| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2024 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include <Jolt/Jolt.h>
- #include <Jolt/Physics/Collision/Shape/TaperedCylinderShape.h>
- #include <Jolt/Physics/Collision/Shape/CylinderShape.h>
- #include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
- #include <Jolt/Physics/Collision/CollidePointResult.h>
- #include <Jolt/Physics/Collision/TransformedShape.h>
- #include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
- #include <Jolt/ObjectStream/TypeDeclarations.h>
- #include <Jolt/Core/StreamIn.h>
- #include <Jolt/Core/StreamOut.h>
- #ifdef JPH_DEBUG_RENDERER
- #include <Jolt/Renderer/DebugRenderer.h>
- #endif // JPH_DEBUG_RENDERER
- JPH_NAMESPACE_BEGIN
- // Approximation of a face of the tapered cylinder
- static const Vec3 cTaperedCylinderFace[] =
- {
- Vec3(0.0f, 0.0f, 1.0f),
- Vec3(0.707106769f, 0.0f, 0.707106769f),
- Vec3(1.0f, 0.0f, 0.0f),
- Vec3(0.707106769f, 0.0f, -0.707106769f),
- Vec3(-0.0f, 0.0f, -1.0f),
- Vec3(-0.707106769f, 0.0f, -0.707106769f),
- Vec3(-1.0f, 0.0f, 0.0f),
- Vec3(-0.707106769f, 0.0f, 0.707106769f)
- };
- JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(TaperedCylinderShapeSettings)
- {
- JPH_ADD_BASE_CLASS(TaperedCylinderShapeSettings, ConvexShapeSettings)
- JPH_ADD_ATTRIBUTE(TaperedCylinderShapeSettings, mHalfHeight)
- JPH_ADD_ATTRIBUTE(TaperedCylinderShapeSettings, mTopRadius)
- JPH_ADD_ATTRIBUTE(TaperedCylinderShapeSettings, mBottomRadius)
- JPH_ADD_ATTRIBUTE(TaperedCylinderShapeSettings, mConvexRadius)
- }
- ShapeSettings::ShapeResult TaperedCylinderShapeSettings::Create() const
- {
- if (mCachedResult.IsEmpty())
- {
- Ref<Shape> shape;
- if (mTopRadius == mBottomRadius)
- {
- // Convert to regular cylinder
- CylinderShapeSettings settings;
- settings.mHalfHeight = mHalfHeight;
- settings.mRadius = mTopRadius;
- settings.mMaterial = mMaterial;
- settings.mConvexRadius = mConvexRadius;
- new CylinderShape(settings, mCachedResult);
- }
- else
- {
- // Normal tapered cylinder shape
- new TaperedCylinderShape(*this, mCachedResult);
- }
- }
- return mCachedResult;
- }
- TaperedCylinderShapeSettings::TaperedCylinderShapeSettings(float inHalfHeightOfTaperedCylinder, float inTopRadius, float inBottomRadius, float inConvexRadius, const PhysicsMaterial *inMaterial) :
- ConvexShapeSettings(inMaterial),
- mHalfHeight(inHalfHeightOfTaperedCylinder),
- mTopRadius(inTopRadius),
- mBottomRadius(inBottomRadius),
- mConvexRadius(inConvexRadius)
- {
- }
- TaperedCylinderShape::TaperedCylinderShape(const TaperedCylinderShapeSettings &inSettings, ShapeResult &outResult) :
- ConvexShape(EShapeSubType::TaperedCylinder, inSettings, outResult),
- mTopRadius(inSettings.mTopRadius),
- mBottomRadius(inSettings.mBottomRadius),
- mConvexRadius(inSettings.mConvexRadius)
- {
- if (mTopRadius < 0.0f)
- {
- outResult.SetError("Invalid top radius");
- return;
- }
- if (mBottomRadius < 0.0f)
- {
- outResult.SetError("Invalid bottom radius");
- return;
- }
- if (inSettings.mHalfHeight <= 0.0f)
- {
- outResult.SetError("Invalid height");
- return;
- }
- if (inSettings.mConvexRadius < 0.0f)
- {
- outResult.SetError("Invalid convex radius");
- return;
- }
- if (inSettings.mTopRadius < inSettings.mConvexRadius)
- {
- outResult.SetError("Convex radius must be smaller than convex radius");
- return;
- }
- if (inSettings.mBottomRadius < inSettings.mConvexRadius)
- {
- outResult.SetError("Convex radius must be smaller than bottom radius");
- return;
- }
- // Calculate the center of mass (using wxMaxima).
