AES.hpp 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #ifndef ZT_AES_HPP
  27. #define ZT_AES_HPP
  28. #include "Constants.hpp"
  29. #include "Utils.hpp"
  30. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  31. #include <wmmintrin.h>
  32. #include <emmintrin.h>
  33. #include <smmintrin.h>
  34. #define ZT_AES_AESNI 1
  35. #endif
  36. #if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__)
  37. #include <arm64intr.h>
  38. #include <arm64_neon.h>
  39. #ifndef ZT_AES_ARMNEON
  40. #define ZT_AES_ARMNEON 1
  41. #endif
  42. #if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO))
  43. #include <arm_acle.h>
  44. #endif
  45. #endif
  46. #define ZT_AES_KEY_SIZE 32
  47. #define ZT_AES_BLOCK_SIZE 16
  48. namespace ZeroTier {
  49. /**
  50. * AES-256 and AES-GCM AEAD
  51. */
  52. class AES
  53. {
  54. public:
  55. /**
  56. * This will be true if your platform's type of AES acceleration is supported on this machine
  57. */
  58. static const bool HW_ACCEL;
  59. inline AES() {}
  60. inline AES(const uint8_t key[32]) { this->init(key); }
  61. inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
  62. inline void init(const uint8_t key[32])
  63. {
  64. #ifdef ZT_AES_AESNI
  65. if (likely(HW_ACCEL)) {
  66. _init_aesni(key);
  67. return;
  68. }
  69. #endif
  70. _initSW(key);
  71. }
  72. inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
  73. {
  74. #ifdef ZT_AES_AESNI
  75. if (likely(HW_ACCEL)) {
  76. _encrypt_aesni(in,out);
  77. return;
  78. }
  79. #endif
  80. _encryptSW(in,out);
  81. }
  82. inline void decrypt(const uint8_t in[16],uint8_t out[16]) const
  83. {
  84. #ifdef ZT_AES_AESNI
  85. if (likely(HW_ACCEL)) {
  86. _decrypt_aesni(in,out);
  87. return;
  88. }
  89. #endif
  90. _decryptSW(in,out);
  91. }
  92. inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
  93. {
  94. #ifdef ZT_AES_AESNI
  95. if (likely(HW_ACCEL)) {
  96. _encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
  97. return;
  98. }
  99. #endif
  100. abort(); // TODO: software
  101. }
  102. inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
  103. {
  104. #ifdef ZT_AES_AESNI
  105. if (likely(HW_ACCEL)) {
  106. uint8_t tagbuf[16];
  107. _decrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tagbuf,taglen);
  108. return Utils::secureEq(tagbuf,tag,taglen);
  109. }
  110. #endif
  111. abort(); // TODO: software
  112. return false;
  113. }
  114. static inline void scramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
  115. {
  116. if (inlen < 16)
  117. return;
  118. #ifdef ZT_AES_AESNI
  119. if (likely(HW_ACCEL)) {
  120. _scramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
  121. return;
  122. }
  123. #endif
  124. }
  125. static inline void unscramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
  126. {
  127. if (inlen < 16)
  128. return;
  129. #ifdef ZT_AES_AESNI
  130. if (likely(HW_ACCEL)) {
  131. _unscramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
  132. return;
  133. }
  134. #endif
  135. }
  136. /**
  137. * Encrypt with AES256-GCM-DDS
  138. *
  139. * DDS stands for Data Dependent Scramble and refers to our scheme for nonce
  140. * duplication resistance.
  141. *
  142. * @param iv IV (usually random)
  143. * @param in Input plaintext
  144. * @param inlen Length of plaintext
  145. * @param assoc Associated data that won't be encrypted
  146. * @param assoclen Length of associated data
  147. * @param out Output ciphertext buffer (must be at least inlen in size)
  148. * @param combinedTag Buffer to receive 128-bit encrypted combined IV and MAC
  149. */
  150. inline void gcmDdsEncrypt(const uint64_t iv,const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint64_t combinedTag[2])
  151. {
  152. // Make 12-byte GCM IV (use combinedTag as tmp buffer)
  153. combinedTag[0] = iv;
  154. ((uint8_t *)combinedTag)[8] = (uint8_t)(inlen >> 16);
  155. ((uint8_t *)combinedTag)[9] = (uint8_t)(inlen >> 8);
  156. ((uint8_t *)combinedTag)[10] = (uint8_t)inlen;
  157. ((uint8_t *)combinedTag)[11] = (uint8_t)assoclen;
  158. // Encrypt data and store 64-bit tag/MAC code in second 64 bits of combinedTag.
  159. gcmEncrypt((const uint8_t *)combinedTag,in,inlen,assoc,assoclen,out,((uint8_t *)&(combinedTag[1])),8);
  160. // Encrypt combinedTag once to get scramble key
  161. encrypt((const uint8_t *)combinedTag,(uint8_t *)combinedTag);
  162. // Scramble ciphertext
  163. scramble((const uint8_t *)combinedTag,out,inlen,out);
  164. // Encrypt combinedTag again to get masked tag to include with message
  165. encrypt((const uint8_t *)combinedTag,(uint8_t *)combinedTag);
  166. }
  167. /**
  168. * Decrypt with AES256-GCM-DDS
  169. *
  170. * @param combinedTag Encrypted combined tag
  171. * @param in Input ciphertext
  172. * @param inlen Length of ciphertext
  173. * @param assoc Associated data that wasn't encrypted
  174. * @param assoclen Length of associated data
  175. * @param out Output plaintext buffer (must be at least inlen in size)
  176. * @return True if GCM authentication check succeeded (if false, discard packet)
  177. */
  178. inline bool gcmDdsDecrypt(const uint64_t combinedTag[2],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out)
  179. {
  180. uint64_t tmp[2],gcmIv[2];
  181. // Decrypt combinedTag to get scramble key
  182. decrypt((const uint8_t *)combinedTag,(uint8_t *)tmp);
  183. // Unscramble ciphertext
  184. unscramble((const uint8_t *)tmp,in,inlen,out);
  185. // Decrypt combinedTag again to get original IV and AES-GCM MAC
  186. decrypt((const uint8_t *)tmp,(uint8_t *)tmp);
  187. // Make 12-byte GCM IV
  188. gcmIv[0] = tmp[0];
  189. ((uint8_t *)gcmIv)[8] = (uint8_t)(inlen >> 16);
