Gr.cpp 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <AnKi/Gr.h>
  7. #include <AnKi/Core/NativeWindow.h>
  8. #include <AnKi/Input/Input.h>
  9. #include <AnKi/Core/ConfigSet.h>
  10. #include <AnKi/Util/HighRezTimer.h>
  11. #include <AnKi/Core/GpuMemoryPools.h>
  12. #include <AnKi/Resource/TransferGpuAllocator.h>
  13. #include <AnKi/ShaderCompiler/Glslang.h>
  14. #include <AnKi/ShaderCompiler/ShaderProgramParser.h>
  15. #include <AnKi/Collision/Aabb.h>
  16. #include <ctime>
  17. namespace anki {
  18. const U WIDTH = 1024;
  19. const U HEIGHT = 768;
  20. static const char* VERT_SRC = R"(
  21. out gl_PerVertex
  22. {
  23. vec4 gl_Position;
  24. };
  25. void main()
  26. {
  27. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  28. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  29. })";
  30. static const char* VERT_QUAD_STRIP_SRC = R"(
  31. out gl_PerVertex
  32. {
  33. vec4 gl_Position;
  34. };
  35. layout(location = 0) out Vec2 out_uv;
  36. void main()
  37. {
  38. const vec2 POSITIONS[4] = vec2[](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
  39. gl_Position = vec4(POSITIONS[gl_VertexID % 4], 0.0, 1.0);
  40. out_uv = gl_Position.xy / 2.0 + 0.5;
  41. })";
  42. static const char* VERT_UBO_SRC = R"(
  43. out gl_PerVertex
  44. {
  45. vec4 gl_Position;
  46. };
  47. layout(set = 0, binding = 0) uniform u0_
  48. {
  49. vec4 u_color[3];
  50. };
  51. layout(set = 0, binding = 1) uniform u1_
  52. {
  53. vec4 u_rotation2d;
  54. };
  55. layout(location = 0) out vec3 out_color;
  56. void main()
  57. {
  58. out_color = u_color[gl_VertexID].rgb;
  59. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  60. mat2 rot = mat2(
  61. u_rotation2d.x, u_rotation2d.y, u_rotation2d.z, u_rotation2d.w);
  62. vec2 pos = rot * POSITIONS[gl_VertexID % 3];
  63. gl_Position = vec4(pos, 0.0, 1.0);
  64. })";
  65. static const char* VERT_INP_SRC = R"(
  66. layout(location = 0) in vec3 in_position;
  67. layout(location = 1) in vec3 in_color0;
  68. layout(location = 2) in vec3 in_color1;
  69. out gl_PerVertex
  70. {
  71. vec4 gl_Position;
  72. };
  73. layout(location = 0) out vec3 out_color0;
  74. layout(location = 1) out vec3 out_color1;
  75. void main()
  76. {
  77. gl_Position = vec4(in_position, 1.0);
  78. out_color0 = in_color0;
  79. out_color1 = in_color1;
  80. })";
  81. static const char* VERT_QUAD_SRC = R"(
  82. out gl_PerVertex
  83. {
  84. vec4 gl_Position;
  85. };
  86. layout(location = 0) out vec2 out_uv;
  87. void main()
  88. {
  89. const vec2 POSITIONS[6] =
  90. vec2[](vec2(-1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0),
  91. vec2(1.0, -1.0), vec2(1.0, 1.0), vec2(-1.0, 1.0));
  92. gl_Position = vec4(POSITIONS[gl_VertexID], 0.0, 1.0);
  93. out_uv = POSITIONS[gl_VertexID] / 2.0 + 0.5;
  94. })";
  95. static const char* VERT_MRT_SRC = R"(
  96. out gl_PerVertex
  97. {
  98. vec4 gl_Position;
  99. };
  100. layout(location = 0) in vec3 in_pos;
  101. layout(set = 0, binding = 0, std140, row_major) uniform u0_
  102. {
  103. mat4 u_mvp;
  104. };
  105. void main()
  106. {
  107. gl_Position = u_mvp * vec4(in_pos, 1.0);
  108. })";
  109. static const char* FRAG_SRC = R"(layout (location = 0) out vec4 out_color;
  110. void main()
  111. {
  112. out_color = vec4(0.5);
  113. })";
  114. static const char* FRAG_UBO_SRC = R"(layout (location = 0) out vec4 out_color;
  115. layout(location = 0) in vec3 in_color;
  116. void main()
  117. {
  118. out_color = vec4(in_color, 1.0);
  119. })";
  120. static const char* FRAG_INP_SRC = R"(layout (location = 0) out vec4 out_color;
  121. layout(location = 0) in vec3 in_color0;
  122. layout(location = 1) in vec3 in_color1;
  123. void main()
  124. {
  125. out_color = vec4(in_color0 + in_color1, 1.0);
  126. })";
  127. static const char* FRAG_TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  128. layout(location = 0) in vec2 in_uv;
  129. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  130. void main()
  131. {
  132. out_color = texture(u_tex0, in_uv);
  133. })";
  134. static const char* FRAG_TEX3D_SRC = R"(layout (location = 0) out vec4 out_color;
  135. layout(set = 0, binding = 0) uniform u0_
  136. {
  137. vec4 u_uv;
  138. };
  139. layout(set = 0, binding = 1) uniform sampler3D u_tex;
  140. void main()
  141. {
  142. out_color = textureLod(u_tex, u_uv.xyz, u_uv.w);
  143. })";
  144. static const char* FRAG_MRT_SRC = R"(layout (location = 0) out vec4 out_color0;
  145. layout (location = 1) out vec4 out_color1;
  146. layout(set = 0, binding = 1, std140) uniform u1_
  147. {
  148. vec4 u_color0;
  149. vec4 u_color1;
  150. };
  151. void main()
  152. {
  153. out_color0 = u_color0;
  154. out_color1 = u_color1;
  155. })";
  156. static const char* FRAG_MRT2_SRC = R"(layout (location = 0) out vec4 out_color;
  157. layout(location = 0) in vec2 in_uv;
  158. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  159. layout(set = 0, binding = 2) uniform sampler2D u_tex1;
  160. void main()
  161. {
  162. vec2 uv = in_uv;
  163. #ifdef ANKI_VK
  164. uv.y = 1.0 - uv.y;
  165. #endif
  166. float factor = uv.x;
  167. vec3 col0 = texture(u_tex0, uv).rgb;
  168. vec3 col1 = texture(u_tex1, uv).rgb;
  169. out_color = vec4(col1 + col0, 1.0);
  170. })";
  171. static const char* FRAG_SIMPLE_TEX_SRC = R"(
  172. layout (location = 0) out vec4 out_color;
  173. layout(location = 0) in vec2 in_uv;
  174. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  175. void main()
  176. {
  177. out_color = textureLod(u_tex0, in_uv, 1.0);
  178. })";
  179. static const char* COMP_WRITE_IMAGE_SRC = R"(
  180. layout(set = 0, binding = 0, rgba8) writeonly uniform image2D u_img;
  181. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  182. layout(set = 1, binding = 0) buffer ss1_
  183. {
  184. vec4 u_color;
  185. };
  186. void main()
  187. {
  188. imageStore(u_img, ivec2(gl_WorkGroupID.x, gl_WorkGroupID.y), u_color);
  189. })";
  190. static NativeWindow* win = nullptr;
  191. static GrManager* gr = nullptr;
  192. static StagingGpuMemoryPool* stagingMem = nullptr;
  193. static Input* input = nullptr;
  194. #define COMMON_BEGIN() \
  195. stagingMem = new StagingGpuMemoryPool(); \
  196. ConfigSet cfg(allocAligned, nullptr); \
  197. cfg.setWidth(WIDTH); \
  198. cfg.setHeight(HEIGHT); \
  199. cfg.setGrValidation(true); \
  200. cfg.setGrVsync(false); \
  201. cfg.setGrRayTracing(true); \
  202. cfg.setGrDebugMarkers(true); \
  203. win = createWindow(cfg); \
  204. ANKI_TEST_EXPECT_NO_ERR(Input::newInstance(allocAligned, nullptr, win, input)); \
  205. gr = createGrManager(&cfg, win); \
  206. ANKI_TEST_EXPECT_NO_ERR(stagingMem->init(gr, cfg)); \
  207. TransferGpuAllocator* transfAlloc = new TransferGpuAllocator(); \
  208. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->init(128_MB, gr, gr->getAllocator())); \
  209. while(true) \
  210. {
  211. #define COMMON_END() \
  212. break; \
  213. } \
  214. gr->finish(); \
  215. delete transfAlloc; \
  216. delete stagingMem; \
  217. GrManager::deleteInstance(gr); \
  218. Input::deleteInstance(input); \
  219. NativeWindow::deleteInstance(win); \
  220. win = nullptr; \
  221. gr = nullptr; \
  222. stagingMem = nullptr;
  223. static void* setUniforms(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  224. {
  225. StagingGpuMemoryToken token;
  226. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::UNIFORM, token);
  227. cmdb->bindUniformBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  228. return ptr;
  229. }
  230. static void* setStorage(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  231. {
  232. StagingGpuMemoryToken token;
  233. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::STORAGE, token);
  234. cmdb->bindStorageBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  235. return ptr;
  236. }
  237. #define SET_UNIFORMS(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setUniforms(size_, cmdb_, set_, binding_))
  238. #define SET_STORAGE(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setStorage(size_, cmdb_, set_, binding_))
  239. #define UPLOAD_TEX_SURFACE(cmdb_, tex_, surf_, ptr_, size_, handle_) \
  240. do \
  241. { \
  242. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  243. void* f = handle_.getMappedMemory(); \
  244. memcpy(f, ptr_, size_); \
  245. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, surf_)); \
  246. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  247. } while(0)
  248. #define UPLOAD_TEX_VOL(cmdb_, tex_, vol_, ptr_, size_, handle_) \
  249. do \
  250. { \
  251. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  252. void* f = handle_.getMappedMemory(); \
  253. memcpy(f, ptr_, size_); \
  254. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, vol_)); \
  255. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  256. } while(0)
  257. const Format DS_FORMAT = Format::D24_UNORM_S8_UINT;
  258. static ShaderPtr createShader(CString src, ShaderType type, GrManager& gr,
  259. ConstWeakArray<ShaderSpecializationConstValue> specVals = {})
  260. {
  261. HeapAllocator<U8> alloc(allocAligned, nullptr);
  262. StringAuto header(alloc);
  263. ShaderCompilerOptions compilerOptions;
  264. ShaderProgramParser::generateAnkiShaderHeader(type, compilerOptions, header);
  265. header.append(src);
  266. DynamicArrayAuto<U8> spirv(alloc);
  267. ANKI_TEST_EXPECT_NO_ERR(compilerGlslToSpirv(header, type, alloc, spirv));
  268. ShaderInitInfo initInf(type, spirv);
  269. initInf.m_constValues = specVals;
  270. return gr.newShader(initInf);
  271. }
  272. static ShaderProgramPtr createProgram(CString vertSrc, CString fragSrc, GrManager& gr)
  273. {
  274. ShaderPtr vert = createShader(vertSrc, ShaderType::VERTEX, gr);
  275. ShaderPtr frag = createShader(fragSrc, ShaderType::FRAGMENT, gr);
  276. ShaderProgramInitInfo inf;
  277. inf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  278. inf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  279. return gr.newShaderProgram(inf);
  280. }
  281. static FramebufferPtr createColorFb(GrManager& gr, TexturePtr tex)
  282. {
  283. TextureViewInitInfo init;
  284. init.m_texture = tex;
  285. TextureViewPtr view = gr.newTextureView(init);
  286. FramebufferInitInfo fbinit;
  287. fbinit.m_colorAttachmentCount = 1;
  288. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{1.0, 0.0, 1.0, 1.0}};
  289. fbinit.m_colorAttachments[0].m_textureView = view;
  290. return gr.newFramebuffer(fbinit);
  291. }
  292. static void createCube(GrManager& gr, BufferPtr& verts, BufferPtr& indices)
  293. {
  294. static const Array<F32, 8 * 3> pos = {
  295. {1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1}};
  296. static const Array<U16, 6 * 2 * 3> idx = {
  297. {0, 1, 3, 3, 1, 2, 1, 5, 6, 1, 6, 2, 7, 4, 0, 7, 0, 3, 6, 5, 7, 7, 5, 4, 0, 4, 5, 0, 5, 1, 3, 2, 6, 3, 6, 7}};
  298. verts = gr.newBuffer(BufferInitInfo(sizeof(pos), BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  299. void* mapped = verts->map(0, sizeof(pos), BufferMapAccessBit::WRITE);
  300. memcpy(mapped, &pos[0], sizeof(pos));
  301. verts->unmap();
  302. indices = gr.newBuffer(BufferInitInfo(sizeof(idx), BufferUsageBit::INDEX, BufferMapAccessBit::WRITE));
  303. mapped = indices->map(0, sizeof(idx), BufferMapAccessBit::WRITE);
  304. memcpy(mapped, &idx[0], sizeof(idx));
  305. indices->unmap();
  306. }
  307. static void presentBarrierA(CommandBufferPtr cmdb, TexturePtr presentTex)
  308. {
  309. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  310. TextureSubresourceInfo());
  311. }
  312. static void presentBarrierB(CommandBufferPtr cmdb, TexturePtr presentTex)
  313. {
  314. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  315. TextureSubresourceInfo());
  316. }
  317. ANKI_TEST(Gr, GrManager){COMMON_BEGIN() COMMON_END()}
  318. ANKI_TEST(Gr, Shader)
  319. {
  320. COMMON_BEGIN()
  321. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::FRAGMENT, *gr);
  322. COMMON_END()
  323. }
  324. ANKI_TEST(Gr, ShaderProgram)
  325. {
  326. COMMON_BEGIN()
  327. ShaderProgramPtr ppline = createProgram(VERT_SRC, FRAG_SRC, *gr);
  328. COMMON_END()
  329. }
  330. ANKI_TEST(Gr, ClearScreen)
  331. {
  332. COMMON_BEGIN()
  333. ANKI_TEST_LOGI("Expect to see a magenta background");
  334. U iterations = 100;
  335. while(iterations--)
  336. {
  337. HighRezTimer timer;
  338. timer.start();
  339. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  340. FramebufferPtr fb = createColorFb(*gr, presentTex);
  341. CommandBufferInitInfo cinit;
  342. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  343. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  344. presentBarrierA(cmdb, presentTex);
  345. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  346. cmdb->endRenderPass();
  347. presentBarrierB(cmdb, presentTex);
  348. cmdb->flush();
  349. gr->swapBuffers();
  350. timer.stop();
  351. const F32 TICK = 1.0f / 30.0f;
  352. if(timer.getElapsedTime() < TICK)
  353. {
  354. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  355. }
  356. }
  357. COMMON_END()
  358. }
  359. ANKI_TEST(Gr, SimpleDrawcall)
  360. {
  361. COMMON_BEGIN()
  362. ANKI_TEST_LOGI("Expect to see a grey triangle");
  363. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  364. const U ITERATIONS = 200;
  365. for(U i = 0; i < ITERATIONS; ++i)
  366. {
  367. HighRezTimer timer;
  368. timer.start();
  369. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  370. FramebufferPtr fb = createColorFb(*gr, presentTex);
  371. CommandBufferInitInfo cinit;
  372. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  373. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  374. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  375. cmdb->bindShaderProgram(prog);
  376. presentBarrierA(cmdb, presentTex);
  377. cmdb->beginRenderPass(fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  378. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  379. cmdb->endRenderPass();
  380. presentBarrierB(cmdb, presentTex);
  381. cmdb->flush();
  382. gr->swapBuffers();