- // Radius of cross section for tapered cylinder from 0 to h:
- // r(x):=br+x*(tr-br)/h;
- // Area:
- // area(x):=%pi*r(x)^2;
- // Total volume of cylinder:
- // volume(h):=integrate(area(x),x,0,h);
- // Center of mass:
- // com(br,tr,h):=integrate(x*area(x),x,0,h)/volume(h);
- // Results:
- // ratsimp(com(br,tr,h),br,bt);
- // Non-tapered cylinder should have com = 0.5:
- // ratsimp(com(r,r,h));
- // Cone with tip at origin and height h should have com = 3/4 h
- // ratsimp(com(0,r,h));
- float h = 2.0f * inSettings.mHalfHeight;
- float tr = mTopRadius;
- float tr2 = Square(tr);
- float br = mBottomRadius;
- float br2 = Square(br);
- float com = h * (3 * tr2 + 2 * br * tr + br2) / (4.0f * (tr2 + br * tr + br2));
- mTop = h - com;
- mBottom = -com;
- outResult.Set(this);
- }
- class TaperedCylinderShape::TaperedCylinder final : public Support
- {
- public:
- TaperedCylinder(float inTop, float inBottom, float inTopRadius, float inBottomRadius, float inConvexRadius) :
- mTop(inTop),
- mBottom(inBottom),
- mTopRadius(inTopRadius),
- mBottomRadius(inBottomRadius),
- mConvexRadius(inConvexRadius)
- {
- static_assert(sizeof(TaperedCylinder) <= sizeof(SupportBuffer), "Buffer size too small");
- JPH_ASSERT(IsAligned(this, alignof(TaperedCylinder)));
- }
- virtual Vec3 GetSupport(Vec3Arg inDirection) const override
- {
- float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
- float o = sqrt(Square(x) + Square(z));
- if (o > 0.0f)
- {
- Vec3 top_support((mTopRadius * x) / o, mTop, (mTopRadius * z) / o);
- Vec3 bottom_support((mBottomRadius * x) / o, mBottom, (mBottomRadius * z) / o);
- return inDirection.Dot(top_support) > inDirection.Dot(bottom_support)? top_support : bottom_support;
- }
- else
- {
- if (y > 0.0f)
- return Vec3(0, mTop, 0);
- else
- return Vec3(0, mBottom, 0);
- }
- }
- virtual float GetConvexRadius() const override
- {
- return mConvexRadius;
- }
- private:
- float mTop;
- float mBottom;
- float mTopRadius;
- float mBottomRadius;
- float mConvexRadius;
- };
- JPH_INLINE void TaperedCylinderShape::GetScaled(Vec3Arg inScale, float &outTop, float &outBottom, float &outTopRadius, float &outBottomRadius, float &outConvexRadius) const
- {
- Vec3 abs_scale = inScale.Abs();
- float scale_xz = abs_scale.GetX();
- float scale_y = inScale.GetY();
- outTop = scale_y * mTop;
- outBottom = scale_y * mBottom;
- outTopRadius = scale_xz * mTopRadius;
- outBottomRadius = scale_xz * mBottomRadius;
- outConvexRadius = min(abs_scale.GetY(), scale_xz) * mConvexRadius;
- // Negative Y-scale flips the top and bottom
- if (outBottom > outTop)
- {
- std::swap(outTop, outBottom);
- std::swap(outTopRadius, outBottomRadius);
- }
- }
- const ConvexShape::Support *TaperedCylinderShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
- {
- JPH_ASSERT(IsValidScale(inScale));
- // Get scaled tapered cylinder
- float top, bottom, top_radius, bottom_radius, convex_radius;
- GetScaled(inScale, top, bottom, top_radius, bottom_radius, convex_radius);
- switch (inMode)
- {
- case ESupportMode::IncludeConvexRadius:
- case ESupportMode::Default:
- return new (&inBuffer) TaperedCylinder(top, bottom, top_radius, bottom_radius, 0.0f);
- case ESupportMode::ExcludeConvexRadius:
- return new (&inBuffer) TaperedCylinder(top - convex_radius, bottom + convex_radius, top_radius - convex_radius, bottom_radius - convex_radius, convex_radius);
- }
- JPH_ASSERT(false);
- return nullptr;
- }
- JPH_INLINE static Vec3 sCalculateSideNormalXZ(Vec3Arg inSurfacePosition)
- {
- return (Vec3(1, 0, 1) * inSurfacePosition).NormalizedOr(Vec3::sAxisX());
- }
- JPH_INLINE static Vec3 sCalculateSideNormal(Vec3Arg inNormalXZ, float inTop, float inBottom, float inTopRadius, float inBottomRadius)
- {
- float tan_alpha = (inBottomRadius - inTopRadius) / (inTop - inBottom);
- return Vec3(inNormalXZ.GetX(), tan_alpha, inNormalXZ.GetZ()).Normalized();
- }
- void TaperedCylinderShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
- {
- JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
- JPH_ASSERT(IsValidScale(inScale));
- // Get scaled tapered cylinder
- float top, bottom, top_radius, bottom_radius, convex_radius;
- GetScaled(inScale, top, bottom, top_radius, bottom_radius, convex_radius);
- // Get the normal of the side of the cylinder
- Vec3 normal_xz = sCalculateSideNormalXZ(-inDirection);
- Vec3 normal = sCalculateSideNormal(normal_xz, top, bottom, top_radius, bottom_radius);
- constexpr float cMinRadius = 1.0e-3f;
- // Check if the normal is closer to the side than to the top or bottom
- if (abs(normal.Dot(inDirection)) > abs(inDirection.GetY()))
- {
- // Return the side of the cylinder
- outVertices.push_back(inCenterOfMassTransform * (normal_xz * top_radius + Vec3(0, top, 0)));
- outVertices.push_back(inCenterOfMassTransform * (normal_xz * bottom_radius + Vec3(0, bottom, 0)));
- }
- else
- {
- // When the inDirection is more than 5 degrees from vertical, align the vertices so that 1 of the vertices
- // points towards inDirection in the XZ plane. This ensures that we always have a vertex towards max penetration depth.
- Mat44 transform = inCenterOfMassTransform;
- Vec4 base_x = Vec4(inDirection.GetX(), 0, inDirection.GetZ(), 0);
- float xz_sq = base_x.LengthSq();
- float y_sq = Square(inDirection.GetY());
- if (xz_sq > 0.00765427f * y_sq)
- {
- base_x /= sqrt(xz_sq);
- Vec4 base_z = base_x.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W>() * Vec4(-1, 0, 1, 0);
- transform = transform * Mat44(base_x, Vec4(0, 1, 0, 0), base_z, Vec4(0, 0, 0, 1));
- }
- if (inDirection.GetY() < 0.0f)
- {
- // Top of the cylinder
- if (top_radius > cMinRadius)
- {
- Vec3 top_3d(0, top, 0);
- for (Vec3 v : cTaperedCylinderFace)
- outVertices.push_back(transform * (top_radius * v + top_3d));
- }
- }
- else
- {
- // Bottom of the cylinder
- if (bottom_radius > cMinRadius)
- {
- Vec3 bottom_3d(0, bottom, 0);
- for (const Vec3 *v = cTaperedCylinderFace + std::size(cTaperedCylinderFace) - 1; v >= cTaperedCylinderFace; --v)
- outVertices.push_back(transform * (bottom_radius * *v + bottom_3d));
- }
- }
- }
- }
- MassProperties TaperedCylinderShape::GetMassProperties() const
- {
- MassProperties p;
- // Calculate mass
- float density = GetDensity();
- p.mMass = GetVolume() * density;
- // Calculate inertia of a tapered cylinder (using wxMaxima)
- // Radius:
- // r(x):=br+(x-b)*(tr-br)/(t-b);
- // Where t=top, b=bottom, tr=top radius, br=bottom radius
- // Area of the cross section of the cylinder at x:
- // area(x):=%pi*r(x)^2;
- // Inertia x slice at x (using inertia of a solid disc, see https://en.wikipedia.org/wiki/List_of_moments_of_inertia, note needs to be multiplied by density):