  190. ((uint8_t *)gcmIv)[9] = (uint8_t)(inlen >> 8);
  191. ((uint8_t *)gcmIv)[10] = (uint8_t)inlen;
  192. ((uint8_t *)gcmIv)[11] = (uint8_t)assoclen;
  193. // Perform GCM decryption and authentication
  194. return gcmDecrypt((const uint8_t *)gcmIv,out,inlen,assoc,assoclen,out,(const uint8_t *)&(tmp[1]),8);
  195. }
  196. private:
  197. static const uint32_t Te0[256];
  198. static const uint32_t Te1[256];
  199. static const uint32_t Te2[256];
  200. static const uint32_t Te3[256];
  201. static const uint32_t Te4[256];
  202. static const uint32_t Td0[256];
  203. static const uint32_t Td1[256];
  204. static const uint32_t Td2[256];
  205. static const uint32_t Td3[256];
  206. static const uint8_t Td4[256];
  207. static const uint32_t rcon[10];
  208. void _initSW(const uint8_t key[32]);
  209. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  210. void _decryptSW(const uint8_t in[16],uint8_t out[16]) const;
  211. /**************************************************************************/
  212. union {
  213. #ifdef ZT_AES_ARMNEON
  214. struct {
  215. uint32x4_t k[15];
  216. } neon;
  217. #endif
  218. #ifdef ZT_AES_AESNI
  219. struct {
  220. __m128i k[28];
  221. __m128i h,hh,hhh,hhhh;
  222. } ni;
  223. #endif
  224. struct {
  225. uint32_t ek[60];
  226. uint32_t dk[60];
  227. } sw;
  228. } _k;
  229. /**************************************************************************/
  230. #ifdef ZT_AES_ARMNEON /******************************************************/
  231. static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
  232. {
  233. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  234. vst1q_u32(prv1, prev1);
  235. vst1q_u32(prv2, prev2);
  236. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  237. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  238. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  239. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  240. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  241. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  242. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  243. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  244. *e1 = vld1q_u3(round1);
  245. *e2 = vld1q_u3(round2);
  246. //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  247. //return expansion;
  248. }
  249. inline void _init_armneon(uint8x16_t encKey)
  250. {
  251. uint32x4_t *schedule = _k.neon.k;
  252. uint32x4_t e1,e2;
  253. (*schedule)[0] = vld1q_u32(encKey);
  254. (*schedule)[1] = vld1q_u32(encKey + 16);
  255. _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
  256. (*schedule)[2] = e1; (*schedule)[3] = e2;
  257. _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
  258. (*schedule)[4] = e1; (*schedule)[5] = e2;
  259. _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
  260. (*schedule)[6] = e1; (*schedule)[7] = e2;
  261. _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
  262. (*schedule)[8] = e1; (*schedule)[9] = e2;
  263. _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
  264. (*schedule)[10] = e1; (*schedule)[11] = e2;
  265. _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
  266. (*schedule)[12] = e1; (*schedule)[13] = e2;
  267. _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
  268. (*schedule)[14] = e1;
  269. /*
  270. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  271. (*schedule)[2] = doubleRound[0];
  272. (*schedule)[3] = doubleRound[1];
  273. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  274. (*schedule)[4] = doubleRound[0];
  275. (*schedule)[5] = doubleRound[1];
  276. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  277. (*schedule)[6] = doubleRound[0];
  278. (*schedule)[7] = doubleRound[1];
  279. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  280. (*schedule)[8] = doubleRound[0];
  281. (*schedule)[9] = doubleRound[1];
  282. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  283. (*schedule)[10] = doubleRound[0];
  284. (*schedule)[11] = doubleRound[1];
  285. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  286. (*schedule)[12] = doubleRound[0];
  287. (*schedule)[13] = doubleRound[1];
  288. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  289. (*schedule)[14] = doubleRound[0];
  290. */
  291. }
  292. inline void _encrypt_armneon(uint8x16_t *data) const
  293. {
  294. *data = veorq_u8(*data, _k.neon.k[0]);
  295. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  296. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  297. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  298. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  299. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  300. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  301. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  302. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  303. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  304. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  305. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  306. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  307. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  308. *data = vaeseq_u8(*data, _k.neon.k[14]);
  309. }
  310. inline void _decrypt_armneon(uint8x16_t *data) const
  311. {
  312. *data = veorq_u8(*data, _k.neon.k[14]);
  313. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  314. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  315. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  316. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  317. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  318. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  319. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  320. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  321. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  322. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  323. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  324. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  325. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  326. *data = vaesdq_u8(*data, (uint8x16_t)_k.neon.k[0]);