  383. timer.stop();
  384. const F32 TICK = 1.0f / 30.0f;
  385. if(timer.getElapsedTime() < TICK)
  386. {
  387. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  388. }
  389. }
  390. COMMON_END()
  391. }
  392. ANKI_TEST(Gr, ViewportAndScissor)
  393. {
  394. #if 0
  395. COMMON_BEGIN()
  396. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  397. "the area around the quad");
  398. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  399. srand(time(nullptr));
  400. Array<FramebufferPtr, 4> fb;
  401. for(FramebufferPtr& f : fb)
  402. {
  403. FramebufferInitInfo fbinit;
  404. fbinit.m_colorAttachmentCount = 1;
  405. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  406. f = gr->newFramebuffer(fbinit);
  407. }
  408. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  409. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  410. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  411. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  412. const U ITERATIONS = 400;
  413. const U SCISSOR_MARGIN = 20;
  414. const U RENDER_AREA_MARGIN = 10;
  415. for(U i = 0; i < ITERATIONS; ++i)
  416. {
  417. HighRezTimer timer;
  418. timer.start();
  419. gr->beginFrame();
  420. CommandBufferInitInfo cinit;
  421. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  422. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  423. U idx = (i / 30) % 4;
  424. auto vp = VIEWPORTS[idx];
  425. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  426. cmdb->setScissor(
  427. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  428. cmdb->bindShaderProgram(prog);
  429. cmdb->beginRenderPass(fb[i % 4],
  430. {},
  431. {},
  432. vp[0] + RENDER_AREA_MARGIN,
  433. vp[1] + RENDER_AREA_MARGIN,
  434. vp[2] - RENDER_AREA_MARGIN * 2,
  435. vp[3] - RENDER_AREA_MARGIN * 2);
  436. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  437. cmdb->endRenderPass();
  438. cmdb->flush();
  439. gr->swapBuffers();
  440. timer.stop();
  441. const F32 TICK = 1.0f / 30.0f;
  442. if(timer.getElapsedTime() < TICK)
  443. {
  444. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  445. }
  446. }
  447. COMMON_END()
  448. #endif
  449. }
  450. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  451. {
  452. srand(U32(time(nullptr)));
  453. COMMON_BEGIN()
  454. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  455. "Around that quad is a border that changes color. "
  456. "The quads appear counter-clockwise");
  457. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  458. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *gr);
  459. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  460. const U RT_WIDTH = 32;
  461. const U RT_HEIGHT = 16;
  462. TextureInitInfo init;
  463. init.m_depth = 1;
  464. init.m_format = COL_FORMAT;
  465. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  466. init.m_height = RT_HEIGHT;
  467. init.m_width = RT_WIDTH;
  468. init.m_mipmapCount = 1;
  469. init.m_depth = 1;
  470. init.m_layerCount = 1;
  471. init.m_samples = 1;
  472. init.m_type = TextureType::_2D;
  473. TexturePtr rt = gr->newTexture(init);
  474. TextureViewInitInfo viewInit(rt);
  475. TextureViewPtr texView = gr->newTextureView(viewInit);
  476. Array<FramebufferPtr, 4> fb;
  477. for(FramebufferPtr& f : fb)
  478. {
  479. TextureViewInitInfo viewInf(rt);
  480. TextureViewPtr view = gr->newTextureView(viewInf);
  481. FramebufferInitInfo fbinit;
  482. fbinit.m_colorAttachmentCount = 1;
  483. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  484. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  485. fbinit.m_colorAttachments[0].m_textureView = view;
  486. f = gr->newFramebuffer(fbinit);
  487. }
  488. SamplerInitInfo samplerInit;
  489. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  490. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  491. SamplerPtr sampler = gr->newSampler(samplerInit);
  492. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  493. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  494. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  495. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  496. const U32 ITERATIONS = 400;
  497. const U32 SCISSOR_MARGIN = 2;
  498. const U32 RENDER_AREA_MARGIN = 1;
  499. for(U32 i = 0; i < ITERATIONS; ++i)
  500. {
  501. HighRezTimer timer;
  502. timer.start();
  503. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  504. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  505. if(i == 0)
  506. {
  507. CommandBufferInitInfo cinit;
  508. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  509. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  510. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  511. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  512. TextureSurfaceInfo(0, 0, 0, 0));
  513. cmdb->beginRenderPass(fb[0], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  514. cmdb->endRenderPass();
  515. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  516. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  517. cmdb->flush();
  518. }
  519. CommandBufferInitInfo cinit;
  520. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  521. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  522. // Draw offscreen
  523. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::SAMPLED_FRAGMENT,
  524. TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureSurfaceInfo(0, 0, 0, 0));
  525. auto vp = VIEWPORTS[(i / 30) % 4];
  526. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  527. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2,
  528. vp[3] - SCISSOR_MARGIN * 2);
  529. cmdb->bindShaderProgram(prog);
  530. cmdb->beginRenderPass(fb[i % 4], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {},
  531. vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN, vp[2] - RENDER_AREA_MARGIN * 2,
  532. vp[3] - RENDER_AREA_MARGIN * 2);
  533. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  534. cmdb->endRenderPass();
  535. // Draw onscreen
  536. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  537. cmdb->setScissor(0, 0, win->getWidth(), win->getHeight());
  538. cmdb->bindShaderProgram(blitProg);
  539. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  540. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  541. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  542. presentBarrierA(cmdb, presentTex);
  543. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  544. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  545. cmdb->endRenderPass();
  546. presentBarrierB(cmdb, presentTex);
  547. cmdb->flush();
  548. gr->swapBuffers();
  549. timer.stop();
  550. const F32 TICK = 1.0f / 30.0f;
  551. if(timer.getElapsedTime() < TICK)
  552. {
  553. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  554. }
  555. }
  556. COMMON_END()
  557. }
  558. ANKI_TEST(Gr, Buffer)
  559. {
  560. COMMON_BEGIN()
  561. BufferInitInfo buffInit("a");
  562. buffInit.m_size = 512;
  563. buffInit.m_usage = BufferUsageBit::ALL_UNIFORM;
  564. buffInit.m_mapAccess = BufferMapAccessBit::NONE;
  565. BufferPtr a = gr->newBuffer(buffInit);
  566. buffInit.setName("b");
  567. buffInit.m_size = 64;
  568. buffInit.m_usage = BufferUsageBit::ALL_STORAGE;
  569. buffInit.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  570. BufferPtr b = gr->newBuffer(buffInit);
  571. void* ptr = b->map(0, 64, BufferMapAccessBit::WRITE);
  572. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  573. U8 ptr2[64];
  574. memset(ptr, 0xCC, 64);
  575. memset(ptr2, 0xCC, 64);
  576. b->unmap();
  577. ptr = b->map(0, 64, BufferMapAccessBit::READ);
  578. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  579. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  580. b->unmap();
  581. COMMON_END()
  582. }
  583. ANKI_TEST(Gr, DrawWithUniforms)
  584. {
  585. COMMON_BEGIN()
  586. // A non-uploaded buffer
  587. BufferPtr b =
  588. gr->newBuffer(BufferInitInfo(sizeof(Vec4) * 3, BufferUsageBit::ALL_UNIFORM, BufferMapAccessBit::WRITE));
  589. Vec4* ptr = static_cast<Vec4*>(b->map(0, sizeof(Vec4) * 3, BufferMapAccessBit::WRITE));
  590. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  591. ptr[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  592. ptr[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  593. ptr[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  594. b->unmap();
  595. // Progm
  596. ShaderProgramPtr prog = createProgram(VERT_UBO_SRC, FRAG_UBO_SRC, *gr);
  597. const U ITERATION_COUNT = 100;
  598. U iterations = ITERATION_COUNT;
  599. while(iterations--)
  600. {
  601. HighRezTimer timer;
  602. timer.start();
  603. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  604. FramebufferPtr fb = createColorFb(*gr, presentTex);
  605. CommandBufferInitInfo cinit;
  606. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  607. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  608. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  609. cmdb->bindShaderProgram(prog);
  610. presentBarrierA(cmdb, presentTex);
  611. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  612. cmdb->bindUniformBuffer(0, 0, b, 0, MAX_PTR_SIZE);
  613. // Uploaded buffer
  614. Vec4* rotMat = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 1);
  615. F32 angle = toRad(360.0f / F32(ITERATION_COUNT) * F32(iterations));
  616. (*rotMat)[0] = cos(angle);
  617. (*rotMat)[1] = -sin(angle);
  618. (*rotMat)[2] = sin(angle);
  619. (*rotMat)[3] = cos(angle);
  620. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  621. cmdb->endRenderPass();
  622. presentBarrierB(cmdb, presentTex);
  623. cmdb->flush();
  624. gr->swapBuffers();
  625. timer.stop();
  626. const F32 TICK = 1.0f / 30.0f;
  627. if(timer.getElapsedTime() < TICK)
  628. {
  629. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  630. }
  631. }
  632. COMMON_END()
  633. }
  634. ANKI_TEST(Gr, DrawWithVertex)
  635. {
  636. COMMON_BEGIN()
  637. // The buffers
  638. struct Vert
  639. {
  640. Vec3 m_pos;
  641. Array<U8, 4> m_color;
  642. };
  643. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  644. BufferPtr b = gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  645. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::WRITE));
  646. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  647. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  648. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  649. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  650. ptr[0].m_color = {{255, 0, 0}};
  651. ptr[1].m_color = {{0, 255, 0}};
  652. ptr[2].m_color = {{0, 0, 255}};
  653. b->unmap();
  654. BufferPtr c = gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  655. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::WRITE));
  656. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  657. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  658. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  659. c->unmap();
  660. // Prog
  661. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *gr);
  662. U iterations = 100;
  663. while(iterations--)
  664. {
  665. HighRezTimer timer;
  666. timer.start();
  667. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  668. FramebufferPtr fb = createColorFb(*gr, presentTex);
  669. CommandBufferInitInfo cinit;
  670. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  671. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  672. cmdb->bindVertexBuffer(0, b, 0, sizeof(Vert));
  673. cmdb->bindVertexBuffer(1, c, 0, sizeof(Vec3));
  674. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  675. cmdb->setVertexAttribute(1, 0, Format::R8G8B8_UNORM, sizeof(Vec3));
  676. cmdb->setVertexAttribute(2, 1, Format::R32G32B32_SFLOAT, 0);
  677. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  678. cmdb->setPolygonOffset(0.0, 0.0);
  679. cmdb->bindShaderProgram(prog);
  680. presentBarrierA(cmdb, presentTex);
  681. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  682. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  683. cmdb->endRenderPass();
  684. presentBarrierB(cmdb, presentTex);
  685. cmdb->flush();
  686. gr->swapBuffers();
  687. timer.stop();
  688. const F32 TICK = 1.0f / 30.0f;
  689. if(timer.getElapsedTime() < TICK)
  690. {
  691. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  692. }
  693. }
  694. COMMON_END()
  695. }
  696. ANKI_TEST(Gr, Sampler)
  697. {
  698. COMMON_BEGIN()
  699. SamplerInitInfo init;
  700. SamplerPtr b = gr->newSampler(init);
  701. COMMON_END()
  702. }
  703. ANKI_TEST(Gr, Texture)
  704. {
  705. COMMON_BEGIN()
  706. TextureInitInfo init;
  707. init.m_depth = 1;
  708. init.m_format = Format::R8G8B8_UNORM;
  709. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT;
  710. init.m_height = 4;
  711. init.m_width = 4;
  712. init.m_mipmapCount = 2;
  713. init.m_depth = 1;
  714. init.m_layerCount = 1;
  715. init.m_samples = 1;
  716. init.m_type = TextureType::_2D;
  717. TexturePtr b = gr->newTexture(init);
  718. TextureViewInitInfo view(b);
  719. TextureViewPtr v = gr->newTextureView(view);
  720. COMMON_END()
  721. }
  722. ANKI_TEST(Gr, DrawWithTexture)
  723. {
  724. COMMON_BEGIN()
  725. //
  726. // Create sampler
  727. //
  728. SamplerInitInfo samplerInit;
  729. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  730. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  731. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  732. SamplerPtr sampler = gr->newSampler(samplerInit);
  733. //
  734. // Create texture A
  735. //
  736. TextureInitInfo init;
  737. init.m_depth = 1;
  738. init.m_format = Format::R8G8B8_UNORM;
  739. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  740. init.m_height = 2;
  741. init.m_width = 2;
  742. init.m_mipmapCount = 2;
  743. init.m_samples = 1;
  744. init.m_depth = 1;
  745. init.m_layerCount = 1;
  746. init.m_type = TextureType::_2D;
  747. TexturePtr a = gr->newTexture(init);
  748. TextureViewPtr aView = gr->newTextureView(TextureViewInitInfo(a));
  749. //
  750. // Create texture B
  751. //
  752. init.m_width = 4;
