|
@@ -15,14 +15,41 @@
|
|
|
|
|
|
namespace ZeroTier {
|
|
|
|
|
|
-Topology::Topology(const RuntimeEnvironment *renv, void *tPtr) :
|
|
|
+static const SharedPtr< const Certificate > s_nullCert;
|
|
|
+
|
|
|
+Topology::Topology(const RuntimeEnvironment *renv, void *tPtr, const int64_t now) :
|
|
|
RR(renv)
|
|
|
{
|
|
|
- uint64_t idtmp[2];
|
|
|
- idtmp[0] = 0;
|
|
|
- idtmp[1] = 0;
|
|
|
- Vector< uint8_t > data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_ROOTS, idtmp));
|
|
|
- // TODO
|
|
|
+ char tmp[256];
|
|
|
+ Vector< uint8_t > trustData(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_TRUST_STORE, Utils::ZERO256));
|
|
|
+
|
|
|
+ Dictionary d;
|
|
|
+ if (trustData.empty() || (!d.decode(trustData.data(), (unsigned int)trustData.size()))) {
|
|
|
+ // TODO: import default certificates including default root set
|
|
|
+ } else {
|
|
|
+ const unsigned long certCount = (unsigned long)d.getUI("c$");
|
|
|
+ for (unsigned long idx = 0; idx < certCount; ++idx) {
|
|
|
+ uint64_t id[6];
|
|
|
+ const Vector< uint8_t > &serialNo = d[Dictionary::arraySubscript(tmp, "c$.s", idx)];
|
|
|
+ if (serialNo.size() == ZT_SHA384_DIGEST_SIZE) {
|
|
|
+ Utils::copy< 48 >(id, serialNo.data());
|
|
|
+ Certificate cert;
|
|
|
+ if (cert.decode(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_CERT, id)))
|
|
|
+ addCertificate(tPtr, cert, now, (unsigned int)d.getUI(Dictionary::arraySubscript(tmp, "c$.lt", idx)), false, false, false);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ const unsigned long localRootCount = (unsigned long)d.getUI("lr$");
|
|
|
+ for (unsigned long idx = 0; idx < localRootCount; ++idx) {
|
|
|
+ Identity lr;
|
|
|
+ if (d.getO(Dictionary::arraySubscript(tmp, "lr$.i", idx), lr)) {
|
|
|
+ if (lr)
|
|
|
+ m_roots[lr].insert(s_nullCert);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ m_cleanCertificates_l_certs(now);
|
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
|
}
|
|
|
|
|
@@ -46,13 +73,13 @@ SharedPtr< Peer > Topology::addRoot(void *const tPtr, const Identity &id)
|
|
|
|
|
|
// A null pointer in the set of certificates specifying a root indicates that
|
|
|
// the root has been directly added.
|
|
|
- m_roots[id.fingerprint()].insert(SharedPtr< const Certificate >());
|
|
|
+ m_roots[id].insert(s_nullCert);
|
|
|
|
|
|
{
|
|
|
Mutex::Lock certsLock(m_certs_l);
|
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
|
+ m_writeTrustStore_l_roots_certs(tPtr);
|
|
|
}
|
|
|
- m_writeRootList_l_roots(tPtr);
|
|
|
|
|
|
for (Vector< SharedPtr< Peer > >::const_iterator p(m_rootPeers.begin()); p != m_rootPeers.end(); ++p) {
|
|
|
if ((*p)->identity() == id)
|
|
@@ -65,8 +92,24 @@ SharedPtr< Peer > Topology::addRoot(void *const tPtr, const Identity &id)
|
|
|
bool Topology::removeRoot(void *const tPtr, Address address)
|
|
|
{
|
|
|
RWMutex::Lock l1(m_roots_l);
|
|
|
- // TODO
|
|
|
- return true;
|
|
|
+ bool removed = false;
|
|
|
+ for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
|
+ if (r->first.address() == address) {
|
|
|
+ r->second.erase(s_nullCert);
|
|
|
+ if (r->second.empty()) {
|
|
|
+ m_roots.erase(r++);
|
|
|
+ {
|
|
|
+ Mutex::Lock certsLock(m_certs_l);
|
|
|
+ m_updateRootPeers_l_roots_certs(tPtr);
|
|
|
+ m_writeTrustStore_l_roots_certs(tPtr);
|
|
|
+ }
|
|
|
+ removed = true;
|
|
|
+ } else {
|
|
|
+ ++r;
|
|
|
+ }
|
|
|
+ } else ++r;
|
|
|
+ }
|
|
|
+ return removed;
|
|
|
}
|
|
|
|
|
|
struct p_RootRankingComparisonOperator
|
|
@@ -104,15 +147,26 @@ void Topology::doPeriodicTasks(void *tPtr, const int64_t now)
|
|
|
// then the write lock is acquired for each delete. This adds overhead if there
|
|
|
// are a lot of deletions, but that's not common.