- // dix(x):=area(x)*r(x)^2/4;
- // Inertia y slice at y (note needs to be multiplied by density)
- // diy(x):=area(x)*r(x)^2/2;
- // Volume:
- // volume(b,t):=integrate(area(x),x,b,t);
- // The constant density (note that we have this through GetDensity() so we'll use that instead):
- // density(b,t):=m/volume(b,t);
- // Inertia tensor element xx, note that we use the parallel axis theorem to move the inertia: Ixx' = Ixx + m translation^2, also note we multiply by density here:
- // Ixx(br,tr,b,t):=integrate(dix(x)+area(x)*x^2,x,b,t)*density(b,t);
- // Inertia tensor element yy:
- // Iyy(br,tr,b,t):=integrate(diy(x),x,b,t)*density(b,t);
- // Note that we can simplify Ixx by using:
- // Ixx_delta(br,tr,b,t):=Ixx(br,tr,b,t)-Iyy(br,tr,b,t)/2;
- // For a cylinder this formula matches what is listed on the wiki:
- // factor(Ixx(r,r,-h/2,h/2));
- // factor(Iyy(r,r,-h/2,h/2));
- // For a cone with tip at origin too:
- // factor(Ixx(0,r,0,h));
- // factor(Iyy(0,r,0,h));
- // Now for the tapered cylinder:
- // rat(Ixx(br,tr,b,t),br,bt);
- // rat(Iyy(br,tr,b,t),br,bt);
- // rat(Ixx_delta(br,tr,b,t),br,bt);
- float t = mTop;
- float t2 = Square(t);
- float t3 = t * t2;
- float b = mBottom;
- float b2 = Square(b);
- float b3 = b * b2;
- float br = mBottomRadius;
- float br2 = Square(br);
- float br3 = br * br2;
- float br4 = Square(br2);
- float tr = mTopRadius;
- float tr2 = Square(tr);
- float tr3 = tr * tr2;
- float tr4 = Square(tr2);
- float inertia_y = (JPH_PI / 10.0f) * density * (t - b) * (br4 + tr * br3 + tr2 * br2 + tr3 * br + tr4);
- float inertia_x_delta = (JPH_PI / 30.0f) * density * ((t3 + 2 * b * t2 + 3 * b2 * t - 6 * b3) * br2 + (3 * t3 + b * t2 - b2 * t - 3 * b3) * tr * br + (6 * t3 - 3 * b * t2 - 2 * b2 * t - b3) * tr2);
- float inertia_x = inertia_x_delta + inertia_y / 2;
- float inertia_z = inertia_x;
- p.mInertia = Mat44::sScale(Vec3(inertia_x, inertia_y, inertia_z));
- return p;
- }
- Vec3 TaperedCylinderShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
- {
- JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
- constexpr float cEpsilon = 1.0e-5f;
- if (inLocalSurfacePosition.GetY() > mTop - cEpsilon)
- return Vec3(0, 1, 0);
- else if (inLocalSurfacePosition.GetY() < mBottom + cEpsilon)
- return Vec3(0, -1, 0);
- else
- return sCalculateSideNormal(sCalculateSideNormalXZ(inLocalSurfacePosition), mTop, mBottom, mTopRadius, mBottomRadius);
- }
- AABox TaperedCylinderShape::GetLocalBounds() const
- {
- float max_radius = max(mTopRadius, mBottomRadius);
- return AABox(Vec3(-max_radius, mBottom, -max_radius), Vec3(max_radius, mTop, max_radius));
- }
- void TaperedCylinderShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
- {
- // Test shape filter
- if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
- return;
- // Check if the point is in the tapered cylinder
- if (inPoint.GetY() >= mBottom && inPoint.GetY() <= mTop // Within height
- && Square(inPoint.GetX()) + Square(inPoint.GetZ()) <= Square(mBottomRadius + (inPoint.GetY() - mBottom) * (mTopRadius - mBottomRadius) / (mTop - mBottom))) // Within the radius
- ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
- }
- void TaperedCylinderShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