  753. init.m_height = 4;
  754. init.m_mipmapCount = 3;
  755. init.m_usage =
  756. TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::GENERATE_MIPMAPS;
  757. TexturePtr b = gr->newTexture(init);
  758. TextureViewPtr bView = gr->newTextureView(TextureViewInitInfo(b));
  759. //
  760. // Upload all textures
  761. //
  762. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  763. Array<U8, 3> mip1 = {{128, 128, 128}};
  764. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0,
  765. 255, 255, 255, 255, 255, 128, 0, 0, 0, 128, 0, 0, 0, 128, 128, 128,
  766. 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  767. CommandBufferInitInfo cmdbinit;
  768. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  769. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  770. // Set barriers
  771. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  772. TextureSurfaceInfo(0, 0, 0, 0));
  773. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  774. TextureSurfaceInfo(1, 0, 0, 0));
  775. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  776. TextureSurfaceInfo(0, 0, 0, 0));
  777. TransferGpuAllocatorHandle handle0, handle1, handle2;
  778. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  779. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  780. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceInfo(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  781. // Gen mips
  782. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::GENERATE_MIPMAPS,
  783. TextureSurfaceInfo(0, 0, 0, 0));
  784. cmdb->generateMipmaps2d(gr->newTextureView(TextureViewInitInfo(b)));
  785. // Set barriers
  786. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  787. TextureSurfaceInfo(0, 0, 0, 0));
  788. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  789. TextureSurfaceInfo(1, 0, 0, 0));
  790. for(U32 i = 0; i < 3; ++i)
  791. {
  792. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::GENERATE_MIPMAPS, TextureUsageBit::SAMPLED_FRAGMENT,
  793. TextureSurfaceInfo(i, 0, 0, 0));
  794. }
  795. FencePtr fence;
  796. cmdb->flush({}, &fence);
  797. transfAlloc->release(handle0, fence);
  798. transfAlloc->release(handle1, fence);
  799. transfAlloc->release(handle2, fence);
  800. //
  801. // Create prog
  802. //
  803. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  804. layout(location = 0) in vec2 in_uv;
  805. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  806. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  807. layout(push_constant) uniform b_pc
  808. {
  809. Vec4 u_viewport;
  810. };
  811. void main()
  812. {
  813. if(gl_FragCoord.x < u_viewport.x / 2.0)
  814. {
  815. if(gl_FragCoord.y < u_viewport.y / 2.0)
  816. {
  817. vec2 uv = in_uv * 2.0;
  818. out_color = textureLod(u_tex0, uv, 0.0);
  819. }
  820. else
  821. {
  822. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  823. out_color = textureLod(u_tex0, uv, 1.0);
  824. }
  825. }
  826. else
  827. {
  828. if(gl_FragCoord.y < u_viewport.y / 2.0)
  829. {
  830. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  831. out_color = textureLod(u_tex1, uv, 0.0);
  832. }
  833. else
  834. {
  835. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  836. out_color = textureLod(u_tex1, uv, 1.0);
  837. }
  838. }
  839. })";
  840. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *gr);
  841. //
  842. // Draw
  843. //
  844. const U ITERATION_COUNT = 200;
  845. U iterations = ITERATION_COUNT;
  846. while(iterations--)
  847. {
  848. HighRezTimer timer;
  849. timer.start();
  850. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  851. FramebufferPtr fb = createColorFb(*gr, presentTex);
  852. CommandBufferInitInfo cinit;
  853. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  854. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  855. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  856. cmdb->bindShaderProgram(prog);
  857. presentBarrierA(cmdb, presentTex);
  858. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  859. Vec4 pc(F32(win->getWidth()), F32(win->getHeight()), 0.0f, 0.0f);
  860. cmdb->setPushConstants(&pc, sizeof(pc));
  861. cmdb->bindTextureAndSampler(0, 0, aView, sampler);
  862. cmdb->bindTextureAndSampler(0, 1, bView, sampler);
  863. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  864. cmdb->endRenderPass();
  865. presentBarrierB(cmdb, presentTex);
  866. cmdb->flush();
  867. gr->swapBuffers();
  868. timer.stop();
  869. const F32 TICK = 1.0f / 30.0f;
  870. if(timer.getElapsedTime() < TICK)
  871. {
  872. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  873. }
  874. }
  875. COMMON_END()
  876. }
  877. static void drawOffscreenDrawcalls(GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  878. BufferPtr indexBuff, BufferPtr vertBuff)
  879. {
  880. static F32 ang = -2.5f;
  881. ang += toRad(2.5f);
  882. Mat4 viewMat(Vec4(0.0, 0.0, 5.0, 1.0), Mat3::getIdentity(), 1.0f);
  883. viewMat.invert();
  884. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  885. Mat4 modelMat(Vec4(-0.5, -0.5, 0.0, 1.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), 1.0f);
  886. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  887. *mvp = projMat * viewMat * modelMat;
  888. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  889. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  890. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  891. cmdb->bindVertexBuffer(0, vertBuff, 0, sizeof(Vec3));
  892. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  893. cmdb->bindShaderProgram(prog);
  894. cmdb->bindIndexBuffer(indexBuff, 0, IndexType::U16);
  895. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  896. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  897. // 2nd draw
  898. modelMat = Mat4(Vec4(0.5, 0.5, 0.0, 1.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), 1.0f);
  899. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  900. *mvp = projMat * viewMat * modelMat;
  901. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  902. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  903. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  904. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  905. }
  906. static void drawOffscreen(GrManager& gr, Bool useSecondLevel)
  907. {
  908. //
  909. // Create textures
  910. //
  911. SamplerInitInfo samplerInit;
  912. samplerInit.m_minMagFilter = SamplingFilter::LINEAR;
  913. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  914. SamplerPtr sampler = gr.newSampler(samplerInit);
  915. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  916. const U TEX_SIZE = 256;
  917. TextureInitInfo init;
  918. init.m_format = COL_FORMAT;
  919. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  920. init.m_height = TEX_SIZE;
  921. init.m_width = TEX_SIZE;
  922. init.m_type = TextureType::_2D;
  923. TexturePtr col0 = gr.newTexture(init);
  924. TexturePtr col1 = gr.newTexture(init);
  925. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0));
  926. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1));
  927. init.m_format = DS_FORMAT;
  928. TexturePtr dp = gr.newTexture(init);
  929. //
  930. // Create FB
  931. //
  932. FramebufferInitInfo fbinit;
  933. fbinit.m_colorAttachmentCount = 2;
  934. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0));
  935. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  936. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1));
  937. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  938. TextureViewInitInfo viewInit(dp);
  939. viewInit.m_depthStencilAspect = DepthStencilAspectBit::DEPTH;
  940. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  941. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  942. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  943. //
  944. // Create buffs
  945. //
  946. BufferPtr verts, indices;
  947. createCube(gr, verts, indices);
  948. //
  949. // Create progs
  950. //
  951. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  952. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  953. //
  954. // Draw
  955. //
  956. const U ITERATION_COUNT = 200;
  957. U iterations = ITERATION_COUNT;
  958. while(iterations--)
  959. {
  960. HighRezTimer timer;
  961. timer.start();
  962. CommandBufferInitInfo cinit;
  963. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  964. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  965. cmdb->setPolygonOffset(0.0, 0.0);
  966. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  967. TextureSurfaceInfo(0, 0, 0, 0));
  968. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  969. TextureSurfaceInfo(0, 0, 0, 0));
  970. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::NONE, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  971. TextureSurfaceInfo(0, 0, 0, 0));
  972. cmdb->beginRenderPass(
  973. fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}},
  974. TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT);
  975. if(!useSecondLevel)
  976. {
  977. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  978. }
  979. else
  980. {
  981. CommandBufferInitInfo cinit;
  982. cinit.m_flags = CommandBufferFlag::SECOND_LEVEL | CommandBufferFlag::GENERAL_WORK;
  983. cinit.m_framebuffer = fb;
  984. CommandBufferPtr cmdb2 = gr.newCommandBuffer(cinit);
  985. drawOffscreenDrawcalls(gr, prog, cmdb2, TEX_SIZE, indices, verts);
  986. cmdb2->flush();
  987. cmdb->pushSecondLevelCommandBuffer(cmdb2);
  988. }
  989. cmdb->endRenderPass();
  990. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  991. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  992. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  993. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  994. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  995. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  996. // Draw quad
  997. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  998. FramebufferPtr dfb = createColorFb(gr, presentTex);
  999. presentBarrierA(cmdb, presentTex);
  1000. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1001. cmdb->bindShaderProgram(resolveProg);
  1002. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1003. cmdb->bindTextureAndSampler(0, 0, col0View, sampler);
  1004. cmdb->bindTextureAndSampler(0, 2, col1View, sampler);
  1005. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1006. cmdb->endRenderPass();
  1007. presentBarrierB(cmdb, presentTex);
  1008. cmdb->flush();
  1009. // End
  1010. gr.swapBuffers();
  1011. timer.stop();
  1012. const F32 TICK = 1.0f / 30.0f;
  1013. if(timer.getElapsedTime() < TICK)
  1014. {
  1015. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1016. }
  1017. }
  1018. }
  1019. ANKI_TEST(Gr, DrawOffscreen)
  1020. {
  1021. COMMON_BEGIN()
  1022. drawOffscreen(*gr, false);
  1023. COMMON_END()
  1024. }
  1025. ANKI_TEST(Gr, DrawWithSecondLevel)
  1026. {
  1027. COMMON_BEGIN()
  1028. drawOffscreen(*gr, true);
  1029. COMMON_END()
  1030. }
  1031. ANKI_TEST(Gr, ImageLoadStore)
  1032. {
  1033. COMMON_BEGIN()
  1034. SamplerInitInfo samplerInit;
  1035. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1036. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1037. SamplerPtr sampler = gr->newSampler(samplerInit);
  1038. TextureInitInfo init;
  1039. init.m_width = init.m_height = 4;
  1040. init.m_mipmapCount = 2;
  1041. init.m_usage =
  1042. TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED | TextureUsageBit::IMAGE_COMPUTE_WRITE;
  1043. init.m_type = TextureType::_2D;
  1044. init.m_format = Format::R8G8B8A8_UNORM;
  1045. TexturePtr tex = gr->newTexture(init);
  1046. TextureViewInitInfo viewInit(tex);
  1047. viewInit.m_firstMipmap = 1;
  1048. viewInit.m_mipmapCount = 1;
  1049. TextureViewPtr view = gr->newTextureView(viewInit);
  1050. // Prog
  1051. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *gr);
  1052. // Create shader & compute prog
  1053. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::COMPUTE, *gr);
  1054. ShaderProgramInitInfo sprogInit;
  1055. sprogInit.m_computeShader = shader;
  1056. ShaderProgramPtr compProg = gr->newShaderProgram(sprogInit);
  1057. // Write texture data
  1058. CommandBufferInitInfo cmdbinit;
  1059. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1060. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1061. TextureSurfaceInfo(0, 0, 0, 0));
  1062. ClearValue clear;
  1063. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1064. TextureViewInitInfo viewInit2(tex, TextureSurfaceInfo(0, 0, 0, 0));
  1065. cmdb->clearTextureView(gr->newTextureView(viewInit2), clear);
  1066. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1067. TextureSurfaceInfo(0, 0, 0, 0));
  1068. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1069. TextureSurfaceInfo(1, 0, 0, 0));
  1070. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1071. TextureViewInitInfo viewInit3(tex, TextureSurfaceInfo(1, 0, 0, 0));
  1072. cmdb->clearTextureView(gr->newTextureView(viewInit3), clear);
  1073. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1074. TextureSurfaceInfo(1, 0, 0, 0));
  1075. cmdb->flush();
  1076. const U ITERATION_COUNT = 100;
  1077. U iterations = ITERATION_COUNT;
  1078. while(iterations--)
  1079. {
  1080. HighRezTimer timer;
  1081. timer.start();
  1082. CommandBufferInitInfo cinit;
  1083. cinit.m_flags =
  1084. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1085. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1086. // Write image
  1087. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1088. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1089. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1090. TextureSurfaceInfo(1, 0, 0, 0));
  1091. cmdb->bindShaderProgram(compProg);
  1092. cmdb->bindImage(0, 0, view);
  1093. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1094. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::SAMPLED_FRAGMENT,
  1095. TextureSurfaceInfo(1, 0, 0, 0));
  1096. // Present image
  1097. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1098. cmdb->bindShaderProgram(prog);