  327. }
  328. #endif /*********************************************************************/
  329. #ifdef ZT_AES_AESNI /********************************************************/
  330. static inline __m128i _init256_1_aesni(__m128i a,__m128i b)
  331. {
  332. __m128i x,y;
  333. b = _mm_shuffle_epi32(b,0xff);
  334. y = _mm_slli_si128(a,0x04);
  335. x = _mm_xor_si128(a,y);
  336. y = _mm_slli_si128(y,0x04);
  337. x = _mm_xor_si128(x,y);
  338. y = _mm_slli_si128(y,0x04);
  339. x = _mm_xor_si128(x,y);
  340. x = _mm_xor_si128(x,b);
  341. return x;
  342. }
  343. static inline __m128i _init256_2_aesni(__m128i a,__m128i b)
  344. {
  345. __m128i x,y,z;
  346. y = _mm_aeskeygenassist_si128(a,0x00);
  347. z = _mm_shuffle_epi32(y,0xaa);
  348. y = _mm_slli_si128(b,0x04);
  349. x = _mm_xor_si128(b,y);
  350. y = _mm_slli_si128(y,0x04);
  351. x = _mm_xor_si128(x,y);
  352. y = _mm_slli_si128(y,0x04);
  353. x = _mm_xor_si128(x,y);
  354. x = _mm_xor_si128(x,z);
  355. return x;
  356. }
  357. inline void _init_aesni(const uint8_t key[32])
  358. {
  359. __m128i t1,t2;
  360. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  361. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  362. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  363. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  364. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  365. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  366. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  367. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  368. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  369. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  370. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  371. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  372. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  373. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  374. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  375. _k.ni.k[15] = _mm_aesimc_si128(_k.ni.k[13]);
  376. _k.ni.k[16] = _mm_aesimc_si128(_k.ni.k[12]);
  377. _k.ni.k[17] = _mm_aesimc_si128(_k.ni.k[11]);
  378. _k.ni.k[18] = _mm_aesimc_si128(_k.ni.k[10]);
  379. _k.ni.k[19] = _mm_aesimc_si128(_k.ni.k[9]);
  380. _k.ni.k[20] = _mm_aesimc_si128(_k.ni.k[8]);
  381. _k.ni.k[21] = _mm_aesimc_si128(_k.ni.k[7]);
  382. _k.ni.k[22] = _mm_aesimc_si128(_k.ni.k[6]);
  383. _k.ni.k[23] = _mm_aesimc_si128(_k.ni.k[5]);
  384. _k.ni.k[24] = _mm_aesimc_si128(_k.ni.k[4]);
  385. _k.ni.k[25] = _mm_aesimc_si128(_k.ni.k[3]);
  386. _k.ni.k[26] = _mm_aesimc_si128(_k.ni.k[2]);
  387. _k.ni.k[27] = _mm_aesimc_si128(_k.ni.k[1]);
  388. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  389. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  390. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  391. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  392. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  393. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  394. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  395. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  396. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  397. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  398. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  399. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  400. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  401. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  402. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  403. __m128i hswap = _swap128_aesni(h);
  404. __m128i hh = _mult_block_aesni(hswap,h);
  405. __m128i hhh = _mult_block_aesni(hswap,hh);
  406. __m128i hhhh = _mult_block_aesni(hswap,hhh);
  407. _k.ni.h = hswap;
  408. _k.ni.hh = _swap128_aesni(hh);
  409. _k.ni.hhh = _swap128_aesni(hhh);
  410. _k.ni.hhhh = _swap128_aesni(hhhh);
  411. }
  412. static inline __m128i _assist128_aesni(__m128i a,__m128i b)
  413. {
  414. __m128i c;
  415. b = _mm_shuffle_epi32(b ,0xff);
  416. c = _mm_slli_si128(a, 0x04);
  417. a = _mm_xor_si128(a, c);
  418. c = _mm_slli_si128(c, 0x04);
  419. a = _mm_xor_si128(a, c);
  420. c = _mm_slli_si128(c, 0x04);
  421. a = _mm_xor_si128(a, c);
  422. a = _mm_xor_si128(a, b);
  423. return a;
  424. }
  425. /*static inline void _expand128_aesni(__m128i schedule[10],const void *const key)
  426. {
  427. __m128i t;
  428. schedule[0] = t = _mm_loadu_si128((const __m128i *)key);
  429. schedule[1] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  430. schedule[2] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  431. schedule[3] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  432. schedule[4] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  433. schedule[5] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
  434. schedule[6] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x20));
  435. schedule[7] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x40));
  436. schedule[8] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x80));
  437. schedule[9] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x1b));
  438. schedule[10] = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x36));
  439. }*/
  440. static inline void _scramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
  441. {
  442. __m128i t = _mm_loadu_si128((const __m128i *)key);
  443. __m128i k0 = t;