- {
- JPH_ASSERT(IsValidScale(inScale));
- Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
- // Get scaled tapered cylinder
- float top, bottom, top_radius, bottom_radius, convex_radius;
- GetScaled(inScale, top, bottom, top_radius, bottom_radius, convex_radius);
- Vec3 top_3d(0, top, 0);
- Vec3 bottom_3d(0, bottom, 0);
- for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
- if (v.GetInvMass() > 0.0f)
- {
- Vec3 local_pos = inverse_transform * v.GetPosition();
- // Calculate penetration into side surface
- Vec3 normal_xz = sCalculateSideNormalXZ(local_pos);
- Vec3 side_normal = sCalculateSideNormal(normal_xz, top, bottom, top_radius, bottom_radius);
- Vec3 side_support_top = normal_xz * top_radius + top_3d;
- float side_penetration = (side_support_top - local_pos).Dot(side_normal);
- // Calculate penetration into top and bottom plane
- float top_penetration = top - local_pos.GetY();
- float bottom_penetration = local_pos.GetY() - bottom;
- float min_top_bottom_penetration = min(top_penetration, bottom_penetration);
- Vec3 point, normal;
- if (side_penetration < 0.0f || min_top_bottom_penetration < 0.0f)
- {
- // We're outside the cylinder
- // Calculate the closest point on the line segment from bottom to top support point:
- // closest_point = bottom + fraction * (top - bottom) / |top - bottom|^2
- Vec3 side_support_bottom = normal_xz * bottom_radius + bottom_3d;
- Vec3 bottom_to_top = side_support_top - side_support_bottom;
- float fraction = (local_pos - side_support_bottom).Dot(bottom_to_top);
- // Calculate the distance to the axis of the cylinder
- float distance_to_axis = normal_xz.Dot(local_pos);
- bool inside_top_radius = distance_to_axis <= top_radius;
- bool inside_bottom_radius = distance_to_axis <= bottom_radius;
- /*
- Regions of tapered cylinder (side view):
- _ B | |
- --_ | A |
- t-------+
- C / \
- / tapered \
- _ / cylinder \
- --_ / \
- b-----------------+
- D | E |
- | |
- t = side_support_top, b = side_support_bottom
- Lines between B and C and C and D are at a 90 degree angle to the line between t and b
- */
- if (fraction >= bottom_to_top.LengthSq() // Region B: Above the line segment
- && !inside_top_radius) // Outside the top radius
- {
- // Top support point is closest
- point = side_support_top;
- normal = (local_pos - point).NormalizedOr(Vec3::sAxisY());
- }
- else if (fraction < 0.0f // Region D: Below the line segment
- && !inside_bottom_radius) // Outside the bottom radius
- {
- // Bottom support point is closest
- point = side_support_bottom;
- normal = (local_pos - point).NormalizedOr(Vec3::sAxisY());
- }
- else if (top_penetration < 0.0f // Region A: Above the top plane
- && inside_top_radius) // Inside the top radius
- {
- // Top plane is closest
- point = top_3d;
- normal = Vec3(0, 1, 0);
- }
- else if (bottom_penetration < 0.0f // Region E: Below the bottom plane
- && inside_bottom_radius) // Inside the bottom radius
- {
- // Bottom plane is closest
- point = bottom_3d;
- normal = Vec3(0, -1, 0);
- }
- else // Region C
- {
- // Side surface is closest
- point = side_support_top;
- normal = side_normal;
- }
- }
- else if (side_penetration < min_top_bottom_penetration)
- {
- // Side surface is closest
- point = side_support_top;
- normal = side_normal;
- }