  1099. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1100. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1101. presentBarrierA(cmdb, presentTex);
  1102. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1103. cmdb->bindTextureAndSampler(0, 0, gr->newTextureView(TextureViewInitInfo(tex)), sampler);
  1104. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1105. cmdb->endRenderPass();
  1106. presentBarrierB(cmdb, presentTex);
  1107. cmdb->flush();
  1108. // End
  1109. gr->swapBuffers();
  1110. timer.stop();
  1111. const F32 TICK = 1.0f / 30.0f;
  1112. if(timer.getElapsedTime() < TICK)
  1113. {
  1114. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1115. }
  1116. }
  1117. COMMON_END()
  1118. }
  1119. ANKI_TEST(Gr, 3DTextures)
  1120. {
  1121. COMMON_BEGIN()
  1122. SamplerInitInfo samplerInit;
  1123. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1124. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1125. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  1126. SamplerPtr sampler = gr->newSampler(samplerInit);
  1127. //
  1128. // Create texture A
  1129. //
  1130. TextureInitInfo init;
  1131. init.m_depth = 1;
  1132. init.m_format = Format::R8G8B8A8_UNORM;
  1133. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  1134. init.m_height = 2;
  1135. init.m_width = 2;
  1136. init.m_mipmapCount = 2;
  1137. init.m_samples = 1;
  1138. init.m_depth = 2;
  1139. init.m_layerCount = 1;
  1140. init.m_type = TextureType::_3D;
  1141. TexturePtr a = gr->newTexture(init);
  1142. //
  1143. // Upload all textures
  1144. //
  1145. Array<U8, 2 * 2 * 2 * 4> mip0 = {{255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0,
  1146. 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1147. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1148. CommandBufferInitInfo cmdbinit;
  1149. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1150. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1151. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1152. TextureVolumeInfo(0));
  1153. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1154. TextureVolumeInfo(1));
  1155. TransferGpuAllocatorHandle handle0, handle1;
  1156. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(0), &mip0[0], sizeof(mip0), handle0);
  1157. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(1), &mip1[0], sizeof(mip1), handle1);
  1158. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1159. TextureVolumeInfo(0));
  1160. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1161. TextureVolumeInfo(1));
  1162. FencePtr fence;
  1163. cmdb->flush({}, &fence);
  1164. transfAlloc->release(handle0, fence);
  1165. transfAlloc->release(handle1, fence);
  1166. //
  1167. // Rest
  1168. //
  1169. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *gr);
  1170. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0),
  1171. Vec4(0, 0, 1, 0), Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0),
  1172. Vec4(0, 0, 0, 1)}};
  1173. const U ITERATION_COUNT = 100;
  1174. U iterations = ITERATION_COUNT;
  1175. while(iterations--)
  1176. {
  1177. HighRezTimer timer;
  1178. timer.start();
  1179. CommandBufferInitInfo cinit;
  1180. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1181. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1182. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1183. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1184. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1185. presentBarrierA(cmdb, presentTex);
  1186. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1187. cmdb->bindShaderProgram(prog);
  1188. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1189. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1190. *uv = TEX_COORDS_LOD[idx];
  1191. cmdb->bindTextureAndSampler(0, 1, gr->newTextureView(TextureViewInitInfo(a)), sampler);
  1192. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1193. cmdb->endRenderPass();
  1194. presentBarrierB(cmdb, presentTex);
  1195. cmdb->flush();
  1196. // End
  1197. gr->swapBuffers();
  1198. timer.stop();
  1199. const F32 TICK = 1.0f / 15.0f;
  1200. if(timer.getElapsedTime() < TICK)
  1201. {
  1202. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1203. }
  1204. }
  1205. COMMON_END()
  1206. }
  1207. static RenderTargetDescription newRTDescr(CString name)
  1208. {
  1209. RenderTargetDescription texInf(name);
  1210. texInf.m_width = texInf.m_height = 16;
  1211. texInf.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1212. texInf.m_format = Format::R8G8B8A8_UNORM;
  1213. texInf.bake();
  1214. return texInf;
  1215. }
  1216. ANKI_TEST(Gr, RenderGraph)
  1217. {
  1218. COMMON_BEGIN()
  1219. StackAllocator<U8> alloc(allocAligned, nullptr, 2_MB);
  1220. RenderGraphDescription descr(alloc);
  1221. RenderGraphPtr rgraph = gr->newRenderGraph();
  1222. const U GI_MIP_COUNT = 4;
  1223. TextureInitInfo texI("dummy");
  1224. texI.m_width = texI.m_height = 16;
  1225. texI.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1226. texI.m_format = Format::R8G8B8A8_UNORM;
  1227. TexturePtr dummyTex = gr->newTexture(texI);
  1228. // SM
  1229. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1230. {
  1231. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SM");
  1232. pass.newDependency({smScratchRt, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT});
  1233. }
  1234. // SM to exponential SM
  1235. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1236. {
  1237. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("ESM");
  1238. pass.newDependency({smScratchRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1239. pass.newDependency({smExpRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1240. }
  1241. // GI gbuff
  1242. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1243. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1244. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1245. {
  1246. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("GI gbuff");
  1247. pass.newDependency({giGbuffNormRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1248. pass.newDependency({giGbuffDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1249. pass.newDependency({giGbuffDiffRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1250. }
  1251. // GI light
  1252. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1253. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1254. {
  1255. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  1256. GraphicsRenderPassDescription& pass =
  1257. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI lp%u", faceIdx).toCString());
  1258. pass.newDependency({giGiLightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, subresource});
  1259. pass.newDependency({giGbuffNormRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1260. pass.newDependency({giGbuffDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1261. pass.newDependency({giGbuffDiffRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1262. }
  1263. // GI light mips
  1264. {
  1265. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1266. {
  1267. GraphicsRenderPassDescription& pass =
  1268. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI mip%u", faceIdx).toCString());
  1269. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1270. {
  1271. TextureSurfaceInfo surf(mip, 0, faceIdx, 0);
  1272. pass.newDependency({giGiLightRt, TextureUsageBit::GENERATE_MIPMAPS, surf});
  1273. }
  1274. }
  1275. }
  1276. // Gbuffer
  1277. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1278. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1279. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1280. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1281. {
  1282. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("G-Buffer");
  1283. pass.newDependency({gbuffRt0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1284. pass.newDependency({gbuffRt1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1285. pass.newDependency({gbuffRt2, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1286. pass.newDependency({gbuffDepth, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1287. }
  1288. // Half depth
  1289. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1290. {
  1291. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("HalfDepth");
  1292. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1293. pass.newDependency({halfDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1294. }
  1295. // Quarter depth
  1296. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1297. {
  1298. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1299. pass.newDependency({quarterDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1300. pass.newDependency({halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1301. }
  1302. // SSAO
  1303. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1304. {
  1305. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SSAO main");
  1306. pass.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1307. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1308. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1309. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1310. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1311. pass2.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1312. pass2.newDependency({ssaoVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1313. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1314. pass3.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1315. pass3.newDependency({ssaoVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1316. }
  1317. // Volumetric
  1318. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1319. {
  1320. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Vol main");
  1321. pass.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1322. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1323. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1324. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1325. pass2.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1326. pass2.newDependency({volVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1327. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1328. pass3.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1329. pass3.newDependency({volVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1330. }
  1331. // Forward shading
  1332. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1333. {
  1334. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Forward shading");
  1335. pass.newDependency({fsRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1336. pass.newDependency(
  1337. {halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::FRAMEBUFFER_ATTACHMENT_READ});
  1338. pass.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1339. }
  1340. // Light shading
  1341. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1342. {
  1343. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Light shading");
  1344. pass.newDependency({lightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1345. pass.newDependency({gbuffRt0, TextureUsageBit::SAMPLED_FRAGMENT});
  1346. pass.newDependency({gbuffRt1, TextureUsageBit::SAMPLED_FRAGMENT});
  1347. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1348. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1349. pass.newDependency({smExpRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1350. pass.newDependency({giGiLightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1351. pass.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1352. pass.newDependency({fsRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1353. }
  1354. // TAA
  1355. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1356. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1357. {
  1358. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Temporal AA");
  1359. pass.newDependency({lightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1360. pass.newDependency({taaRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1361. pass.newDependency({taaHistoryRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1362. }
  1363. rgraph->compileNewGraph(descr, alloc);
  1364. COMMON_END()
  1365. }
  1366. /// Test workarounds for some unsupported formats
  1367. ANKI_TEST(Gr, VkWorkarounds)
  1368. {
  1369. COMMON_BEGIN()
  1370. // Create program
  1371. static const char* COMP_SRC = R"(
  1372. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1373. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1374. layout(set = 0, binding = 1) buffer s_
  1375. {
  1376. uvec4 u_result;
  1377. };
  1378. shared uint g_wrong;
  1379. void main()
  1380. {
  1381. g_wrong = 0;
  1382. memoryBarrierShared();
  1383. barrier();
  1384. int lod = -1;
  1385. uint idx;
  1386. if(gl_LocalInvocationID.z == 0)
  1387. {
  1388. // First mip
  1389. lod = 0;
  1390. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1391. }
  1392. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1393. {
  1394. lod = 1;
  1395. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1396. }
  1397. if(lod != -1)
  1398. {
  1399. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1400. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1401. {
  1402. atomicAdd(g_wrong, 1);
  1403. }
  1404. }
  1405. memoryBarrierShared();
  1406. barrier();
  1407. if(g_wrong != 0)
  1408. {
  1409. u_result = uvec4(1);
  1410. }
  1411. else
  1412. {
  1413. u_result = uvec4(2);
  1414. }
  1415. })";
  1416. ShaderPtr comp = createShader(COMP_SRC, ShaderType::COMPUTE, *gr);
  1417. ShaderProgramInitInfo sinf;
  1418. sinf.m_computeShader = comp;
  1419. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1420. // Create the texture
  1421. TextureInitInfo texInit;
  1422. texInit.m_width = texInit.m_height = 8;
  1423. texInit.m_format = Format::R8G8B8_UINT;
  1424. texInit.m_type = TextureType::_2D;
  1425. texInit.m_usage = TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED;