|
|
|
|
|
|
+ // Clean any expired certificates
|
|
|
+ {
|
|
|
+ Mutex::Lock l1(m_certs_l);
|
|
|
+ if (m_cleanCertificates_l_certs(now)) {
|
|
|
+ RWMutex::Lock l2(m_roots_l);
|
|
|
+ m_updateRootPeers_l_roots_certs(tPtr);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
// Delete peers that are stale or offline.
|
|
|
{
|
|
|
Vector< Address > toDelete;
|
|
|
{
|
|
|
RWMutex::RLock l1(m_peers_l);
|
|
|
- for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end(); ++i) {
|
|
|
+ RWMutex::RLock l2(m_roots_l);
|
|
|
+ for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end();
|
|
|
+ ++i) {
|
|
|
// TODO: also delete if the peer has not exchanged meaningful communication in a while, such as
|
|
|
// a network frame or non-trivial control packet.
|
|
|
- if (((now - i->second->lastReceive()) > ZT_PEER_ALIVE_TIMEOUT) && (m_roots.find(i->second->identity().fingerprint()) == m_roots.end()))
|
|
|
+ if (((now - i->second->lastReceive()) > ZT_PEER_ALIVE_TIMEOUT) && (m_roots.find(i->second->identity()) == m_roots.end()))
|
|
|
toDelete.push_back(i->first);
|
|
|
}
|
|
|
}
|
|
@@ -131,7 +185,8 @@ void Topology::doPeriodicTasks(void *tPtr, const int64_t now)
|
|
|
Vector< uint64_t > toDelete;
|
|
|
{
|
|
|
RWMutex::RLock l1(m_paths_l);
|
|
|
- for (Map< uint64_t, SharedPtr< Path > >::iterator i(m_paths.begin()); i != m_paths.end(); ++i) {
|
|
|
+ for (Map< uint64_t, SharedPtr< Path > >::iterator i(m_paths.begin()); i != m_paths.end();
|
|
|
+ ++i) {
|
|
|
if (i->second.weakGC())
|
|
|
toDelete.push_back(i->first);
|
|
|
}
|
|
@@ -143,74 +198,85 @@ void Topology::doPeriodicTasks(void *tPtr, const int64_t now)
|
|
|
m_paths.erase(p);
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- // Clean any expired certificates
|
|
|
- {
|
|
|
- Mutex::Lock l1(m_certs_l);
|
|
|
- m_cleanCertificates_l_certs(now);
|
|
|
- }
|
|
|
}
|
|
|
|
|
|
void Topology::saveAll(void *tPtr)
|
|
|
{
|
|
|
RWMutex::RLock l(m_peers_l);
|
|
|
- for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end(); ++i)
|
|
|
+ for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end();
|
|
|
+ ++i)
|
|
|
i->second->save(tPtr);
|
|
|
}
|
|
|
|
|
|
-ZT_CertificateError Topology::addCertificate(void *tPtr, const Certificate &cert, const int64_t now, const unsigned int localTrust)
|
|
|
+ZT_CertificateError Topology::addCertificate(void *tPtr, const Certificate &cert, const int64_t now, const unsigned int localTrust, const bool writeToLocalStore, const bool refreshRootSets, const bool verify)
|
|
|
{
|
|
|
- Mutex::Lock certsLock(m_certs_l);
|
|
|
-
|
|
|
- // Check to see if we already have this specific certificate.