- else if (top_penetration < bottom_penetration)
- {
- // Top plane is closest
- point = top_3d;
- normal = Vec3(0, 1, 0);
- }
- else
- {
- // Bottom plane is closest
- point = bottom_3d;
- normal = Vec3(0, -1, 0);
- }
- // Calculate penetration
- Plane plane = Plane::sFromPointAndNormal(point, normal);
- float penetration = -plane.SignedDistance(local_pos);
- if (v.UpdatePenetration(penetration))
- v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
- }
- }
- class TaperedCylinderShape::TCSGetTrianglesContext
- {
- public:
- explicit TCSGetTrianglesContext(Mat44Arg inTransform) : mTransform(inTransform) { }
- Mat44 mTransform;
- uint mProcessed = 0; // Which elements we processed, bit 0 = top, bit 1 = bottom, bit 2 = side
- };
- void TaperedCylinderShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
- {
- static_assert(sizeof(TCSGetTrianglesContext) <= sizeof(GetTrianglesContext), "GetTrianglesContext too small");
- JPH_ASSERT(IsAligned(&ioContext, alignof(TCSGetTrianglesContext)));
- // Make sure the scale is not inside out
- Vec3 scale = ScaleHelpers::IsInsideOut(inScale)? inScale.FlipSign<-1, 1, 1>() : inScale;
- // Mark top and bottom processed if their radius is too small
- TCSGetTrianglesContext *context = new (&ioContext) TCSGetTrianglesContext(Mat44::sRotationTranslation(inRotation, inPositionCOM) * Mat44::sScale(scale));
- constexpr float cMinRadius = 1.0e-3f;
- if (mTopRadius < cMinRadius)
- context->mProcessed |= 0b001;
- if (mBottomRadius < cMinRadius)
- context->mProcessed |= 0b010;
- }
- int TaperedCylinderShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
- {
- constexpr int cNumVertices = int(std::size(cTaperedCylinderFace));
- static_assert(cGetTrianglesMinTrianglesRequested >= 2 * cNumVertices);
- JPH_ASSERT(inMaxTrianglesRequested >= cGetTrianglesMinTrianglesRequested);
- TCSGetTrianglesContext &context = (TCSGetTrianglesContext &)ioContext;
- int total_num_triangles = 0;
- // Top cap
- Vec3 top_3d(0, mTop, 0);
- if ((context.mProcessed & 0b001) == 0)
- {
- Vec3 v0 = context.mTransform * (top_3d + mTopRadius * cTaperedCylinderFace[0]);
- Vec3 v1 = context.mTransform * (top_3d + mTopRadius * cTaperedCylinderFace[1]);
- for (const Vec3 *v = cTaperedCylinderFace + 2, *v_end = cTaperedCylinderFace + cNumVertices; v < v_end; ++v)
- {
- Vec3 v2 = context.mTransform * (top_3d + mTopRadius * *v);
- v0.StoreFloat3(outTriangleVertices++);
- v1.StoreFloat3(outTriangleVertices++);
- v2.StoreFloat3(outTriangleVertices++);
- v1 = v2;
- }
- total_num_triangles = cNumVertices - 2;
- context.mProcessed |= 0b001;
- }
- // Bottom cap
- Vec3 bottom_3d(0, mBottom, 0);
- if ((context.mProcessed & 0b010) == 0
- && total_num_triangles + cNumVertices - 2 < inMaxTrianglesRequested)
- {
- Vec3 v0 = context.mTransform * (bottom_3d + mBottomRadius * cTaperedCylinderFace[0]);
- Vec3 v1 = context.mTransform * (bottom_3d + mBottomRadius * cTaperedCylinderFace[1]);
- for (const Vec3 *v = cTaperedCylinderFace + 2, *v_end = cTaperedCylinderFace + cNumVertices; v < v_end; ++v)
- {
- Vec3 v2 = context.mTransform * (bottom_3d + mBottomRadius * *v);
- v0.StoreFloat3(outTriangleVertices++);
- v2.StoreFloat3(outTriangleVertices++);
- v1.StoreFloat3(outTriangleVertices++);
- v1 = v2;
- }
- total_num_triangles += cNumVertices - 2;