  1426. texInit.m_mipmapCount = 2;
  1427. TexturePtr tex = gr->newTexture(texInit);
  1428. TextureViewPtr texView = gr->newTextureView(TextureViewInitInfo(tex));
  1429. SamplerInitInfo samplerInit;
  1430. SamplerPtr sampler = gr->newSampler(samplerInit);
  1431. // Create the buffer to copy to the texture
  1432. BufferPtr uploadBuff = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3,
  1433. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1434. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::WRITE));
  1435. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1436. {
  1437. data[0] = U8(i);
  1438. data[1] = U8(i + 1);
  1439. data[2] = U8(i + 2);
  1440. data += 3;
  1441. }
  1442. uploadBuff->unmap();
  1443. BufferPtr uploadBuff2 = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3,
  1444. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1445. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::WRITE));
  1446. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1447. {
  1448. data[0] = U8(i);
  1449. data[1] = U8(i + 1);
  1450. data[2] = U8(i + 2);
  1451. data += 3;
  1452. }
  1453. uploadBuff2->unmap();
  1454. // Create the result buffer
  1455. BufferPtr resultBuff =
  1456. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1457. // Upload data and test them
  1458. CommandBufferInitInfo cmdbInit;
  1459. cmdbInit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1460. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbInit);
  1461. TextureSubresourceInfo subresource;
  1462. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1463. cmdb->setTextureBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION, subresource);
  1464. cmdb->copyBufferToTextureView(uploadBuff, 0, uploadBuff->getSize(),
  1465. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(0, 0, 0, 0))));
  1466. cmdb->copyBufferToTextureView(uploadBuff2, 0, uploadBuff2->getSize(),
  1467. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(1, 0, 0, 0))));
  1468. cmdb->setTextureBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE, subresource);
  1469. cmdb->bindShaderProgram(prog);
  1470. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  1471. cmdb->bindStorageBuffer(0, 1, resultBuff, 0, resultBuff->getSize());
  1472. cmdb->dispatchCompute(1, 1, 1);
  1473. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferUsageBit::STORAGE_COMPUTE_WRITE, 0,
  1474. resultBuff->getSize());
  1475. cmdb->flush();
  1476. gr->finish();
  1477. // Get the result
  1478. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1479. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1480. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1481. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1482. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1483. resultBuff->unmap();
  1484. COMMON_END()
  1485. }
  1486. ANKI_TEST(Gr, SpecConsts)
  1487. {
  1488. COMMON_BEGIN()
  1489. static const char* VERT_SRC = R"(
  1490. layout(constant_id = 0) const int const0 = 0;
  1491. layout(constant_id = 2) const float const1 = 0.0;
  1492. out gl_PerVertex
  1493. {
  1494. vec4 gl_Position;
  1495. };
  1496. layout(location = 0) flat out int out_const0;
  1497. layout(location = 1) flat out float out_const1;
  1498. void main()
  1499. {
  1500. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1501. vec2 pos = uv * 2.0 - 1.0;
  1502. gl_Position = vec4(pos, 0.0, 1.0);
  1503. out_const0 = const0;
  1504. out_const1 = const1;
  1505. }
  1506. )";
  1507. static const char* FRAG_SRC = R"(
  1508. layout(constant_id = 0) const int const0 = 0;
  1509. layout(constant_id = 1) const float const1 = 0.0;
  1510. layout(location = 0) flat in int in_const0;
  1511. layout(location = 1) flat in float in_const1;
  1512. layout(location = 0) out vec4 out_color;
  1513. layout(set = 0, binding = 0) buffer s_
  1514. {
  1515. uvec4 u_result;
  1516. };
  1517. void main()
  1518. {
  1519. out_color = vec4(1.0);
  1520. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1521. {
  1522. if(in_const0 != 2147483647 || in_const1 != 1234.5678 || const0 != -2147483647 || const1 != -1.0)
  1523. {
  1524. u_result = uvec4(1u);
  1525. }
  1526. else
  1527. {
  1528. u_result = uvec4(2u);
  1529. }
  1530. }
  1531. }
  1532. )";
  1533. ShaderPtr vert =
  1534. createShader(VERT_SRC, ShaderType::VERTEX, *gr,
  1535. Array<ShaderSpecializationConstValue, 3>{{ShaderSpecializationConstValue(2147483647),
  1536. ShaderSpecializationConstValue(-1.0f),
  1537. ShaderSpecializationConstValue(1234.5678f)}});
  1538. ShaderPtr frag = createShader(FRAG_SRC, ShaderType::FRAGMENT, *gr,
  1539. Array<ShaderSpecializationConstValue, 2>{{ShaderSpecializationConstValue(-2147483647),
  1540. ShaderSpecializationConstValue(-1.0f)}});
  1541. ShaderProgramInitInfo sinf;
  1542. sinf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  1543. sinf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  1544. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1545. // Create the result buffer
  1546. BufferPtr resultBuff =
  1547. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1548. // Draw
  1549. CommandBufferInitInfo cinit;
  1550. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1551. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1552. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1553. cmdb->bindShaderProgram(prog);
  1554. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1555. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1556. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1557. presentBarrierA(cmdb, presentTex);
  1558. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1559. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1560. cmdb->endRenderPass();
  1561. presentBarrierB(cmdb, presentTex);
  1562. cmdb->flush();
  1563. gr->swapBuffers();
  1564. gr->finish();
  1565. // Get the result
  1566. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1567. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1568. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1569. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1570. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1571. resultBuff->unmap();
  1572. COMMON_END()
  1573. }
  1574. ANKI_TEST(Gr, PushConsts)
  1575. {
  1576. COMMON_BEGIN()
  1577. static const char* VERT_SRC = R"(
  1578. struct PC
  1579. {
  1580. vec4 color;
  1581. ivec4 icolor;
  1582. vec4 arr[2];
  1583. mat4 mat;
  1584. };
  1585. layout(push_constant, std140) uniform pc_
  1586. {
  1587. PC regs;
  1588. };
  1589. out gl_PerVertex
  1590. {
  1591. vec4 gl_Position;
  1592. };
  1593. layout(location = 0) out vec4 out_color;
  1594. void main()
  1595. {
  1596. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1597. vec2 pos = uv * 2.0 - 1.0;
  1598. gl_Position = vec4(pos, 0.0, 1.0);
  1599. out_color = regs.color;
  1600. }
  1601. )";
  1602. static const char* FRAG_SRC = R"(
  1603. struct PC
  1604. {
  1605. vec4 color;
  1606. ivec4 icolor;
  1607. vec4 arr[2];
  1608. mat4 mat;
  1609. };
  1610. layout(push_constant, std140) uniform pc_
  1611. {
  1612. PC regs;
  1613. };
  1614. layout(location = 0) in vec4 in_color;
  1615. layout(location = 0) out vec4 out_color;
  1616. layout(set = 0, binding = 0) buffer s_
  1617. {
  1618. uvec4 u_result;
  1619. };
  1620. void main()
  1621. {
  1622. out_color = vec4(1.0);
  1623. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1624. {
  1625. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1626. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1627. || regs.mat[1][0] != 0.5)
  1628. {
  1629. u_result = uvec4(1u);
  1630. }
  1631. else
  1632. {
  1633. u_result = uvec4(2u);
  1634. }
  1635. }
  1636. }
  1637. )";
  1638. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  1639. // Create the result buffer
  1640. BufferPtr resultBuff = gr->newBuffer(BufferInitInfo(
  1641. sizeof(UVec4), BufferUsageBit::ALL_STORAGE | BufferUsageBit::TRANSFER_DESTINATION, BufferMapAccessBit::READ));
  1642. // Draw
  1643. CommandBufferInitInfo cinit;
  1644. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1645. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1646. cmdb->fillBuffer(resultBuff, 0, resultBuff->getSize(), 0);
  1647. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::STORAGE_FRAGMENT_WRITE, 0,
  1648. resultBuff->getSize());
  1649. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1650. cmdb->bindShaderProgram(prog);
  1651. struct PushConstants
  1652. {
  1653. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1654. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1655. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1656. Mat4 m_mat = Mat4(0.0f);
  1657. } pc;
  1658. pc.m_mat(0, 1) = 0.5f;
  1659. cmdb->setPushConstants(&pc, sizeof(pc));
  1660. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1661. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1662. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1663. presentBarrierA(cmdb, presentTex);
  1664. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1665. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1666. cmdb->endRenderPass();
  1667. presentBarrierB(cmdb, presentTex);
  1668. cmdb->flush();
  1669. gr->swapBuffers();
  1670. gr->finish();
  1671. // Get the result
  1672. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1673. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1674. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1675. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1676. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1677. resultBuff->unmap();
  1678. COMMON_END()
  1679. }
  1680. ANKI_TEST(Gr, BindingWithArray)
  1681. {
  1682. COMMON_BEGIN()
  1683. // Create result buffer
  1684. BufferPtr resBuff =
  1685. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1686. Array<BufferPtr, 4> uniformBuffers;
  1687. F32 count = 1.0f;
  1688. for(BufferPtr& ptr : uniformBuffers)
  1689. {
  1690. ptr = gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::WRITE));
  1691. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::WRITE));
  1692. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1693. count += 4.0f;
  1694. ptr->unmap();
  1695. }
  1696. // Create program
  1697. static const char* PROG_SRC = R"(
  1698. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1699. layout(set = 0, binding = 0) uniform u_
  1700. {
  1701. vec4 m_vec;
  1702. } u_ubos[4];
  1703. layout(set = 0, binding = 1) writeonly buffer ss_
  1704. {
  1705. vec4 u_result;
  1706. };
  1707. void main()
  1708. {
  1709. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1710. })";
  1711. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1712. ShaderProgramInitInfo sprogInit;
  1713. sprogInit.m_computeShader = shader;
  1714. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1715. // Run
  1716. CommandBufferInitInfo cinit;
  1717. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1718. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1719. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1720. {
  1721. cmdb->bindUniformBuffer(0, 0, uniformBuffers[i], 0, MAX_PTR_SIZE, i);
  1722. }
  1723. cmdb->bindStorageBuffer(0, 1, resBuff, 0, MAX_PTR_SIZE);
  1724. cmdb->bindShaderProgram(prog);
  1725. cmdb->dispatchCompute(1, 1, 1);
  1726. cmdb->flush();
  1727. gr->finish();
  1728. // Check result
  1729. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::READ));
  1730. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1731. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1732. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1733. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1734. resBuff->unmap();
  1735. COMMON_END();
  1736. }
  1737. ANKI_TEST(Gr, Bindless)
  1738. {
  1739. COMMON_BEGIN()
  1740. // Create texture A
  1741. TextureInitInfo texInit;
  1742. texInit.m_width = 1;
  1743. texInit.m_height = 1;
  1744. texInit.m_format = Format::R32G32B32A32_UINT;
  1745. texInit.m_usage = TextureUsageBit::ALL_IMAGE | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::ALL_SAMPLED;
  1746. texInit.m_mipmapCount = 1;
  1747. TexturePtr texA = gr->newTexture(texInit);
  1748. // Create texture B
  1749. TexturePtr texB = gr->newTexture(texInit);
  1750. // Create texture C
  1751. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1752. TexturePtr texC = gr->newTexture(texInit);
  1753. // Create sampler
  1754. SamplerInitInfo samplerInit;
  1755. SamplerPtr sampler = gr->newSampler(samplerInit);
  1756. // Create views
  1757. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceInfo()));
  1758. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceInfo()));
  1759. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceInfo()));
  1760. // Create result buffer
  1761. BufferPtr resBuff =
  1762. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1763. // Create program A
  1764. static const char* PROG_SRC = R"(
  1765. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1766. ANKI_BINDLESS_SET(0u);
  1767. layout(set = 1, binding = 0) writeonly buffer ss_
  1768. {
  1769. uvec4 u_result;
  1770. };
  1771. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1772. layout(push_constant) uniform pc_
  1773. {
  1774. uvec4 u_texIndices;
  1775. };
  1776. void main()
  1777. {
  1778. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1779. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1780. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1781. u_result = val0 + val1 + uvec4(val2);
  1782. })";
  1783. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1784. ShaderProgramInitInfo sprogInit;
  1785. sprogInit.m_computeShader = shader;
  1786. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1787. // Run
  1788. CommandBufferInitInfo cinit;
  1789. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1790. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1791. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1792. TextureSurfaceInfo());
  1793. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1794. TextureSurfaceInfo());