|
|
|
- const SHA384Hash serial(cert.serialNo);
|
|
|
- if (m_certs.find(serial) != m_certs.end())
|
|
|
- return ZT_CERTIFICATE_ERROR_NONE;
|
|
|
-
|
|
|
- // Verify certificate all the way to a trusted root.
|
|
|
- const ZT_CertificateError err = m_verifyCertificate_l_certs(cert, now, localTrust, false);
|
|
|
- if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
|
- return err;
|
|
|
-
|
|
|
- // Create entry containing copy of certificate and trust flags.
|
|
|
- const std::pair< SharedPtr< const Certificate >, unsigned int > certEntry(SharedPtr< const Certificate >(new Certificate(cert)), localTrust);
|
|
|
-
|
|
|
- // If the subject contains a unique ID, check if we already have a cert for the
|
|
|
- // same uniquely identified subject. If so, check its subject timestamp and keep
|
|
|
- // the one we have if newer. Otherwise replace it. Note that the verification
|
|
|
- // function will have checked the unique ID proof signature already if a unique
|
|
|
- // ID was present.
|
|
|
- FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE > uniqueId(cert.subject.uniqueId, cert.subject.uniqueIdSize);
|
|
|
- if (!uniqueId.empty()) {
|
|
|
- std::pair< SharedPtr< const Certificate >, unsigned int > &bySubjectUniqueId = m_certsBySubjectUniqueId[uniqueId];
|
|
|
- if (bySubjectUniqueId.first) {
|
|
|
- if (bySubjectUniqueId.first->subject.timestamp >= cert.subject.timestamp)
|
|
|
- return ZT_CERTIFICATE_ERROR_HAVE_NEWER_CERT;
|
|
|
- m_eraseCertificate_l_certs(bySubjectUniqueId.first);
|
|
|
- m_certsBySubjectUniqueId[uniqueId] = certEntry;
|
|
|
- } else {
|
|
|
- bySubjectUniqueId = certEntry;
|
|
|
+ {
|
|
|
+ Mutex::Lock certsLock(m_certs_l);
|
|
|
+
|
|
|
+ // Check to see if we already have this specific certificate.
|
|
|
+ const SHA384Hash serial(cert.serialNo);
|
|
|
+ if (m_certs.find(serial) != m_certs.end())
|
|
|
+ return ZT_CERTIFICATE_ERROR_NONE;
|
|
|
+
|
|
|
+ // Verify certificate all the way to a trusted root. This also verifies inner
|
|
|
+ // signatures such as those of locators or the subject unique ID.
|
|
|
+ if (verify) {
|
|
|
+ const ZT_CertificateError err = m_verifyCertificate_l_certs(cert, now, localTrust, false);
|
|
|
+ if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Create entry containing copy of certificate and trust flags.
|
|
|
+ const std::pair< SharedPtr< const Certificate >, unsigned int > certEntry(SharedPtr< const Certificate >(new Certificate(cert)), localTrust);
|
|
|
+
|
|
|
+ // If the subject contains a unique ID, check if we already have a cert for the
|
|
|
+ // same uniquely identified subject. If so, check its subject timestamp and keep
|
|
|
+ // the one we have if newer. Otherwise replace it. Note that the verification
|
|
|
+ // function will have checked the unique ID proof signature already if a unique
|
|
|
+ // ID was present.