  444. __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  445. __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  446. __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  447. __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  448. __m128i k5 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
  449. while (len >= 64) {
  450. len -= 64;
  451. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  452. in += 16;
  453. __m128i d1 = _mm_loadu_si128((const __m128i *)in);
  454. in += 16;
  455. __m128i d2 = _mm_loadu_si128((const __m128i *)in);
  456. in += 16;
  457. __m128i d3 = _mm_loadu_si128((const __m128i *)in);
  458. in += 16;
  459. d0 = _mm_xor_si128(d0,k0);
  460. d1 = _mm_xor_si128(d1,k0);
  461. d2 = _mm_xor_si128(d2,k0);
  462. d3 = _mm_xor_si128(d3,k0);
  463. d0 = _mm_aesenc_si128(d0,k1);
  464. d1 = _mm_aesenc_si128(d1,k1);
  465. d2 = _mm_aesenc_si128(d2,k1);
  466. d3 = _mm_aesenc_si128(d3,k1);
  467. d0 = _mm_aesenc_si128(d0,k2);
  468. d1 = _mm_aesenc_si128(d1,k2);
  469. d2 = _mm_aesenc_si128(d2,k2);
  470. d3 = _mm_aesenc_si128(d3,k2);
  471. d0 = _mm_aesenc_si128(d0,k3);
  472. d1 = _mm_aesenc_si128(d1,k3);
  473. d2 = _mm_aesenc_si128(d2,k3);
  474. d3 = _mm_aesenc_si128(d3,k3);
  475. d0 = _mm_aesenc_si128(d0,k4);
  476. d1 = _mm_aesenc_si128(d1,k4);
  477. d2 = _mm_aesenc_si128(d2,k4);
  478. d3 = _mm_aesenc_si128(d3,k4);
  479. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
  480. out += 16;
  481. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d1,k5));
  482. out += 16;
  483. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d2,k5));
  484. out += 16;
  485. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d3,k5));
  486. out += 16;
  487. }
  488. while (len >= 16) {
  489. len -= 16;
  490. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  491. in += 16;
  492. d0 = _mm_xor_si128(d0,k0);
  493. d0 = _mm_aesenc_si128(d0,k1);
  494. d0 = _mm_aesenc_si128(d0,k2);
  495. d0 = _mm_aesenc_si128(d0,k3);
  496. d0 = _mm_aesenc_si128(d0,k4);
  497. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
  498. out += 16;
  499. }
  500. if (len) {
  501. __m128i last = _mm_setzero_si128();
  502. last = _mm_xor_si128(last,k0);
  503. last = _mm_aesenc_si128(last,k1);
  504. last = _mm_aesenc_si128(last,k2);
  505. last = _mm_aesenc_si128(last,k3);
  506. last = _mm_aesenc_si128(last,k4);
  507. uint8_t lpad[16];
  508. _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,k5));
  509. for(unsigned int i=0;i<len;++i) {
  510. out[i] = in[i] ^ lpad[i];
  511. }
  512. }
  513. }
  514. static inline void _unscramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
  515. {
  516. __m128i t = _mm_loadu_si128((const __m128i *)key);
  517. __m128i dk5 = t; // k0
  518. __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  519. __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  520. __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  521. __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  522. __m128i dk0 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10)); // k5
  523. __m128i dk1 = _mm_aesimc_si128(k4);
  524. __m128i dk2 = _mm_aesimc_si128(k3);
  525. __m128i dk3 = _mm_aesimc_si128(k2);
  526. __m128i dk4 = _mm_aesimc_si128(k1);
  527. while (len >= 64) {
  528. len -= 64;
  529. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  530. in += 16;
  531. __m128i d1 = _mm_loadu_si128((const __m128i *)in);
  532. in += 16;
  533. __m128i d2 = _mm_loadu_si128((const __m128i *)in);
  534. in += 16;
  535. __m128i d3 = _mm_loadu_si128((const __m128i *)in);
  536. in += 16;
  537. d0 = _mm_xor_si128(d0,dk0);
  538. d1 = _mm_xor_si128(d1,dk0);
  539. d2 = _mm_xor_si128(d2,dk0);
  540. d3 = _mm_xor_si128(d3,dk0);
  541. d0 = _mm_aesdec_si128(d0,dk1);
  542. d1 = _mm_aesdec_si128(d1,dk1);
  543. d2 = _mm_aesdec_si128(d2,dk1);
  544. d3 = _mm_aesdec_si128(d3,dk1);
  545. d0 = _mm_aesdec_si128(d0,dk2);
  546. d1 = _mm_aesdec_si128(d1,dk2);
  547. d2 = _mm_aesdec_si128(d2,dk2);
  548. d3 = _mm_aesdec_si128(d3,dk2);
  549. d0 = _mm_aesdec_si128(d0,dk3);
  550. d1 = _mm_aesdec_si128(d1,dk3);
  551. d2 = _mm_aesdec_si128(d2,dk3);
  552. d3 = _mm_aesdec_si128(d3,dk3);
  553. d0 = _mm_aesdec_si128(d0,dk4);
  554. d1 = _mm_aesdec_si128(d1,dk4);
  555. d2 = _mm_aesdec_si128(d2,dk4);
  556. d3 = _mm_aesdec_si128(d3,dk4);
  557. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
  558. out += 16;
  559. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d1,dk5));
  560. out += 16;
  561. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d2,dk5));
  562. out += 16;
  563. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d3,dk5));
  564. out += 16;
  565. }
  566. while (len >= 16) {
  567. len -= 16;
  568. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  569. in += 16;
  570. d0 = _mm_xor_si128(d0,dk0);
  571. d0 = _mm_aesdec_si128(d0,dk1);
  572. d0 = _mm_aesdec_si128(d0,dk2);
  573. d0 = _mm_aesdec_si128(d0,dk3);
  574. d0 = _mm_aesdec_si128(d0,dk4);
  575. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
  576. out += 16;
  577. }
  578. if (len) {
  579. __m128i last = _mm_setzero_si128();
  580. last = _mm_xor_si128(last,dk5); // k0
  581. last = _mm_aesenc_si128(last,k1);
  582. last = _mm_aesenc_si128(last,k2);
  583. last = _mm_aesenc_si128(last,k3);
  584. last = _mm_aesenc_si128(last,k4);
  585. uint8_t lpad[16];
  586. _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,dk0)); // k5
  587. for(unsigned int i=0;i<len;++i) {
  588. out[i] = in[i] ^ lpad[i];
  589. }
  590. }
  591. }
  592. inline void _encrypt_aesni(const void *in,void *out) const
  593. {
  594. __m128i tmp;
  595. tmp = _mm_loadu_si128((const __m128i *)in);