  1795. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1796. TextureSurfaceInfo());
  1797. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1798. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1799. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1800. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1801. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceInfo(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1802. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1803. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceInfo(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1804. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_READ,
  1805. TextureSurfaceInfo());
  1806. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1807. TextureSurfaceInfo());
  1808. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1809. TextureSurfaceInfo());
  1810. cmdb->bindStorageBuffer(1, 0, resBuff, 0, MAX_PTR_SIZE);
  1811. cmdb->bindSampler(1, 1, sampler);
  1812. cmdb->bindShaderProgram(prog);
  1813. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1814. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1815. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1816. UVec4 pc(idx0, idx1, idx2, 0);
  1817. cmdb->setPushConstants(&pc, sizeof(pc));
  1818. cmdb->bindAllBindless(0);
  1819. cmdb->dispatchCompute(1, 1, 1);
  1820. // Read result
  1821. FencePtr fence;
  1822. cmdb->flush({}, &fence);
  1823. transfAlloc->release(handle0, fence);
  1824. transfAlloc->release(handle1, fence);
  1825. transfAlloc->release(handle2, fence);
  1826. gr->finish();
  1827. // Check result
  1828. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::READ));
  1829. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1830. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1831. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1832. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1833. resBuff->unmap();
  1834. COMMON_END()
  1835. }
  1836. ANKI_TEST(Gr, BufferAddress)
  1837. {
  1838. COMMON_BEGIN()
  1839. // Create program
  1840. static const char* PROG_SRC = R"(
  1841. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1842. ANKI_DEFINE_LOAD_STORE(Vec4, 4)
  1843. layout(push_constant) uniform u_
  1844. {
  1845. U64 u_bufferAddressRead;
  1846. U64 u_bufferAddressWrite;
  1847. };
  1848. void main()
  1849. {
  1850. Vec4 a;
  1851. load(u_bufferAddressRead, a);
  1852. Vec4 b;
  1853. load(u_bufferAddressRead + 16ul, b);
  1854. store(u_bufferAddressWrite, a + b);
  1855. })";
  1856. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1857. ShaderProgramInitInfo sprogInit;
  1858. sprogInit.m_computeShader = shader;
  1859. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1860. // Create buffers
  1861. BufferInitInfo info;
  1862. info.m_size = sizeof(Vec4) * 2;
  1863. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  1864. info.m_mapAccess = BufferMapAccessBit::WRITE;
  1865. BufferPtr ptrBuff = gr->newBuffer(info);
  1866. Vec4* mapped = static_cast<Vec4*>(ptrBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE));
  1867. const Vec4 VEC(123.456f, -1.1f, 100.0f, -666.0f);
  1868. *mapped = VEC;
  1869. ++mapped;
  1870. *mapped = VEC * 10.0f;
  1871. ptrBuff->unmap();
  1872. BufferPtr resBuff =
  1873. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1874. // Run
  1875. CommandBufferInitInfo cinit;
  1876. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1877. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1878. cmdb->bindShaderProgram(prog);
  1879. struct Address
  1880. {
  1881. PtrSize m_addressRead;
  1882. PtrSize m_addressWrite;
  1883. } address;
  1884. address.m_addressRead = ptrBuff->getGpuAddress();
  1885. address.m_addressWrite = resBuff->getGpuAddress();
  1886. cmdb->setPushConstants(&address, sizeof(address));
  1887. cmdb->dispatchCompute(1, 1, 1);
  1888. cmdb->flush();
  1889. gr->finish();
  1890. // Check
  1891. mapped = static_cast<Vec4*>(resBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ));
  1892. ANKI_TEST_EXPECT_EQ(*mapped, VEC + VEC * 10.0f);
  1893. resBuff->unmap();
  1894. COMMON_END();
  1895. }
  1896. ANKI_TEST(Gr, RayQuery)
  1897. {
  1898. COMMON_BEGIN();
  1899. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  1900. if(!useRayTracing)
  1901. {
  1902. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1903. }
  1904. // Index buffer
  1905. BufferPtr idxBuffer;
  1906. if(useRayTracing)
  1907. {
  1908. Array<U16, 3> indices = {0, 1, 2};
  1909. BufferInitInfo init;
  1910. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1911. init.m_usage = BufferUsageBit::INDEX;
  1912. init.m_size = sizeof(indices);
  1913. idxBuffer = gr->newBuffer(init);
  1914. void* addr = idxBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1915. memcpy(addr, &indices[0], sizeof(indices));
  1916. idxBuffer->unmap();
  1917. }
  1918. // Position buffer (add some padding to complicate things a bit)
  1919. BufferPtr vertBuffer;
  1920. if(useRayTracing)
  1921. {
  1922. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1923. BufferInitInfo init;
  1924. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1925. init.m_usage = BufferUsageBit::VERTEX;
  1926. init.m_size = sizeof(verts);
  1927. vertBuffer = gr->newBuffer(init);
  1928. void* addr = vertBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1929. memcpy(addr, &verts[0], sizeof(verts));
  1930. vertBuffer->unmap();
  1931. }
  1932. // BLAS
  1933. AccelerationStructurePtr blas;
  1934. if(useRayTracing)
  1935. {
  1936. AccelerationStructureInitInfo init;
  1937. init.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  1938. init.m_bottomLevel.m_indexBuffer = idxBuffer;
  1939. init.m_bottomLevel.m_indexCount = 3;
  1940. init.m_bottomLevel.m_indexType = IndexType::U16;
  1941. init.m_bottomLevel.m_positionBuffer = vertBuffer;
  1942. init.m_bottomLevel.m_positionCount = 3;
  1943. init.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  1944. init.m_bottomLevel.m_positionStride = 4 * 4;
  1945. blas = gr->newAccelerationStructure(init);
  1946. }
  1947. // TLAS
  1948. AccelerationStructurePtr tlas;
  1949. if(useRayTracing)
  1950. {
  1951. AccelerationStructureInitInfo init;
  1952. init.m_type = AccelerationStructureType::TOP_LEVEL;
  1953. Array<AccelerationStructureInstance, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1954. init.m_topLevel.m_instances = instances;
  1955. tlas = gr->newAccelerationStructure(init);
  1956. }
  1957. // Program
  1958. ShaderProgramPtr prog;
  1959. {
  1960. CString src = R"(
  1961. #if USE_RAY_TRACING
  1962. #extension GL_EXT_ray_query : enable
  1963. #endif
  1964. layout(push_constant, std140, row_major) uniform b_pc
  1965. {
  1966. Mat4 u_vp;
  1967. Vec3 u_cameraPos;
  1968. F32 u_padding0;
  1969. };
  1970. #if USE_RAY_TRACING
  1971. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1972. #endif
  1973. layout(location = 0) in Vec2 in_uv;
  1974. layout(location = 0) out Vec3 out_color;
  1975. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1976. {
  1977. const Vec3 v0v1 = v1 - v0;
  1978. const Vec3 v0v2 = v2 - v0;
  1979. const Vec3 pvec = cross(dir, v0v2);
  1980. const F32 det = dot(v0v1, pvec);
  1981. if(det < 0.00001)
  1982. {
  1983. return false;
  1984. }
  1985. const F32 invDet = 1.0 / det;
  1986. const Vec3 tvec = orig - v0;
  1987. u = dot(tvec, pvec) * invDet;
  1988. if(u < 0.0 || u > 1.0)
  1989. {
  1990. return false;
  1991. }
  1992. const Vec3 qvec = cross(tvec, v0v1);
  1993. v = dot(dir, qvec) * invDet;
  1994. if(v < 0.0 || u + v > 1.0)
  1995. {
  1996. return false;
  1997. }
  1998. t = dot(v0v2, qvec) * invDet;
  1999. return true;
  2000. }
  2001. void main()
  2002. {
  2003. // Unproject
  2004. const Vec2 ndc = in_uv * 2.0 - 1.0;
  2005. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  2006. const Vec3 p3 = p4.xyz / p4.w;
  2007. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  2008. const Vec3 rayOrigin = u_cameraPos;
  2009. #if USE_RAY_TRACING
  2010. Bool hit = false;
  2011. F32 u = 0.0;
  2012. F32 v = 0.0;
  2013. rayQueryEXT rayQuery;
  2014. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  2015. 0.01, rayDir, 1000.0);
  2016. rayQueryProceedEXT(rayQuery);
  2017. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  2018. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  2019. {
  2020. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  2021. u = bary.x;
  2022. v = bary.y;
  2023. hit = true;
  2024. }
  2025. #else
  2026. // Manual trace
  2027. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  2028. F32 t;
  2029. F32 u;
  2030. F32 v;
  2031. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  2032. #endif
  2033. if(hit)
  2034. {
  2035. out_color = Vec3(u, v, 1.0 - (u + v));
  2036. }
  2037. else
  2038. {
  2039. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  2040. }
  2041. }
  2042. )";
  2043. StringAuto fragSrc(HeapAllocator<U8>(allocAligned, nullptr));
  2044. if(useRayTracing)
  2045. {
  2046. fragSrc.append("#define USE_RAY_TRACING 1\n");
  2047. }
  2048. else
  2049. {
  2050. fragSrc.append("#define USE_RAY_TRACING 0\n");
  2051. }
  2052. fragSrc.append(src);
  2053. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *gr);
  2054. }
  2055. // Build AS
  2056. if(useRayTracing)
  2057. {
  2058. CommandBufferInitInfo cinit;
  2059. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2060. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2061. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::NONE,
  2062. AccelerationStructureUsageBit::BUILD);
  2063. cmdb->buildAccelerationStructure(blas);
  2064. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::BUILD,
  2065. AccelerationStructureUsageBit::ATTACH);
  2066. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2067. AccelerationStructureUsageBit::BUILD);
  2068. cmdb->buildAccelerationStructure(tlas);
  2069. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2070. AccelerationStructureUsageBit::FRAGMENT_READ);
  2071. cmdb->flush();
  2072. }
  2073. // Draw
  2074. constexpr U32 ITERATIONS = 200;
  2075. for(U i = 0; i < ITERATIONS; ++i)
  2076. {
  2077. HighRezTimer timer;
  2078. timer.start();
  2079. const Vec4 cameraPos = {0.0f, 0.0f, 3.0f, 0.0f};
  2080. const Mat4 viewMat = Mat4{Transform{cameraPos, Mat3x4::getIdentity(), 1.0f}}.getInverse();
  2081. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2082. CommandBufferInitInfo cinit;
  2083. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2084. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2085. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  2086. cmdb->bindShaderProgram(prog);
  2087. struct PC
  2088. {
  2089. Mat4 m_vp;
  2090. Vec4 m_cameraPos;
  2091. } pc;
  2092. pc.m_vp = projMat * viewMat;
  2093. pc.m_cameraPos = cameraPos;
  2094. cmdb->setPushConstants(&pc, sizeof(pc));
  2095. if(useRayTracing)
  2096. {
  2097. cmdb->bindAccelerationStructure(0, 0, tlas);
  2098. }
  2099. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2100. FramebufferPtr fb = createColorFb(*gr, presentTex);
  2101. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  2102. TextureSubresourceInfo{});
  2103. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  2104. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  2105. cmdb->endRenderPass();
  2106. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  2107. TextureSubresourceInfo{});
  2108. cmdb->flush();
  2109. gr->swapBuffers();
  2110. timer.stop();
  2111. const F32 TICK = 1.0f / 30.0f;
  2112. if(timer.getElapsedTime() < TICK)
  2113. {
  2114. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2115. }
  2116. }
  2117. COMMON_END();
  2118. }
  2119. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer,
  2120. Bool turnInsideOut = false)
  2121. {
  2122. BufferInitInfo inf;
  2123. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2124. inf.m_usage = BufferUsageBit::INDEX | BufferUsageBit::VERTEX | BufferUsageBit::STORAGE_TRACE_RAYS_READ;
  2125. inf.m_size = sizeof(Vec3) * 8;
  2126. vertBuffer = gr.newBuffer(inf);
  2127. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::WRITE);
  2128. // 7------6
  2129. // /| /|
  2130. // 3------2 |
  2131. // | | | |
  2132. // | 4 ---|-5
  2133. // |/ |/
  2134. // 0------1
  2135. positions[0] = Vec3(min.x(), min.y(), max.z());
  2136. positions[1] = Vec3(max.x(), min.y(), max.z());
  2137. positions[2] = Vec3(max.x(), max.y(), max.z());
  2138. positions[3] = Vec3(min.x(), max.y(), max.z());
  2139. positions[4] = Vec3(min.x(), min.y(), min.z());
  2140. positions[5] = Vec3(max.x(), min.y(), min.z());
  2141. positions[6] = Vec3(max.x(), max.y(), min.z());
  2142. positions[7] = Vec3(min.x(), max.y(), min.z());
  2143. vertBuffer->unmap();
  2144. inf.m_size = sizeof(U16) * 36;
  2145. indexBuffer = gr.newBuffer(inf);
  2146. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::WRITE);
  2147. U32 t = 0;
  2148. // Top
  2149. indices[t++] = 3;
  2150. indices[t++] = 2;
  2151. indices[t++] = 7;
  2152. indices[t++] = 2;
  2153. indices[t++] = 6;
  2154. indices[t++] = 7;
  2155. // Bottom
  2156. indices[t++] = 1;
  2157. indices[t++] = 0;
  2158. indices[t++] = 4;
  2159. indices[t++] = 1;
  2160. indices[t++] = 4;
  2161. indices[t++] = 5;
  2162. // Left
  2163. indices[t++] = 0;
  2164. indices[t++] = 3;
  2165. indices[t++] = 4;
  2166. indices[t++] = 3;
  2167. indices[t++] = 7;
  2168. indices[t++] = 4;
  2169. // Right
  2170. indices[t++] = 1;
  2171. indices[t++] = 5;
  2172. indices[t++] = 2;
  2173. indices[t++] = 2;
  2174. indices[t++] = 5;
  2175. indices[t++] = 6;
  2176. // Front
  2177. indices[t++] = 0;
  2178. indices[t++] = 1;
  2179. indices[t++] = 3;
  2180. indices[t++] = 3;
  2181. indices[t++] = 1;
  2182. indices[t++] = 2;
  2183. // Back
  2184. indices[t++] = 4;
  2185. indices[t++] = 7;
  2186. indices[t++] = 6;
  2187. indices[t++] = 5;
  2188. indices[t++] = 4;
  2189. indices[t++] = 6;
  2190. ANKI_ASSERT(t == indices.getSize());