|
|
|
+ FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE > uniqueId(cert.subject.uniqueId, cert.subject.uniqueIdSize);
|
|
|
+ if (!uniqueId.empty()) {
|
|
|
+ std::pair< SharedPtr< const Certificate >, unsigned int > &bySubjectUniqueId = m_certsBySubjectUniqueId[uniqueId];
|
|
|
+ if (bySubjectUniqueId.first) {
|
|
|
+ if (bySubjectUniqueId.first->subject.timestamp >= cert.subject.timestamp)
|
|
|
+ return ZT_CERTIFICATE_ERROR_HAVE_NEWER_CERT;
|
|
|
+ m_eraseCertificate_l_certs(bySubjectUniqueId.first);
|
|
|
+ m_certsBySubjectUniqueId[uniqueId] = certEntry; // reference bySubjectUniqueId no longer valid
|
|
|
+ } else {
|
|
|
+ bySubjectUniqueId = certEntry;
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- // Save certificate by serial number.
|
|
|
- m_certs[serial] = certEntry;
|
|
|
+ // Save certificate by serial number.
|
|
|
+ m_certs[serial] = certEntry;
|
|
|
|
|
|
- // Add certificate to sets of certificates whose subject references a given identity.
|
|
|
- for (unsigned int i = 0; i < cert.subject.identityCount; ++i) {
|
|
|
- const Identity *const ii = reinterpret_cast<const Identity *>(cert.subject.identities[i].identity);
|
|
|
- m_certsBySubjectIdentity[ii->fingerprint()].insert(certEntry);
|
|
|
- }
|
|
|
+ // Add certificate to sets of certificates whose subject references a given identity.
|
|
|
+ for (unsigned int i = 0; i < cert.subject.identityCount; ++i) {
|
|
|
+ const Identity *const ii = reinterpret_cast<const Identity *>(cert.subject.identities[i].identity);
|
|
|
+ m_certsBySubjectIdentity[ii->fingerprint()].insert(certEntry);
|
|
|
+ }
|
|
|
|
|
|
- // Clean any certificates whose chains are now broken, which can happen if there was
|
|
|
- // an update that replaced an old cert with a given unique ID. Otherwise this generally
|
|
|
- // does nothing here.
|
|
|
- m_cleanCertificates_l_certs(now);
|
|
|
+ // Clean any certificates whose chains are now broken, which can happen if there was
|
|
|
+ // an update that replaced an old cert with a given unique ID. Otherwise this generally
|
|
|
+ // does nothing here. Skip if verify is false since this means we're mindlessly loading
|
|
|
+ // certificates, which right now only happens on startup when they're loaded from the
|
|
|
+ // local certificate cache.
|
|
|
+ if (verify)
|
|
|
+ m_cleanCertificates_l_certs(now);
|
|
|
+
|
|
|
+ // Refresh the root peers lists, since certs may enumerate roots.
|
|
|
+ if (refreshRootSets) {
|
|
|
+ RWMutex::Lock rootsLock(m_roots_l);
|
|
|
+ m_updateRootPeers_l_roots_certs(tPtr);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- // Refresh the root peers lists, since certs may enumerate roots.
|
|
|
- {
|
|
|
- RWMutex::Lock rootsLock(m_roots_l);
|
|
|
- m_updateRootPeers_l_roots_certs(tPtr);
|
|
|
+ if (writeToLocalStore) {
|
|
|
+ // Write certificate data prefixed by local trust flags as a 32-bit integer.