  596. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  597. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  598. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  599. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  600. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  601. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  602. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  603. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  604. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  605. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  606. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  607. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  608. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  609. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  610. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  611. }
  612. inline void _decrypt_aesni(const void *in,void *out) const
  613. {
  614. __m128i tmp;
  615. tmp = _mm_loadu_si128((const __m128i *)in);
  616. tmp = _mm_xor_si128(tmp,_k.ni.k[14]);
  617. tmp = _mm_aesdec_si128(tmp,_k.ni.k[15]);
  618. tmp = _mm_aesdec_si128(tmp,_k.ni.k[16]);
  619. tmp = _mm_aesdec_si128(tmp,_k.ni.k[17]);
  620. tmp = _mm_aesdec_si128(tmp,_k.ni.k[18]);
  621. tmp = _mm_aesdec_si128(tmp,_k.ni.k[19]);
  622. tmp = _mm_aesdec_si128(tmp,_k.ni.k[20]);
  623. tmp = _mm_aesdec_si128(tmp,_k.ni.k[21]);
  624. tmp = _mm_aesdec_si128(tmp,_k.ni.k[22]);
  625. tmp = _mm_aesdec_si128(tmp,_k.ni.k[23]);
  626. tmp = _mm_aesdec_si128(tmp,_k.ni.k[24]);
  627. tmp = _mm_aesdec_si128(tmp,_k.ni.k[25]);
  628. tmp = _mm_aesdec_si128(tmp,_k.ni.k[26]);
  629. tmp = _mm_aesdec_si128(tmp,_k.ni.k[27]);
  630. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(tmp,_k.ni.k[0]));
  631. }
  632. static inline __m128i _swap128_aesni(__m128i x) { return _mm_shuffle_epi8(x,_mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)); }
  633. static inline __m128i _mult_block_aesni(__m128i h,__m128i y)
  634. {
  635. __m128i t1,t2,t3,t4,t5,t6;
  636. y = _swap128_aesni(y);
  637. t1 = _mm_clmulepi64_si128(h,y,0x00);
  638. t2 = _mm_clmulepi64_si128(h,y,0x01);
  639. t3 = _mm_clmulepi64_si128(h,y,0x10);
  640. t4 = _mm_clmulepi64_si128(h,y,0x11);
  641. t2 = _mm_xor_si128(t2,t3);
  642. t3 = _mm_slli_si128(t2,8);
  643. t2 = _mm_srli_si128(t2,8);
  644. t1 = _mm_xor_si128(t1,t3);
  645. t4 = _mm_xor_si128(t4,t2);
  646. t5 = _mm_srli_epi32(t1,31);
  647. t1 = _mm_slli_epi32(t1,1);
  648. t6 = _mm_srli_epi32(t4,31);
  649. t4 = _mm_slli_epi32(t4,1);
  650. t3 = _mm_srli_si128(t5,12);
  651. t6 = _mm_slli_si128(t6,4);
  652. t5 = _mm_slli_si128(t5,4);
  653. t1 = _mm_or_si128(t1,t5);
  654. t4 = _mm_or_si128(t4,t6);
  655. t4 = _mm_or_si128(t4,t3);
  656. t5 = _mm_slli_epi32(t1,31);
  657. t6 = _mm_slli_epi32(t1,30);
  658. t3 = _mm_slli_epi32(t1,25);
  659. t5 = _mm_xor_si128(t5,t6);
  660. t5 = _mm_xor_si128(t5,t3);
  661. t6 = _mm_srli_si128(t5,4);
  662. t4 = _mm_xor_si128(t4,t6);
  663. t5 = _mm_slli_si128(t5,12);
  664. t1 = _mm_xor_si128(t1,t5);
  665. t4 = _mm_xor_si128(t4,t1);
  666. t5 = _mm_srli_epi32(t1,1);
  667. t2 = _mm_srli_epi32(t1,2);
  668. t3 = _mm_srli_epi32(t1,7);
  669. t4 = _mm_xor_si128(t4,t2);
  670. t4 = _mm_xor_si128(t4,t3);
  671. t4 = _mm_xor_si128(t4,t5);
  672. return _swap128_aesni(t4);
  673. }
  674. static inline __m128i _mult4xor_aesni(__m128i h1,__m128i h2,__m128i h3,__m128i h4,__m128i d1,__m128i d2,__m128i d3,__m128i d4)
  675. {
  676. __m128i t0,t1,t2,t3,t4,t5,t6,t7,t8,t9;
  677. d1 = _swap128_aesni(d1);
  678. d2 = _swap128_aesni(d2);
  679. d3 = _swap128_aesni(d3);
  680. d4 = _swap128_aesni(d4);
  681. t0 = _mm_clmulepi64_si128(h1,d1,0x00);
  682. t1 = _mm_clmulepi64_si128(h2,d2,0x00);
  683. t2 = _mm_clmulepi64_si128(h3,d3,0x00);
  684. t3 = _mm_clmulepi64_si128(h4,d4,0x00);
  685. t8 = _mm_xor_si128(t0,t1);
  686. t8 = _mm_xor_si128(t8,t2);
  687. t8 = _mm_xor_si128(t8,t3);
  688. t4 = _mm_clmulepi64_si128(h1,d1,0x11);
  689. t5 = _mm_clmulepi64_si128(h2,d2,0x11);
  690. t6 = _mm_clmulepi64_si128(h3,d3,0x11);
  691. t7 = _mm_clmulepi64_si128(h4,d4,0x11);
  692. t9 = _mm_xor_si128(t4,t5);
  693. t9 = _mm_xor_si128(t9,t6);
  694. t9 = _mm_xor_si128(t9,t7);
  695. t0 = _mm_shuffle_epi32(h1,78);
  696. t4 = _mm_shuffle_epi32(d1,78);
  697. t0 = _mm_xor_si128(t0,h1);
  698. t4 = _mm_xor_si128(t4,d1);
  699. t1 = _mm_shuffle_epi32(h2,78);
  700. t5 = _mm_shuffle_epi32(d2,78);
  701. t1 = _mm_xor_si128(t1,h2);
  702. t5 = _mm_xor_si128(t5,d2);
  703. t2 = _mm_shuffle_epi32(h3,78);
  704. t6 = _mm_shuffle_epi32(d3,78);
  705. t2 = _mm_xor_si128(t2,h3);
  706. t6 = _mm_xor_si128(t6,d3);
  707. t3 = _mm_shuffle_epi32(h4,78);
  708. t7 = _mm_shuffle_epi32(d4,78);
  709. t3 = _mm_xor_si128(t3,h4);
  710. t7 = _mm_xor_si128(t7,d4);
  711. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  712. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  713. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  714. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  715. t0 = _mm_xor_si128(t0,t8);
  716. t0 = _mm_xor_si128(t0,t9);
  717. t0 = _mm_xor_si128(t1,t0);
  718. t0 = _mm_xor_si128(t2,t0);
  719. t0 = _mm_xor_si128(t3,t0);
  720. t4 = _mm_slli_si128(t0,8);
  721. t0 = _mm_srli_si128(t0,8);
  722. t3 = _mm_xor_si128(t4,t8);
  723. t6 = _mm_xor_si128(t0,t9);
  724. t7 = _mm_srli_epi32(t3,31);
  725. t8 = _mm_srli_epi32(t6,31);
  726. t3 = _mm_slli_epi32(t3,1);
  727. t6 = _mm_slli_epi32(t6,1);
  728. t9 = _mm_srli_si128(t7,12);
  729. t8 = _mm_slli_si128(t8,4);
  730. t7 = _mm_slli_si128(t7,4);
  731. t3 = _mm_or_si128(t3,t7);
  732. t6 = _mm_or_si128(t6,t8);
  733. t6 = _mm_or_si128(t6,t9);
  734. t7 = _mm_slli_epi32(t3,31);
  735. t8 = _mm_slli_epi32(t3,30);
  736. t9 = _mm_slli_epi32(t3,25);