- context.mProcessed |= 0b010;
- }
- // Side
- if ((context.mProcessed & 0b100) == 0
- && total_num_triangles + 2 * cNumVertices < inMaxTrianglesRequested)
- {
- Vec3 v0t = context.mTransform * (top_3d + mTopRadius * cTaperedCylinderFace[cNumVertices - 1]);
- Vec3 v0b = context.mTransform * (bottom_3d + mBottomRadius * cTaperedCylinderFace[cNumVertices - 1]);
- for (const Vec3 *v = cTaperedCylinderFace, *v_end = cTaperedCylinderFace + cNumVertices; v < v_end; ++v)
- {
- Vec3 v1t = context.mTransform * (top_3d + mTopRadius * *v);
- v0t.StoreFloat3(outTriangleVertices++);
- v0b.StoreFloat3(outTriangleVertices++);
- v1t.StoreFloat3(outTriangleVertices++);
- Vec3 v1b = context.mTransform * (bottom_3d + mBottomRadius * *v);
- v1t.StoreFloat3(outTriangleVertices++);
- v0b.StoreFloat3(outTriangleVertices++);
- v1b.StoreFloat3(outTriangleVertices++);
- v0t = v1t;
- v0b = v1b;
- }
- total_num_triangles += 2 * cNumVertices;
- context.mProcessed |= 0b100;
- }
- // Store materials
- if (outMaterials != nullptr)
- {
- const PhysicsMaterial *material = GetMaterial();
- for (const PhysicsMaterial **m = outMaterials, **m_end = outMaterials + total_num_triangles; m < m_end; ++m)
- *m = material;
- }
- return total_num_triangles;
- }
- #ifdef JPH_DEBUG_RENDERER
- void TaperedCylinderShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
- {
- // Preserve flip along y axis but make sure we're not inside out
- Vec3 scale = ScaleHelpers::IsInsideOut(inScale)? inScale.FlipSign<-1, 1, 1>() : inScale;
- RMat44 world_transform = inCenterOfMassTransform * Mat44::sScale(scale);
- DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
- inRenderer->DrawTaperedCylinder(world_transform, mTop, mBottom, mTopRadius, mBottomRadius, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode);
- }
- #endif // JPH_DEBUG_RENDERER
- void TaperedCylinderShape::SaveBinaryState(StreamOut &inStream) const
- {
- ConvexShape::SaveBinaryState(inStream);
- inStream.Write(mTop);
- inStream.Write(mBottom);
- inStream.Write(mTopRadius);
- inStream.Write(mBottomRadius);
- inStream.Write(mConvexRadius);
- }
- void TaperedCylinderShape::RestoreBinaryState(StreamIn &inStream)
- {
- ConvexShape::RestoreBinaryState(inStream);
- inStream.Read(mTop);
- inStream.Read(mBottom);
- inStream.Read(mTopRadius);
- inStream.Read(mBottomRadius);
- inStream.Read(mConvexRadius);
- }
- float TaperedCylinderShape::GetVolume() const
- {
- // Volume of a tapered cylinder is: integrate(%pi*(b+x*(t-b)/h)^2,x,0,h) where t is the top radius, b is the bottom radius and h is the height
- return (JPH_PI / 3.0f) * (mTop - mBottom) * (Square(mTopRadius) + mTopRadius * mBottomRadius + Square(mBottomRadius));
- }
- bool TaperedCylinderShape::IsValidScale(Vec3Arg inScale) const
- {
- return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScaleXZ(inScale.Abs());
- }
- Vec3 TaperedCylinderShape::MakeScaleValid(Vec3Arg inScale) const
- {
- Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
- return scale.GetSign() * ScaleHelpers::MakeUniformScaleXZ(scale.Abs());
- }
- void TaperedCylinderShape::sRegister()
- {
- ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::TaperedCylinder);
- f.mConstruct = []() -> Shape * { return new TaperedCylinderShape; };
- f.mColor = Color::sGreen;
- }
- JPH_NAMESPACE_END
|