|
|
|
+ Vector< uint8_t > certData(cert.encode());
|
|
|
+ uint64_t id[6];
|
|
|
+ Utils::copy< 48 >(id, cert.serialNo);
|
|
|
+ RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_CERT, id, certData.data(), (unsigned int)certData.size());
|
|
|
}
|
|
|
|
|
|
return ZT_CERTIFICATE_ERROR_NONE;
|
|
@@ -220,11 +286,15 @@ void Topology::m_eraseCertificate_l_certs(const SharedPtr< const Certificate > &
|
|
|
{
|
|
|
// assumes m_certs is locked for writing
|
|
|
|
|
|
- m_certsBySubjectUniqueId.erase(FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE >(cert->subject.uniqueId, cert->subject.uniqueIdSize));
|
|
|
m_certs.erase(SHA384Hash(cert->serialNo));
|
|
|
+
|
|
|
+ if (cert->subject.uniqueIdSize > 0)
|
|
|
+ m_certsBySubjectUniqueId.erase(FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE >(cert->subject.uniqueId, cert->subject.uniqueIdSize));
|
|
|
+
|
|
|
for (unsigned int i = 0; i < cert->subject.identityCount; ++i) {
|
|
|
const Identity *const ii = reinterpret_cast<const Identity *>(cert->subject.identities[i].identity);
|
|
|
- Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::iterator bySubjectIdentity(m_certsBySubjectIdentity.find(ii->fingerprint()));
|
|
|
+ Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::iterator
|
|
|
+ bySubjectIdentity(m_certsBySubjectIdentity.find(ii->fingerprint()));
|
|
|
if (bySubjectIdentity != m_certsBySubjectIdentity.end()) {
|
|
|
bySubjectIdentity->second.erase(cert);
|
|
|
if (bySubjectIdentity->second.empty())
|
|
@@ -233,13 +303,17 @@ void Topology::m_eraseCertificate_l_certs(const SharedPtr< const Certificate > &
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void Topology::m_cleanCertificates_l_certs(int64_t now)
|
|
|
+bool Topology::m_cleanCertificates_l_certs(int64_t now)
|
|
|
{
|
|
|
// assumes m_certs is locked for writing
|
|
|
|
|
|
- Vector< SharedPtr< const Certificate > > toDelete;
|
|
|
+ bool deleted = false;
|
|
|
+ Vector< SharedPtr< const Certificate >> toDelete;
|
|
|
for (;;) {
|
|
|
for (Map< SHA384Hash, std::pair< SharedPtr< const Certificate >, unsigned int > >::iterator c(m_certs.begin()); c != m_certs.end(); ++c) {
|
|
|
+ // Verify, but the last boolean option tells it to skip signature checks as this would
|
|
|
+ // already have been done. This will therefore just check the path and validity times
|
|
|
+ // of the certificate.
|
|
|
const ZT_CertificateError err = m_verifyCertificate_l_certs(*(c->second.first), now, c->second.second, true);
|
|
|
if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
|
toDelete.push_back(c->second.first);
|
|
@@ -248,17 +322,21 @@ void Topology::m_cleanCertificates_l_certs(int64_t now)
|
|
|
if (toDelete.empty())
|
|
|
break;
|
|
|
|
|
|
+ deleted = true;
|
|
|
for (Vector< SharedPtr< const Certificate > >::iterator c(toDelete.begin()); c != toDelete.end(); ++c)
|
|
|
m_eraseCertificate_l_certs(*c);
|
|
|
toDelete.clear();
|
|
|
}
|
|
|
+
|
|
|
+ return deleted;
|
|
|
}
|
|
|
|
|
|
bool Topology::m_verifyCertificateChain_l_certs(const Certificate *current, const int64_t now) const
|
|
|
{
|
|
|
// assumes m_certs is at least locked for reading
|
|
|
|
|
|
- Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::const_iterator c = m_certsBySubjectIdentity.find(reinterpret_cast<const Identity *>(current->issuer)->fingerprint());
|
|
|
+ Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::const_iterator
|
|
|
+ c = m_certsBySubjectIdentity.find(reinterpret_cast<const Identity *>(current->issuer)->fingerprint());
|
|
|
if (c != m_certsBySubjectIdentity.end()) {
|
|
|
for (Map< SharedPtr< const Certificate >, unsigned int >::const_iterator cc(c->second.begin()); cc != c->second.end(); ++cc) {
|
|
|
if (
|
|
@@ -283,23 +361,32 @@ ZT_CertificateError Topology::m_verifyCertificate_l_certs(const Certificate &cer
|
|
|
{
|
|
|
// assumes m_certs is at least locked for reading
|
|
|
|
|
|
+ // Check certificate time window against current time.