  737. t7 = _mm_xor_si128(t7,t8);
  738. t7 = _mm_xor_si128(t7,t9);
  739. t8 = _mm_srli_si128(t7,4);
  740. t7 = _mm_slli_si128(t7,12);
  741. t3 = _mm_xor_si128(t3,t7);
  742. t2 = _mm_srli_epi32(t3,1);
  743. t4 = _mm_srli_epi32(t3,2);
  744. t5 = _mm_srli_epi32(t3,7);
  745. t2 = _mm_xor_si128(t2,t4);
  746. t2 = _mm_xor_si128(t2,t5);
  747. t2 = _mm_xor_si128(t2,t8);
  748. t3 = _mm_xor_si128(t3,t2);
  749. t6 = _mm_xor_si128(t6,t3);
  750. return _swap128_aesni(t6);
  751. }
  752. static inline __m128i _ghash_aesni(__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(h,_mm_xor_si128(y,x)); }
  753. static inline __m128i _increment_be_aesni(__m128i x)
  754. {
  755. x = _swap128_aesni(x);
  756. x = _mm_add_epi64(x,_mm_set_epi32(0,0,0,1));
  757. x = _swap128_aesni(x);
  758. return x;
  759. }
  760. static inline void _htoun64_aesni(void *network,const uint64_t host) { *((uint64_t *)network) = Utils::hton(host); }
  761. inline __m128i _create_j_aesni(const uint8_t *iv) const
  762. {
  763. uint8_t j[16];
  764. *((uint64_t *)j) = *((const uint64_t *)iv);
  765. *((uint32_t *)(j+8)) = *((const uint32_t *)(iv+8));
  766. j[12] = 0;
  767. j[13] = 0;
  768. j[14] = 0;
  769. j[15] = 1;
  770. return _mm_loadu_si128((__m128i *)j);
  771. }
  772. inline __m128i _icv_header_aesni(const void *assoc,unsigned int alen) const
  773. {
  774. unsigned int blocks,pblocks,rem,i;
  775. __m128i h1,h2,h3,h4,d1,d2,d3,d4;
  776. __m128i y,last;
  777. const __m128i *ab;
  778. h1 = _k.ni.hhhh;
  779. h2 = _k.ni.hhh;
  780. h3 = _k.ni.hh;
  781. h4 = _k.ni.h;
  782. y = _mm_setzero_si128();
  783. ab = (const __m128i *)assoc;
  784. blocks = alen / 16;
  785. pblocks = blocks - (blocks % 4);
  786. rem = alen % 16;
  787. for (i=0;i<pblocks;i+=4) {
  788. d1 = _mm_loadu_si128(ab + i + 0);
  789. d2 = _mm_loadu_si128(ab + i + 1);
  790. d3 = _mm_loadu_si128(ab + i + 2);
  791. d4 = _mm_loadu_si128(ab + i + 3);
  792. y = _mm_xor_si128(y, d1);
  793. y = _mult4xor_aesni(h1,h2,h3,h4,y,d2,d3,d4);
  794. }
  795. for (i = pblocks; i < blocks; i++)
  796. y = _ghash_aesni(_k.ni.h,y,_mm_loadu_si128(ab + i));
  797. if (rem) {
  798. last = _mm_setzero_si128();
  799. memcpy(&last,ab + blocks,rem);
  800. y = _ghash_aesni(_k.ni.h,y,last);
  801. }
  802. return y;
  803. }
  804. inline __m128i _icv_tailer_aesni(__m128i y,size_t alen,size_t dlen) const
  805. {
  806. __m128i b;
  807. _htoun64_aesni(&b, alen * 8);
  808. _htoun64_aesni((uint8_t *)&b + sizeof(uint64_t), dlen * 8);
  809. return _ghash_aesni(_k.ni.h, y, b);
  810. }
  811. inline void _icv_crypt_aesni(__m128i y,__m128i j,uint8_t *icv,unsigned int icvsize) const
  812. {
  813. __m128i t,b;
  814. t = _mm_xor_si128(j,_k.ni.k[0]);
  815. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  816. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  817. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  818. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  819. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  820. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  821. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  822. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  823. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  824. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  825. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  826. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  827. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  828. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  829. t = _mm_xor_si128(y, t);
  830. _mm_storeu_si128(&b, t);
  831. memcpy(icv,&b,icvsize);
  832. }
  833. inline __m128i _encrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y) const
  834. {
  835. __m128i t,b;
  836. memset(&b,0,sizeof(b));
  837. memcpy(&b,in,rem);
  838. t = _mm_xor_si128(cb,_k.ni.k[0]);
  839. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  840. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  841. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  842. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  843. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  844. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  845. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  846. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  847. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  848. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  849. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  850. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  851. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  852. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  853. b = _mm_xor_si128(t,b);
  854. memcpy(out,&b,rem);
  855. memset((u_char*)&b + rem,0,16 - rem);
  856. return _ghash_aesni(_k.ni.h,y,b);
  857. }
  858. inline void _encrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize) const
  859. {
  860. __m128i j = _create_j_aesni(iv);
  861. __m128i cb = _increment_be_aesni(j);
  862. __m128i y = _icv_header_aesni(assoc,alen);
  863. unsigned int blocks = len / 16;
  864. unsigned int pblocks = blocks - (blocks % 4);
  865. unsigned int rem = len % 16;
  866. __m128i *bi = (__m128i *)in;
  867. __m128i *bo = (__m128i *)out;
  868. unsigned int i;
  869. for (i=0;i<pblocks;i+=4) {
  870. __m128i d1 = _mm_loadu_si128(bi + i + 0);
  871. __m128i d2 = _mm_loadu_si128(bi + i + 1);
  872. __m128i d3 = _mm_loadu_si128(bi + i + 2);
  873. __m128i d4 = _mm_loadu_si128(bi + i + 3);
  874. __m128i k0 = _k.ni.k[0];
  875. __m128i k1 = _k.ni.k[1];
  876. __m128i k2 = _k.ni.k[2];
  877. __m128i k3 = _k.ni.k[3];
  878. __m128i t1 = _mm_xor_si128(cb,k0);
  879. cb = _increment_be_aesni(cb);