  2191. if(turnInsideOut)
  2192. {
  2193. for(U32 i = 0; i < t; i += 3)
  2194. {
  2195. std::swap(indices[i + 1], indices[i + 2]);
  2196. }
  2197. }
  2198. indexBuffer->unmap();
  2199. }
  2200. enum class GeomWhat
  2201. {
  2202. SMALL_BOX,
  2203. BIG_BOX,
  2204. ROOM,
  2205. LIGHT,
  2206. COUNT,
  2207. FIRST = 0
  2208. };
  2209. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2210. ANKI_TEST(Gr, RayGen)
  2211. {
  2212. COMMON_BEGIN();
  2213. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  2214. if(!useRayTracing)
  2215. {
  2216. ANKI_TEST_LOGW("Ray tracing not supported");
  2217. break;
  2218. }
  2219. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2220. #define MAGIC_MACRO(x) x
  2221. #include <Tests/Gr/RtTypes.h>
  2222. #undef MAGIC_MACRO
  2223. HeapAllocator<U8> alloc(allocAligned, nullptr);
  2224. // Create the offscreen RTs
  2225. Array<TexturePtr, 2> offscreenRts;
  2226. {
  2227. TextureInitInfo inf("T_offscreen#1");
  2228. inf.m_width = WIDTH;
  2229. inf.m_height = HEIGHT;
  2230. inf.m_format = Format::R8G8B8A8_UNORM;
  2231. inf.m_usage = TextureUsageBit::IMAGE_TRACE_RAYS_READ | TextureUsageBit::IMAGE_TRACE_RAYS_WRITE
  2232. | TextureUsageBit::IMAGE_COMPUTE_READ;
  2233. offscreenRts[0] = gr->newTexture(inf);
  2234. inf.setName("T_offscreen#2");
  2235. offscreenRts[1] = gr->newTexture(inf);
  2236. }
  2237. // Copy to present program
  2238. ShaderProgramPtr copyToPresentProg;
  2239. {
  2240. const CString src = R"(
  2241. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2242. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2243. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2244. void main()
  2245. {
  2246. const UVec2 size = UVec2(imageSize(u_inImg));
  2247. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2248. {
  2249. return;
  2250. }
  2251. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2252. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2253. })";
  2254. ShaderPtr shader = createShader(src, ShaderType::COMPUTE, *gr);
  2255. ShaderProgramInitInfo sprogInit;
  2256. sprogInit.m_computeShader = shader;
  2257. copyToPresentProg = gr->newShaderProgram(sprogInit);
  2258. }
  2259. // Create the gometries
  2260. struct Geom
  2261. {
  2262. BufferPtr m_vertexBuffer;
  2263. BufferPtr m_indexBuffer;
  2264. Aabb m_aabb;
  2265. Mat3x4 m_worldTransform;
  2266. Mat3 m_worldRotation;
  2267. Bool m_insideOut = false;
  2268. U8 m_asMask = 0b10;
  2269. AccelerationStructurePtr m_blas;
  2270. U32 m_indexCount = 36;
  2271. Vec3 m_diffuseColor = Vec3(0.0f);
  2272. Vec3 m_emissiveColor = Vec3(0.0f);
  2273. };
  2274. Array<Geom, U(GeomWhat::COUNT)> geometries;
  2275. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2276. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2277. geometries[GeomWhat::SMALL_BOX].m_worldTransform = Mat3x4(
  2278. Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz()
  2279. / 2.0f),
  2280. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2281. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2282. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2283. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2284. geometries[GeomWhat::BIG_BOX].m_worldTransform = Mat3x4(
  2285. Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz()
  2286. / 2.0f),
  2287. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2288. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2289. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2290. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2291. geometries[GeomWhat::ROOM].m_worldTransform = Mat3x4(
  2292. Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2293. geometries[GeomWhat::ROOM].m_worldRotation);
  2294. geometries[GeomWhat::ROOM].m_insideOut = true;
  2295. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2296. geometries[GeomWhat::LIGHT].m_aabb =
  2297. Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2298. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2299. geometries[GeomWhat::LIGHT].m_worldTransform = Mat3x4(
  2300. Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2301. geometries[GeomWhat::LIGHT].m_worldRotation);
  2302. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2303. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2304. // Create Buffers
  2305. for(Geom& g : geometries)
  2306. {
  2307. createCubeBuffers(*gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2308. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer,
  2309. g.m_insideOut);
  2310. }
  2311. // Create AS
  2312. AccelerationStructurePtr tlas;
  2313. {
  2314. for(Geom& g : geometries)
  2315. {
  2316. AccelerationStructureInitInfo inf;
  2317. inf.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  2318. inf.m_bottomLevel.m_indexBuffer = g.m_indexBuffer;
  2319. inf.m_bottomLevel.m_indexType = IndexType::U16;
  2320. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2321. inf.m_bottomLevel.m_positionBuffer = g.m_vertexBuffer;
  2322. inf.m_bottomLevel.m_positionCount = 8;
  2323. inf.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  2324. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2325. g.m_blas = gr->newAccelerationStructure(inf);
  2326. }
  2327. // TLAS
  2328. Array<AccelerationStructureInstance, U32(GeomWhat::COUNT)> instances;
  2329. U32 count = 0;
  2330. for(Geom& g : geometries)
  2331. {
  2332. instances[count].m_bottomLevel = g.m_blas;
  2333. instances[count].m_transform = g.m_worldTransform;
  2334. instances[count].m_hitgroupSbtRecordIndex = count;
  2335. instances[count].m_mask = g.m_asMask;
  2336. ++count;
  2337. }
  2338. AccelerationStructureInitInfo inf;
  2339. inf.m_type = AccelerationStructureType::TOP_LEVEL;
  2340. inf.m_topLevel.m_instances = instances;
  2341. tlas = gr->newAccelerationStructure(inf);
  2342. }
  2343. // Create model info
  2344. BufferPtr modelBuffer;
  2345. {
  2346. BufferInitInfo inf;
  2347. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2348. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2349. inf.m_size = sizeof(Model) * U32(GeomWhat::COUNT);
  2350. modelBuffer = gr->newBuffer(inf);
  2351. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::COUNT), BufferMapAccessBit::WRITE);
  2352. memset(&models[0], 0, inf.m_size);
  2353. for(GeomWhat i : EnumIterable<GeomWhat>())
  2354. {
  2355. const Geom& g = geometries[i];
  2356. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2357. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2358. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2359. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2360. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2361. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2362. }
  2363. modelBuffer->unmap();
  2364. }
  2365. // Create the ppline
  2366. ShaderProgramPtr rtProg;
  2367. constexpr U32 rayGenGroupIdx = 1;
  2368. constexpr U32 missGroupIdx = 2;
  2369. constexpr U32 shadowMissGroupIdx = 3;
  2370. constexpr U32 lambertianChitGroupIdx = 4;
  2371. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2372. constexpr U32 emissiveChitGroupIdx = 6;
  2373. constexpr U32 shadowAhitGroupIdx = 7;
  2374. constexpr U32 hitgroupCount = 7;
  2375. {
  2376. const CString commonSrcPart = R"(
  2377. #define Mat3x4Scalar Mat3x4
  2378. %s
  2379. const F32 PI = 3.14159265358979323846;
  2380. struct PayLoad
  2381. {
  2382. Vec3 m_total;
  2383. Vec3 m_weight;
  2384. Vec3 m_scatteredDir;
  2385. F32 m_hitT;
  2386. };
  2387. struct ShadowPayLoad
  2388. {
  2389. F32 m_shadow;
  2390. };
  2391. layout(set = 0, binding = 0, scalar) buffer b_00
  2392. {
  2393. Model u_models[];
  2394. };
  2395. layout(set = 0, binding = 1, scalar) buffer b_01
  2396. {
  2397. Light u_lights[];
  2398. };
  2399. layout(push_constant, scalar) uniform b_pc
  2400. {
  2401. PushConstants u_regs;
  2402. };
  2403. #define PAYLOAD_LOCATION 0
  2404. #define SHADOW_PAYLOAD_LOCATION 1
  2405. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2406. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2407. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2408. {
  2409. const Mesh mesh = model.m_mesh;
  2410. const U32 offset = primitiveId * 6;
  2411. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2412. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2413. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2414. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2415. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2416. return model.m_worldRotation * normal;
  2417. }
  2418. UVec3 rand3DPCG16(UVec3 v)
  2419. {
  2420. v = v * 1664525u + 1013904223u;
  2421. v.x += v.y * v.z;
  2422. v.y += v.z * v.x;
  2423. v.z += v.x * v.y;
  2424. v.x += v.y * v.z;
  2425. v.y += v.z * v.x;
  2426. v.z += v.x * v.y;
  2427. return v >> 16u;
  2428. }
  2429. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2430. {
  2431. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2432. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2433. return Vec2(e1, e2);
  2434. }
  2435. Vec3 hemisphereSampleUniform(Vec2 uv)
  2436. {
  2437. const F32 phi = uv.y * 2.0 * PI;
  2438. const F32 cosTheta = 1.0 - uv.x;
  2439. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2440. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2441. }
  2442. Mat3 rotationFromDirection(Vec3 zAxis)
  2443. {
  2444. Vec3 z = zAxis;
  2445. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2446. F32 a = -1.0 / (sign + z.z);
  2447. F32 b = z.x * z.y * a;
  2448. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2449. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2450. return Mat3(x, y, z);
  2451. }
  2452. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2453. {
  2454. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2455. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2456. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2457. }
  2458. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2459. {
  2460. scatterDir = randomDirectionInHemisphere(normal);
  2461. pdf = dot(normal, scatterDir) / PI;
  2462. }
  2463. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2464. {
  2465. F32 cosine = dot(normal, scatteredDir);
  2466. return max(cosine / PI, 0.0);
  2467. })";
  2468. #define MAGIC_MACRO ANKI_STRINGIZE
  2469. const CString rtTypesStr =
  2470. #include <Tests/Gr/RtTypes.h>
  2471. ;
  2472. #undef MAGIC_MACRO
  2473. StringAuto commonSrc(alloc);
  2474. commonSrc.sprintf(commonSrcPart, rtTypesStr.cstr());
  2475. const CString lambertianSrc = R"(
  2476. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2477. hitAttributeEXT vec2 g_attribs;
  2478. void main()
  2479. {
  2480. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2481. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2482. Vec3 scatteredDir;
  2483. F32 pdf;
  2484. scatterLambertian(normal, scatteredDir, pdf);
  2485. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2486. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2487. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2488. s_payLoad.m_scatteredDir = scatteredDir;
  2489. s_payLoad.m_hitT = gl_HitTEXT;
  2490. })";
  2491. const CString lambertianRoomSrc = R"(
  2492. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2493. void main()
  2494. {
  2495. Vec3 col;
  2496. U32 quad = gl_PrimitiveID / 2;
  2497. if(quad == 2)
  2498. {
  2499. col = Vec3(0.65, 0.05, 0.05);
  2500. }
  2501. else if(quad == 3)
  2502. {
  2503. col = Vec3(0.12, 0.45, 0.15);
  2504. }
  2505. else
  2506. {
  2507. col = Vec3(0.73f);
  2508. }
  2509. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2510. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2511. Vec3 scatteredDir;
  2512. F32 pdf;
  2513. scatterLambertian(normal, scatteredDir, pdf);
  2514. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2515. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2516. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2517. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2518. s_payLoad.m_scatteredDir = scatteredDir;
  2519. s_payLoad.m_hitT = gl_HitTEXT;
  2520. })";
  2521. const CString emissiveSrc = R"(
  2522. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2523. void main()
  2524. {
  2525. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2526. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2527. s_payLoad.m_weight = Vec3(0.0);
  2528. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2529. s_payLoad.m_hitT = -1.0;
  2530. })";
  2531. const CString missSrc = R"(
  2532. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2533. void main()
  2534. {
  2535. //s_payLoad.m_color =
  2536. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2537. //Vec3(0.0);
  2538. s_payLoad.m_weight = Vec3(0.0);
  2539. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2540. s_payLoad.m_hitT = -1.0;
  2541. })";
  2542. const CString shadowAhitSrc = R"(
  2543. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2544. void main()
  2545. {
  2546. s_payLoad.m_shadow += 0.25;
  2547. //terminateRayEXT();
  2548. })";
  2549. const CString shadowChitSrc = R"(
  2550. void main()
  2551. {
  2552. })";
  2553. const CString shadowMissSrc = R"(
  2554. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2555. void main()
  2556. {
  2557. s_payLoad.m_shadow = 1.0;
  2558. })";
  2559. const CString rayGenSrc = R"(
  2560. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2561. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2562. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2563. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2564. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2565. void main()
  2566. {
  2567. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2568. uv.y = 1.0 - uv.y;
  2569. const Vec2 ndc = uv * 2.0 - 1.0;
  2570. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2571. const Vec3 p3 = p4.xyz / p4.w;
  2572. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2573. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2574. Vec3 outColor = Vec3(0.0);