|
|
|
if ((cert.validity[0] > now) || (cert.validity[1] < now))
|
|
|
return ZT_CERTIFICATE_ERROR_OUT_OF_VALID_TIME_WINDOW;
|
|
|
|
|
|
+ // Verify primary and internal signatures and other objects unless the caller
|
|
|
+ // elected to skip, which is done to re-check certs already in the DB.
|
|
|
if (!skipSignatureCheck) {
|
|
|
- const ZT_CertificateError ce = cert.verify();
|
|
|
- if (ce != ZT_CERTIFICATE_ERROR_NONE)
|
|
|
- return ce;
|
|
|
+ const ZT_CertificateError err = cert.verify();
|
|
|
+ if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
|
+ return err;
|
|
|
}
|
|
|
|
|
|
+ // If this is a root CA, we can skip this as we're already there. Otherwise we
|
|
|
+ // recurse up the tree until we hit a root CA.
|
|
|
if ((localTrust & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ROOT_CA) == 0) {
|
|
|
if (!m_verifyCertificateChain_l_certs(&cert, now))
|
|
|
return ZT_CERTIFICATE_ERROR_INVALID_CHAIN;
|
|
|
}
|
|
|
+
|
|
|
+ return ZT_CERTIFICATE_ERROR_NONE;
|
|
|
}
|
|
|
|
|
|
void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &peer)
|
|
|
{
|
|
|
+ // does not require any locks to be held
|
|
|
+
|
|
|
try {
|
|
|
uint64_t id[2];
|
|
|
id[0] = zta.toInt();
|
|
@@ -327,54 +414,70 @@ void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &p
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void Topology::m_writeRootList_l_roots(void *tPtr)
|
|
|
+void Topology::m_updateRootPeers_l_roots_certs(void *tPtr)
|
|
|
{
|
|
|
- // assumes m_peers_l is locked for read or write
|
|
|
- // TODO
|
|
|
-#if 0
|
|
|
- uint8_t *const roots = (uint8_t *)malloc((ZT_IDENTITY_MARSHAL_SIZE_MAX + ZT_LOCATOR_MARSHAL_SIZE_MAX + 2) * m_roots.size());
|
|
|
- if (roots) { // sanity check
|
|
|
- int p = 0;
|
|
|
- for (Set< Identity >::const_iterator r(m_roots.begin()); r != m_roots.end(); ++r) {
|
|
|
- const int pp = r->marshal(roots + p, false);
|
|
|
- if (pp > 0)
|
|
|
- p += pp;
|
|
|
+ // assumes m_roots_l and m_certs_l are locked for write
|
|
|
+
|
|
|
+ // Clear m_roots but preserve locally added roots (indicated by a null cert ptr entry).
|
|
|
+ for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
|
+ if (r->second.find(s_nullCert) == r->second.end()) {
|
|
|
+ m_roots.erase(r++);
|
|
|
+ } else {
|
|
|
+ r->second.clear();
|
|
|
+ r->second.insert(s_nullCert);
|
|
|
+ ++r;
|
|
|
}
|
|
|
- uint64_t id[2];
|
|
|
- id[0] = 0;
|
|
|
- id[1] = 0;
|
|
|
- RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_ROOTS, id, roots, (unsigned int)p);
|
|
|
- free(roots);
|
|
|
}
|
|
|
-#endif
|
|
|
+
|
|
|
+ // Populate m_roots from certificate subject identities from certificates flagged
|
|
|
+ // as local root set certificates.
|
|
|
+ for (Map< FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE >, std::pair< SharedPtr< const Certificate >, unsigned int > >::const_iterator c(m_certsBySubjectUniqueId.begin()); c != m_certsBySubjectUniqueId.end();
|
|
|
+ ++c) {
|
|
|
+ if ((c->second.second & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ZEROTIER_ROOT_SET) != 0) {
|
|
|
+ for (unsigned int i = 0; i < c->second.first->subject.identityCount; ++i)
|
|
|
+ m_roots[*reinterpret_cast<const Identity *>(c->second.first->subject.identities[i].identity)].insert(c->second.first);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Create a new rootPeers vector and swap.