  880. __m128i t2 = _mm_xor_si128(cb,k0);
  881. cb = _increment_be_aesni(cb);
  882. __m128i t3 = _mm_xor_si128(cb,k0);
  883. cb = _increment_be_aesni(cb);
  884. __m128i t4 = _mm_xor_si128(cb,k0);
  885. cb = _increment_be_aesni(cb);
  886. t1 = _mm_aesenc_si128(t1,k1);
  887. t2 = _mm_aesenc_si128(t2,k1);
  888. t3 = _mm_aesenc_si128(t3,k1);
  889. t4 = _mm_aesenc_si128(t4,k1);
  890. t1 = _mm_aesenc_si128(t1,k2);
  891. t2 = _mm_aesenc_si128(t2,k2);
  892. t3 = _mm_aesenc_si128(t3,k2);
  893. t4 = _mm_aesenc_si128(t4,k2);
  894. t1 = _mm_aesenc_si128(t1,k3);
  895. t2 = _mm_aesenc_si128(t2,k3);
  896. t3 = _mm_aesenc_si128(t3,k3);
  897. t4 = _mm_aesenc_si128(t4,k3);
  898. __m128i k4 = _k.ni.k[4];
  899. __m128i k5 = _k.ni.k[5];
  900. __m128i k6 = _k.ni.k[6];
  901. __m128i k7 = _k.ni.k[7];
  902. t1 = _mm_aesenc_si128(t1,k4);
  903. t2 = _mm_aesenc_si128(t2,k4);
  904. t3 = _mm_aesenc_si128(t3,k4);
  905. t4 = _mm_aesenc_si128(t4,k4);
  906. t1 = _mm_aesenc_si128(t1,k5);
  907. t2 = _mm_aesenc_si128(t2,k5);
  908. t3 = _mm_aesenc_si128(t3,k5);
  909. t4 = _mm_aesenc_si128(t4,k5);
  910. t1 = _mm_aesenc_si128(t1,k6);
  911. t2 = _mm_aesenc_si128(t2,k6);
  912. t3 = _mm_aesenc_si128(t3,k6);
  913. t4 = _mm_aesenc_si128(t4,k6);
  914. t1 = _mm_aesenc_si128(t1,k7);
  915. t2 = _mm_aesenc_si128(t2,k7);
  916. t3 = _mm_aesenc_si128(t3,k7);
  917. t4 = _mm_aesenc_si128(t4,k7);
  918. __m128i k8 = _k.ni.k[8];
  919. __m128i k9 = _k.ni.k[9];
  920. __m128i k10 = _k.ni.k[10];
  921. __m128i k11 = _k.ni.k[11];
  922. t1 = _mm_aesenc_si128(t1,k8);
  923. t2 = _mm_aesenc_si128(t2,k8);
  924. t3 = _mm_aesenc_si128(t3,k8);
  925. t4 = _mm_aesenc_si128(t4,k8);
  926. t1 = _mm_aesenc_si128(t1,k9);
  927. t2 = _mm_aesenc_si128(t2,k9);
  928. t3 = _mm_aesenc_si128(t3,k9);
  929. t4 = _mm_aesenc_si128(t4,k9);
  930. t1 = _mm_aesenc_si128(t1,k10);
  931. t2 = _mm_aesenc_si128(t2,k10);
  932. t3 = _mm_aesenc_si128(t3,k10);
  933. t4 = _mm_aesenc_si128(t4,k10);
  934. t1 = _mm_aesenc_si128(t1,k11);
  935. t2 = _mm_aesenc_si128(t2,k11);
  936. t3 = _mm_aesenc_si128(t3,k11);
  937. t4 = _mm_aesenc_si128(t4,k11);
  938. __m128i k12 = _k.ni.k[12];
  939. __m128i k13 = _k.ni.k[13];
  940. __m128i k14 = _k.ni.k[14];
  941. t1 = _mm_aesenc_si128(t1,k12);
  942. t2 = _mm_aesenc_si128(t2,k12);
  943. t3 = _mm_aesenc_si128(t3,k12);
  944. t4 = _mm_aesenc_si128(t4,k12);
  945. t1 = _mm_aesenc_si128(t1,k13);
  946. t2 = _mm_aesenc_si128(t2,k13);
  947. t3 = _mm_aesenc_si128(t3,k13);
  948. t4 = _mm_aesenc_si128(t4,k13);
  949. t1 = _mm_aesenclast_si128(t1,k14);
  950. t2 = _mm_aesenclast_si128(t2,k14);
  951. t3 = _mm_aesenclast_si128(t3,k14);
  952. t4 = _mm_aesenclast_si128(t4,k14);
  953. t1 = _mm_xor_si128(t1,d1);
  954. t2 = _mm_xor_si128(t2,d2);
  955. t3 = _mm_xor_si128(t3,d3);
  956. t4 = _mm_xor_si128(t4,d4);
  957. y = _mm_xor_si128(y,t1);
  958. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,t2,t3,t4);
  959. _mm_storeu_si128(bo + i + 0,t1);
  960. _mm_storeu_si128(bo + i + 1,t2);
  961. _mm_storeu_si128(bo + i + 2,t3);
  962. _mm_storeu_si128(bo + i + 3,t4);
  963. }
  964. for (i=pblocks;i<blocks;++i) {
  965. __m128i d1 = _mm_loadu_si128(bi + i);
  966. __m128i k0 = _k.ni.k[0];
  967. __m128i k1 = _k.ni.k[1];
  968. __m128i k2 = _k.ni.k[2];
  969. __m128i k3 = _k.ni.k[3];
  970. __m128i t1 = _mm_xor_si128(cb,k0);
  971. t1 = _mm_aesenc_si128(t1,k1);
  972. t1 = _mm_aesenc_si128(t1,k2);
  973. t1 = _mm_aesenc_si128(t1,k3);
  974. __m128i k4 = _k.ni.k[4];
  975. __m128i k5 = _k.ni.k[5];
  976. __m128i k6 = _k.ni.k[6];
  977. __m128i k7 = _k.ni.k[7];
  978. t1 = _mm_aesenc_si128(t1,k4);
  979. t1 = _mm_aesenc_si128(t1,k5);
  980. t1 = _mm_aesenc_si128(t1,k6);
  981. t1 = _mm_aesenc_si128(t1,k7);
  982. __m128i k8 = _k.ni.k[8];
  983. __m128i k9 = _k.ni.k[9];
  984. __m128i k10 = _k.ni.k[10];
  985. __m128i k11 = _k.ni.k[11];
  986. t1 = _mm_aesenc_si128(t1,k8);
  987. t1 = _mm_aesenc_si128(t1,k9);
  988. t1 = _mm_aesenc_si128(t1,k10);
  989. t1 = _mm_aesenc_si128(t1,k11);
  990. __m128i k12 = _k.ni.k[12];
  991. __m128i k13 = _k.ni.k[13];
  992. __m128i k14 = _k.ni.k[14];
  993. t1 = _mm_aesenc_si128(t1,k12);
  994. t1 = _mm_aesenc_si128(t1,k13);
  995. t1 = _mm_aesenclast_si128(t1,k14);
  996. t1 = _mm_xor_si128(t1,d1);
  997. _mm_storeu_si128(bo + i,t1);
  998. y = _ghash_aesni(_k.ni.h,y,t1);
  999. cb = _increment_be_aesni(cb);
  1000. }
  1001. if (rem)
  1002. y = _encrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  1003. y = _icv_tailer_aesni(y,alen,len);
  1004. _icv_crypt_aesni(y,j,icv,icvsize);
  1005. }
  1006. inline __m128i _decrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y)
  1007. {
  1008. __m128i t,b;
  1009. memset(&b,0,sizeof(b));
  1010. memcpy(&b,in,rem);
  1011. y = _ghash_aesni(_k.ni.h,y,b);
  1012. t = _mm_xor_si128(cb,_k.ni.k[0]);
  1013. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  1014. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  1015. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  1016. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  1017. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  1018. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  1019. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  1020. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  1021. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  1022. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  1023. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  1024. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  1025. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  1026. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  1027. b = _mm_xor_si128(t,b);
  1028. memcpy(out,&b,rem);
  1029. return y;
  1030. }
