelocity = LockAngular(axis * (angle / inDeltaTime));
- }
- void MotionProperties::ClampLinearVelocity()
- {
- JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sVelocityAccess(), BodyAccess::EAccess::ReadWrite));
- float len_sq = mLinearVelocity.LengthSq();
- JPH_ASSERT(isfinite(len_sq));
- if (len_sq > Square(mMaxLinearVelocity))
- mLinearVelocity *= mMaxLinearVelocity / sqrt(len_sq);
- }
- void MotionProperties::ClampAngularVelocity()
- {
- JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sVelocityAccess(), BodyAccess::EAccess::ReadWrite));
- float len_sq = mAngularVelocity.LengthSq();
- JPH_ASSERT(isfinite(len_sq));
- if (len_sq > Square(mMaxAngularVelocity))
- mAngularVelocity *= mMaxAngularVelocity / sqrt(len_sq);
- }
- inline Mat44 MotionProperties::GetLocalSpaceInverseInertiaUnchecked() const
- {
- Mat44 rotation = Mat44::sRotation(mInertiaRotation);
- Mat44 rotation_mul_scale_transposed(mInvInertiaDiagonal.SplatX() * rotation.GetColumn4(0), mInvInertiaDiagonal.SplatY() * rotation.GetColumn4(1), mInvInertiaDiagonal.SplatZ() * rotation.GetColumn4(2), Vec4(0, 0, 0, 1));
- return rotation.Multiply3x3RightTransposed(rotation_mul_scale_transposed);
- }
- inline void MotionProperties::ScaleToMass(float inMass)
- {
- JPH_ASSERT(mInvMass > 0.0f, "Body must have finite mass");
- JPH_ASSERT(inMass > 0.0f, "New mass cannot be zero");
- float new_inv_mass = 1.0f / inMass;
- mInvInertiaDiagonal *= new_inv_mass / mInvMass;
- mInvMass = new_inv_mass;
- }
- inline Mat44 MotionProperties::GetLocalSpaceInverseInertia() const
- {
- JPH_ASSERT(mCachedMotionType == EMotionType::Dynamic);
- return GetLocalSpaceInverseInertiaUnchecked();
- }
- Mat44 MotionProperties::GetInverseInertiaForRotation(Mat44Arg inRotation) const
- {
- JPH_ASSERT(mCachedMotionType == EMotionType::Dynamic);
- Mat44 rotation = inRotation.Multiply3x3(Mat44::sRotation(mInertiaRotation));
- Mat44 rotation_mul_scale_transposed(mInvInertiaDiagonal.SplatX() * rotation.GetColumn4(0), mInvInertiaDiagonal.SplatY() * rotation.GetColumn4(1), mInvInertiaDiagonal.SplatZ() * rotation.GetColumn4(2), Vec4(0, 0, 0, 1));
- Mat44 inverse_inertia = rotation.Multiply3x3RightTransposed(rotation_mul_scale_transposed);
- // We need to mask out both the rows and columns of DOFs that are not allowed
- Vec4 angular_dofs_mask = GetAngularDOFsMask().ReinterpretAsFloat();
- inverse_inertia.SetColumn4(0, Vec4::sAnd(inverse_inertia.GetColumn4(0), Vec4::sAnd(angular_dofs_mask, angular_dofs_mask.SplatX())));
- inverse_inertia.SetColumn4(1, Vec4::sAnd(inverse_inertia.GetColumn4(1), Vec4::sAnd(angular_dofs_mask, angular_dofs_mask.SplatY())));
- inverse_inertia.SetColumn4(2, Vec4::sAnd(inverse_inertia.GetColumn4(2), Vec4::sAnd(angular_dofs_mask, angular_dofs_mask.SplatZ())));
- return inverse_inertia;
- }
- Vec3 MotionProperties::MultiplyWorldSpaceInverseInertiaByVector(QuatArg inBodyRotation, Vec3Arg inV) const
- {
- JPH_ASSERT(mCachedMotionType == EMotionType::Dynamic);
- // Mask out columns of DOFs that are not allowed
- Vec3 angular_dofs_mask = Vec3(GetAngularDOFsMask().ReinterpretAsFloat());
- Vec3 v = Vec3::sAnd(inV, angular_dofs_mask);
- // Multiply vector by inverse inertia
- Mat44 rotation = Mat44::sRotation(inBodyRotation * mInertiaRotation);
- Vec3 result = rotation.Multiply3x3(mInvInertiaDiagonal * rotation.Multiply3x3Transposed(v));
- // Mask out rows of DOFs that are not allowed
- return Vec3::sAnd(result, angular_dofs_mask);
- }
- void MotionProperties::ApplyGyroscopicForceInternal(QuatArg inBodyRotation, float inDeltaTime)
- {
- JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sVelocityAccess(), BodyAccess::EAccess::ReadWrite));