|
|
|
+ Vector< SharedPtr< Peer >> newRootPeers;
|
|
|
+ newRootPeers.reserve(m_roots.size());
|
|
|
+ for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
|
+ const SharedPtr< Peer > p(this->peer(tPtr, r->first.address(), true));
|
|
|
+ if ((p) && (p->identity() == r->first))
|
|
|
+ newRootPeers.push_back(p);
|
|
|
+ }
|
|
|
+ std::sort(newRootPeers.begin(), newRootPeers.end(), p_RootRankingComparisonOperator());
|
|
|
+ m_rootPeers.swap(newRootPeers);
|
|
|
}
|
|
|
|
|
|
-void Topology::m_updateRootPeers_l_roots_certs(void *tPtr)
|
|
|
+void Topology::m_writeTrustStore_l_roots_certs(void *tPtr) const
|
|
|
{
|
|
|
- // assumes m_peers_l and m_certs_l are locked for write
|
|
|
- // TODO
|
|
|
-#if 0
|
|
|
- Vector< SharedPtr< Peer > > rp;
|
|
|
- for (Map< Identity, Set< SubscriptionKeyHash > >::iterator r(m_roots.begin()); r != m_roots.end(); ++r) {
|
|
|
- Map< Address, SharedPtr< Peer > >::iterator pp(m_peers.find(r->first.address()));
|
|
|
- SharedPtr< Peer > p;
|
|
|
- if (pp != m_peers.end())
|
|
|
- p = pp->second;
|
|
|
-
|
|
|
- if (!p)
|
|
|
- m_loadCached(tPtr, r->first.address(), p);
|
|
|
-
|
|
|
- if ((!p) || (p->identity() != r->first)) {
|
|
|
- p.set(new Peer(RR));
|
|
|
- p->init(r->first);
|
|
|
- m_peers[r->first.address()] = p;
|
|
|
- }
|
|
|
+ // assumes m_roots_l and m_certs_l are locked for write
|
|
|
+
|
|
|
+ char tmp[256];
|
|
|
+ Dictionary d;
|
|
|
+
|
|
|
+ d.add("v", (uint64_t)0); // version
|
|
|
|
|
|
- rp.push_back(p);
|
|
|
+ unsigned long idx = 0;
|
|
|
+ d.add("c$", (uint64_t)m_certs.size());
|
|
|
+ for (Map< SHA384Hash, std::pair< SharedPtr< const Certificate >, unsigned int > >::const_iterator c(m_certs.begin()); c != m_certs.end(); ++c) {
|
|
|
+ d[Dictionary::arraySubscript(tmp, "c$.s", idx)].assign(c->first.data, c->first.data + ZT_SHA384_DIGEST_SIZE);
|
|
|
+ d.add(Dictionary::arraySubscript(tmp, "c$.lt", idx), (uint64_t)c->second.second);
|
|
|
+ ++idx;
|
|
|
}
|
|
|
- std::sort(rp.begin(), rp.end(), p_RootSortComparisonOperator());
|
|
|
- m_rootPeers.swap(rp);
|
|
|
-#endif
|
|
|
+
|
|
|
+ unsigned long localRootCount = 0;
|
|
|
+ for (Map< Identity, Set< SharedPtr< const Certificate > > >::const_iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
|
+ if (r->second.find(s_nullCert) != r->second.end())
|
|
|
+ d.addO(Dictionary::arraySubscript(tmp, "lr$.i", localRootCount++), r->first);
|
|
|
+ }
|
|
|
+ d.add("lr$", (uint64_t)localRootCount);
|
|
|
+
|
|
|
+ Vector< uint8_t > trustStore;
|
|
|
+ d.encode(trustStore);
|
|
|
+ RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_TRUST_STORE, Utils::ZERO256, trustStore.data(), (unsigned int)trustStore.size());
|
|
|
}
|
|
|
|
|
|
} // namespace ZeroTier
|