  1031. inline void _decrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize)
  1032. {
  1033. __m128i j = _create_j_aesni(iv);
  1034. __m128i cb = _increment_be_aesni(j);
  1035. __m128i y = _icv_header_aesni(assoc,alen);
  1036. unsigned int blocks = len / 16;
  1037. unsigned int pblocks = blocks - (blocks % 4);
  1038. unsigned int rem = len % 16;
  1039. __m128i *bi = (__m128i *)in;
  1040. __m128i *bo = (__m128i *)out;
  1041. unsigned int i;
  1042. for (i=0;i<pblocks;i+=4) {
  1043. __m128i d1 = _mm_loadu_si128(bi + i + 0);
  1044. __m128i d2 = _mm_loadu_si128(bi + i + 1);
  1045. __m128i d3 = _mm_loadu_si128(bi + i + 2);
  1046. __m128i d4 = _mm_loadu_si128(bi + i + 3);
  1047. y = _mm_xor_si128(y,d1);
  1048. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,d2,d3,d4);
  1049. __m128i k0 = _k.ni.k[0];
  1050. __m128i k1 = _k.ni.k[1];
  1051. __m128i k2 = _k.ni.k[2];
  1052. __m128i k3 = _k.ni.k[3];
  1053. __m128i t1 = _mm_xor_si128(cb,k0);
  1054. cb = _increment_be_aesni(cb);
  1055. __m128i t2 = _mm_xor_si128(cb,k0);
  1056. cb = _increment_be_aesni(cb);
  1057. __m128i t3 = _mm_xor_si128(cb,k0);
  1058. cb = _increment_be_aesni(cb);
  1059. __m128i t4 = _mm_xor_si128(cb,k0);
  1060. cb = _increment_be_aesni(cb);
  1061. t1 = _mm_aesenc_si128(t1,k1);
  1062. t2 = _mm_aesenc_si128(t2,k1);
  1063. t3 = _mm_aesenc_si128(t3,k1);
  1064. t4 = _mm_aesenc_si128(t4,k1);
  1065. t1 = _mm_aesenc_si128(t1,k2);
  1066. t2 = _mm_aesenc_si128(t2,k2);
  1067. t3 = _mm_aesenc_si128(t3,k2);
  1068. t4 = _mm_aesenc_si128(t4,k2);
  1069. t1 = _mm_aesenc_si128(t1,k3);
  1070. t2 = _mm_aesenc_si128(t2,k3);
  1071. t3 = _mm_aesenc_si128(t3,k3);
  1072. t4 = _mm_aesenc_si128(t4,k3);
  1073. __m128i k4 = _k.ni.k[4];
  1074. __m128i k5 = _k.ni.k[5];
  1075. __m128i k6 = _k.ni.k[6];
  1076. __m128i k7 = _k.ni.k[7];
  1077. t1 = _mm_aesenc_si128(t1,k4);
  1078. t2 = _mm_aesenc_si128(t2,k4);
  1079. t3 = _mm_aesenc_si128(t3,k4);
  1080. t4 = _mm_aesenc_si128(t4,k4);
  1081. t1 = _mm_aesenc_si128(t1,k5);
  1082. t2 = _mm_aesenc_si128(t2,k5);
  1083. t3 = _mm_aesenc_si128(t3,k5);
  1084. t4 = _mm_aesenc_si128(t4,k5);
  1085. t1 = _mm_aesenc_si128(t1,k6);
  1086. t2 = _mm_aesenc_si128(t2,k6);
  1087. t3 = _mm_aesenc_si128(t3,k6);
  1088. t4 = _mm_aesenc_si128(t4,k6);
  1089. t1 = _mm_aesenc_si128(t1,k7);
  1090. t2 = _mm_aesenc_si128(t2,k7);
  1091. t3 = _mm_aesenc_si128(t3,k7);
  1092. t4 = _mm_aesenc_si128(t4,k7);
  1093. __m128i k8 = _k.ni.k[8];
  1094. __m128i k9 = _k.ni.k[9];
  1095. __m128i k10 = _k.ni.k[10];
  1096. __m128i k11 = _k.ni.k[11];
  1097. t1 = _mm_aesenc_si128(t1,k8);
  1098. t2 = _mm_aesenc_si128(t2,k8);
  1099. t3 = _mm_aesenc_si128(t3,k8);
  1100. t4 = _mm_aesenc_si128(t4,k8);
  1101. t1 = _mm_aesenc_si128(t1,k9);
  1102. t2 = _mm_aesenc_si128(t2,k9);
  1103. t3 = _mm_aesenc_si128(t3,k9);
  1104. t4 = _mm_aesenc_si128(t4,k9);
  1105. t1 = _mm_aesenc_si128(t1,k10);
  1106. t2 = _mm_aesenc_si128(t2,k10);
  1107. t3 = _mm_aesenc_si128(t3,k10);
  1108. t4 = _mm_aesenc_si128(t4,k10);
  1109. t1 = _mm_aesenc_si128(t1,k11);
  1110. t2 = _mm_aesenc_si128(t2,k11);
  1111. t3 = _mm_aesenc_si128(t3,k11);
  1112. t4 = _mm_aesenc_si128(t4,k11);
  1113. __m128i k12 = _k.ni.k[12];
  1114. __m128i k13 = _k.ni.k[13];
  1115. __m128i k14 = _k.ni.k[14];
  1116. t1 = _mm_aesenc_si128(t1,k12);
  1117. t2 = _mm_aesenc_si128(t2,k12);
  1118. t3 = _mm_aesenc_si128(t3,k12);
  1119. t4 = _mm_aesenc_si128(t4,k12);
  1120. t1 = _mm_aesenc_si128(t1,k13);
  1121. t2 = _mm_aesenc_si128(t2,k13);
  1122. t3 = _mm_aesenc_si128(t3,k13);
  1123. t4 = _mm_aesenc_si128(t4,k13);
  1124. t1 = _mm_aesenclast_si128(t1,k14);
  1125. t2 = _mm_aesenclast_si128(t2,k14);
  1126. t3 = _mm_aesenclast_si128(t3,k14);
  1127. t4 = _mm_aesenclast_si128(t4,k14);
  1128. t1 = _mm_xor_si128(t1,d1);
  1129. t2 = _mm_xor_si128(t2,d2);
  1130. t3 = _mm_xor_si128(t3,d3);
  1131. t4 = _mm_xor_si128(t4,d4);
  1132. _mm_storeu_si128(bo + i + 0,t1);
  1133. _mm_storeu_si128(bo + i + 1,t2);
  1134. _mm_storeu_si128(bo + i + 2,t3);
  1135. _mm_storeu_si128(bo + i + 3,t4);
  1136. }
  1137. for (i=pblocks;i<blocks;i++) {
  1138. __m128i d1 = _mm_loadu_si128(bi + i);
  1139. y = _ghash_aesni(_k.ni.h,y,d1);
  1140. __m128i k0 = _k.ni.k[0];
  1141. __m128i k1 = _k.ni.k[1];
  1142. __m128i k2 = _k.ni.k[2];
  1143. __m128i k3 = _k.ni.k[3];
  1144. __m128i t1 = _mm_xor_si128(cb,k0);
  1145. t1 = _mm_aesenc_si128(t1,k1);
  1146. t1 = _mm_aesenc_si128(t1,k2);
  1147. t1 = _mm_aesenc_si128(t1,k3);
  1148. __m128i k4 = _k.ni.k[4];
  1149. __m128i k5 = _k.ni.k[5];
  1150. __m128i k6 = _k.ni.k[6];
  1151. __m128i k7 = _k.ni.k[7];
  1152. t1 = _mm_aesenc_si128(t1,k4);
  1153. t1 = _mm_aesenc_si128(t1,k5);
  1154. t1 = _mm_aesenc_si128(t1,k6);
  1155. t1 = _mm_aesenc_si128(t1,k7);
  1156. __m128i k8 = _k.ni.k[8];
  1157. __m128i k9 = _k.ni.k[9];
  1158. __m128i k10 = _k.ni.k[10];
  1159. __m128i k11 = _k.ni.k[11];
  1160. t1 = _mm_aesenc_si128(t1,k8);
  1161. t1 = _mm_aesenc_si128(t1,k9);
  1162. t1 = _mm_aesenc_si128(t1,k10);
  1163. t1 = _mm_aesenc_si128(t1,k11);
  1164. __m128i k12 = _k.ni.k[12];
  1165. __m128i k13 = _k.ni.k[13];
  1166. __m128i k14 = _k.ni.k[14];
  1167. t1 = _mm_aesenc_si128(t1,k12);
  1168. t1 = _mm_aesenc_si128(t1,k13);
  1169. t1 = _mm_aesenclast_si128(t1,k14);
  1170. t1 = _mm_xor_si128(t1,d1);
  1171. _mm_storeu_si128(bo + i,t1);
  1172. cb = _increment_be_aesni(cb);
  1173. }
  1174. if (rem)
  1175. y = _decrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  1176. y = _icv_tailer_aesni(y,alen,len);
  1177. _icv_crypt_aesni(y,j,icv,icvsize);
  1178. }
  1179. #endif /* ZT_AES_AESNI ******************************************************/
  1180. };
  1181. } // namespace ZeroTier
  1182. #endif