- JPH_ASSERT(mCachedBodyType == EBodyType::RigidBody);
- JPH_ASSERT(mCachedMotionType == EMotionType::Dynamic);
- // Calculate local space inertia tensor (a diagonal in local space)
- UVec4 is_zero = Vec3::sEquals(mInvInertiaDiagonal, Vec3::sZero());
- Vec3 denominator = Vec3::sSelect(mInvInertiaDiagonal, Vec3::sOne(), is_zero);
- Vec3 nominator = Vec3::sSelect(Vec3::sOne(), Vec3::sZero(), is_zero);
- Vec3 local_inertia = nominator / denominator; // Avoid dividing by zero, inertia in this axis will be zero
- // Calculate local space angular momentum
- Quat inertia_space_to_world_space = inBodyRotation * mInertiaRotation;
- Vec3 local_angular_velocity = inertia_space_to_world_space.InverseRotate(mAngularVelocity);
- Vec3 local_momentum = local_inertia * local_angular_velocity;
- // The gyroscopic force applies a torque: T = -w x I w where w is angular velocity and I the inertia tensor
- // Calculate the new angular momentum by applying the gyroscopic force and make sure the new magnitude is the same as the old one
- // to avoid introducing energy into the system due to the Euler step
- Vec3 new_local_momentum = local_momentum - inDeltaTime * local_angular_velocity.Cross(local_momentum);
- float new_local_momentum_len_sq = new_local_momentum.LengthSq();
- new_local_momentum = new_local_momentum_len_sq > 0.0f? new_local_momentum * sqrt(local_momentum.LengthSq() / new_local_momentum_len_sq) : Vec3::sZero();
- // Convert back to world space angular velocity
- mAngularVelocity = inertia_space_to_world_space * (mInvInertiaDiagonal * new_local_momentum);
- }
- void MotionProperties::ApplyForceTorqueAndDragInternal(QuatArg inBodyRotation, Vec3Arg inGravity, float inDeltaTime)
- {
- JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sVelocityAccess(), BodyAccess::EAccess::ReadWrite));
- JPH_ASSERT(mCachedBodyType == EBodyType::RigidBody);
- JPH_ASSERT(mCachedMotionType == EMotionType::Dynamic);
- // Update linear velocity
- mLinearVelocity = LockTranslation(mLinearVelocity + inDeltaTime * (mGravityFactor * inGravity + mInvMass * GetAccumulatedForce()));
- // Update angular velocity
- mAngularVelocity += inDeltaTime * MultiplyWorldSpaceInverseInertiaByVector(inBodyRotation, GetAccumulatedTorque());
- // Linear damping: dv/dt = -c * v
- // Solution: v(t) = v(0) * e^(-c * t) or v2 = v1 * e^(-c * dt)
- // Taylor expansion of e^(-c * dt) = 1 - c * dt + ...
- // Since dt is usually in the order of 1/60 and c is a low number too this approximation is good enough
- mLinearVelocity *= max(0.0f, 1.0f - mLinearDamping * inDeltaTime);
- mAngularVelocity *= max(0.0f, 1.0f - mAngularDamping * inDeltaTime);
- // Clamp velocities
- ClampLinearVelocity();
- ClampAngularVelocity();
- }
- void MotionProperties::ResetSleepTestSpheres(const RVec3 *inPoints)
- {
- #ifdef JPH_DOUBLE_PRECISION
- // Make spheres relative to the first point and initialize them to zero radius
- DVec3 offset = inPoints[0];
- offset.StoreDouble3(&mSleepTestOffset);
- mSleepTestSpheres[0] = Sphere(Vec3::sZero(), 0.0f);
- for (int i = 1; i < 3; ++i)
- mSleepTestSpheres[i] = Sphere(Vec3(inPoints[i] - offset), 0.0f);
- #else
- // Initialize the spheres to zero radius around the supplied points
- for (int i = 0; i < 3; ++i)
- mSleepTestSpheres[i] = Sphere(inPoints[i], 0.0f);
- #endif
- mSleepTestTimer = 0.0f;
- }
- ECanSleep MotionProperties::AccumulateSleepTime(float inDeltaTime, float inTimeBeforeSleep)
- {
- mSleepTestTimer += inDeltaTime;
- return mSleepTestTimer >= inTimeBeforeSleep? ECanSleep::CanSleep : ECanSleep::CannotSleep;
- }
- JPH_NAMESPACE_END
|