  2575. const U32 sampleCount = 8;
  2576. const U32 maxRecursionDepth = 2;
  2577. for(U32 s = 0; s < sampleCount; ++s)
  2578. {
  2579. Vec3 rayOrigin = u_regs.m_cameraPos;
  2580. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2581. s_payLoad.m_total = Vec3(0.0);
  2582. s_payLoad.m_weight = Vec3(1.0);
  2583. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2584. {
  2585. const U32 cullMask = 0xFF;
  2586. const U32 sbtRecordOffset = 0;
  2587. const U32 sbtRecordStride = 0;
  2588. const U32 missIndex = 0;
  2589. const F32 tMin = 0.1;
  2590. const F32 tMax = 10000.0;
  2591. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2592. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2593. if(s_payLoad.m_hitT > 0.0)
  2594. {
  2595. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2596. rayDir = s_payLoad.m_scatteredDir;
  2597. }
  2598. else
  2599. {
  2600. break;
  2601. }
  2602. }
  2603. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2604. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2605. }
  2606. outColor /= F32(sampleCount);
  2607. #if 0
  2608. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2609. const Vec3 normal = s_payLoad.m_normal;
  2610. if(s_payLoad.m_hitT > 0.0)
  2611. {
  2612. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2613. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2614. {
  2615. s_shadowPayLoad.m_shadow = 0.0;
  2616. const Light light = u_lights[i];
  2617. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2618. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2619. const U32 cullMask = 0x2;
  2620. const U32 sbtRecordOffset = 1;
  2621. const U32 sbtRecordStride = 0;
  2622. const U32 missIndex = 1;
  2623. const F32 tMin = 0.1;
  2624. const F32 tMax = length(randomPointInLight - rayOrigin);
  2625. const U32 flags = gl_RayFlagsOpaqueEXT;
  2626. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2627. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2628. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2629. outColor += normal * light.m_intensity * shadow;
  2630. }
  2631. }
  2632. else
  2633. {
  2634. outColor = diffuseColor;
  2635. }
  2636. #endif
  2637. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2638. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2639. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2640. })";
  2641. ShaderPtr lambertianShader = createShader(
  2642. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2643. ShaderPtr lambertianRoomShader =
  2644. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()),
  2645. ShaderType::CLOSEST_HIT, *gr);
  2646. ShaderPtr emissiveShader = createShader(
  2647. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2648. ShaderPtr shadowAhitShader = createShader(
  2649. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::ANY_HIT, *gr);
  2650. ShaderPtr shadowChitShader = createShader(
  2651. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2652. ShaderPtr missShader =
  2653. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::MISS, *gr);
  2654. ShaderPtr shadowMissShader = createShader(
  2655. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::MISS, *gr);
  2656. ShaderPtr rayGenShader = createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()),
  2657. ShaderType::RAY_GEN, *gr);
  2658. Array<RayTracingHitGroup, 4> hitGroups;
  2659. hitGroups[0].m_closestHitShader = lambertianShader;
  2660. hitGroups[1].m_closestHitShader = lambertianRoomShader;
  2661. hitGroups[2].m_closestHitShader = emissiveShader;
  2662. hitGroups[3].m_closestHitShader = shadowChitShader;
  2663. hitGroups[3].m_anyHitShader = shadowAhitShader;
  2664. Array<ShaderPtr, 2> missShaders = {missShader, shadowMissShader};
  2665. // Add the same 2 times to test multiple ray gen shaders
  2666. Array<ShaderPtr, 2> rayGenShaders = {rayGenShader, rayGenShader};
  2667. ShaderProgramInitInfo inf;
  2668. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2669. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2670. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2671. rtProg = gr->newShaderProgram(inf);
  2672. }
  2673. // Create the SBT
  2674. BufferPtr sbt;
  2675. {
  2676. const U32 recordCount = 1 + 2 + U32(GeomWhat::COUNT) * 2;
  2677. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2678. BufferInitInfo inf;
  2679. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2680. inf.m_usage = BufferUsageBit::SBT;
  2681. inf.m_size = sbtRecordSize * recordCount;
  2682. sbt = gr->newBuffer(inf);
  2683. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::WRITE);
  2684. memset(&mapped[0], 0, inf.m_size);
  2685. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2686. ANKI_TEST_EXPECT_EQ(handles.getSize(),
  2687. gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2688. // Ray gen
  2689. U32 record = 0;
  2690. memcpy(&mapped[sbtRecordSize * record++],
  2691. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2692. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2693. // 2xMiss
  2694. memcpy(&mapped[sbtRecordSize * record++],
  2695. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2696. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2697. memcpy(&mapped[sbtRecordSize * record++],
  2698. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2699. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2700. // Small box
  2701. memcpy(&mapped[sbtRecordSize * record++],
  2702. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2703. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2704. memcpy(&mapped[sbtRecordSize * record++],
  2705. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2706. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2707. // Big box
  2708. memcpy(&mapped[sbtRecordSize * record++],
  2709. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2710. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2711. memcpy(&mapped[sbtRecordSize * record++],
  2712. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2713. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2714. // Room
  2715. memcpy(&mapped[sbtRecordSize * record++],
  2716. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2717. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2718. memcpy(&mapped[sbtRecordSize * record++],
  2719. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2720. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2721. // Light
  2722. memcpy(&mapped[sbtRecordSize * record++],
  2723. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2724. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2725. memcpy(&mapped[sbtRecordSize * record++],
  2726. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2727. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2728. sbt->unmap();
  2729. }
  2730. // Create lights
  2731. BufferPtr lightBuffer;
  2732. constexpr U32 lightCount = 1;
  2733. {
  2734. BufferInitInfo inf;
  2735. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2736. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2737. inf.m_size = sizeof(Light) * lightCount;
  2738. lightBuffer = gr->newBuffer(inf);
  2739. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::WRITE);
  2740. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2741. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2742. lights[0].m_intensity = Vec3(1.0f);
  2743. lightBuffer->unmap();
  2744. }
  2745. // Draw
  2746. constexpr U32 ITERATIONS = 100 * 8;
  2747. for(U32 i = 0; i < ITERATIONS; ++i)
  2748. {
  2749. HighRezTimer timer;
  2750. timer.start();
  2751. const Mat4 viewMat =
  2752. Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f))
  2753. .getInverse();
  2754. const Mat4 projMat =
  2755. Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2756. CommandBufferInitInfo cinit;
  2757. cinit.m_flags =
  2758. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2759. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2760. if(i == 0)
  2761. {
  2762. for(const Geom& g : geometries)
  2763. {
  2764. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::NONE,
  2765. AccelerationStructureUsageBit::BUILD);
  2766. }
  2767. for(const Geom& g : geometries)
  2768. {
  2769. cmdb->buildAccelerationStructure(g.m_blas);
  2770. }
  2771. for(const Geom& g : geometries)
  2772. {
  2773. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::BUILD,
  2774. AccelerationStructureUsageBit::ATTACH);
  2775. }
  2776. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2777. AccelerationStructureUsageBit::BUILD);
  2778. cmdb->buildAccelerationStructure(tlas);
  2779. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2780. AccelerationStructureUsageBit::TRACE_RAYS_READ);
  2781. }
  2782. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2783. TextureViewPtr presentView;
  2784. {
  2785. TextureViewInitInfo inf;
  2786. inf.m_texture = presentTex;
  2787. presentView = gr->newTextureView(inf);
  2788. }
  2789. TextureViewPtr offscreenView, offscreenHistoryView;
  2790. {
  2791. TextureViewInitInfo inf;
  2792. inf.m_texture = offscreenRts[i & 1];
  2793. offscreenView = gr->newTextureView(inf);
  2794. inf.m_texture = offscreenRts[(i + 1) & 1];
  2795. offscreenHistoryView = gr->newTextureView(inf);
  2796. }
  2797. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::NONE, TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2798. TextureSubresourceInfo());
  2799. cmdb->setTextureBarrier(offscreenRts[(i + 1) & 1], TextureUsageBit::IMAGE_COMPUTE_READ,
  2800. TextureUsageBit::IMAGE_TRACE_RAYS_READ, TextureSubresourceInfo());
  2801. cmdb->bindStorageBuffer(0, 0, modelBuffer, 0, MAX_PTR_SIZE);
  2802. cmdb->bindStorageBuffer(0, 1, lightBuffer, 0, MAX_PTR_SIZE);
  2803. cmdb->bindAccelerationStructure(1, 0, tlas);
  2804. cmdb->bindImage(1, 1, offscreenHistoryView);
  2805. cmdb->bindImage(1, 2, offscreenView);
  2806. cmdb->bindShaderProgram(rtProg);
  2807. PushConstants pc;
  2808. pc.m_vp = projMat * viewMat;
  2809. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2810. pc.m_lightCount = lightCount;
  2811. pc.m_frame = i;
  2812. cmdb->setPushConstants(&pc, sizeof(pc));
  2813. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2814. cmdb->traceRays(sbt, 0, sbtRecordSize, U32(GeomWhat::COUNT) * 2, 2, WIDTH, HEIGHT, 1);
  2815. // Copy to present
  2816. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2817. TextureUsageBit::IMAGE_COMPUTE_READ, TextureSubresourceInfo());
  2818. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  2819. TextureSubresourceInfo());
  2820. cmdb->bindImage(0, 0, offscreenView);
  2821. cmdb->bindImage(0, 1, presentView);
  2822. cmdb->bindShaderProgram(copyToPresentProg);
  2823. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2824. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2825. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2826. cmdb->setTextureBarrier(presentTex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::PRESENT,
  2827. TextureSubresourceInfo());
  2828. cmdb->flush();
  2829. gr->swapBuffers();
  2830. timer.stop();
  2831. const F32 TICK = 1.0f / 60.0f;
  2832. if(timer.getElapsedTime() < TICK)
  2833. {
  2834. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2835. }
  2836. }
  2837. COMMON_END();
  2838. }
  2839. ANKI_TEST(Gr, AsyncCompute)
  2840. {
  2841. COMMON_BEGIN()
  2842. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  2843. // Create the counting program
  2844. static const char* PROG_SRC = R"(
  2845. layout(local_size_x = 8) in;
  2846. layout(binding = 0, std430) buffer b_buff
  2847. {
  2848. U32 u_counters[];
  2849. };
  2850. void main()
  2851. {
  2852. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  2853. {
  2854. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  2855. }
  2856. })";
  2857. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  2858. ShaderProgramInitInfo sprogInit;
  2859. sprogInit.m_computeShader = shader;
  2860. ShaderProgramPtr incrementProg = gr->newShaderProgram(sprogInit);
  2861. // Create the check program
  2862. static const char* CHECK_SRC = R"(
  2863. layout(local_size_x = 8) in;
  2864. layout(binding = 0, std430) buffer b_buff
  2865. {
  2866. U32 u_counters[];
  2867. };
  2868. void main()
  2869. {
  2870. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  2871. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  2872. U32 expectedVal = 0u;
  2873. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  2874. {
  2875. expectedVal += i + 1u;
  2876. }
  2877. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  2878. })";
  2879. shader = createShader(CHECK_SRC, ShaderType::COMPUTE, *gr);
  2880. sprogInit.m_computeShader = shader;
  2881. ShaderProgramPtr checkProg = gr->newShaderProgram(sprogInit);
  2882. // Create buffers
  2883. BufferInitInfo info;
  2884. info.m_size = sizeof(U32) * ARRAY_SIZE;
  2885. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  2886. info.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  2887. BufferPtr atomicsBuffer = gr->newBuffer(info);
  2888. U32* values =
  2889. static_cast<U32*>(atomicsBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ | BufferMapAccessBit::WRITE));
  2890. memset(values, 0, info.m_size);
  2891. // Pre-create some CPU result buffers
  2892. DynamicArrayAuto<U32> atomicsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2893. atomicsBufferCpu.create(ARRAY_SIZE);
  2894. DynamicArrayAuto<U32> expectedResultsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2895. expectedResultsBufferCpu.create(ARRAY_SIZE);
  2896. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2897. {
  2898. const U32 localInvocation = i % 8;
  2899. U32 expectedVal = 4;
  2900. for(U32 j = 0; j < localInvocation * 20; ++j)
  2901. {
  2902. expectedVal += j + 1;
  2903. }
  2904. expectedResultsBufferCpu[i] = expectedVal;
  2905. }
  2906. // Create the 1st command buffer
  2907. CommandBufferInitInfo cinit;
  2908. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2909. CommandBufferPtr incrementCmdb = gr->newCommandBuffer(cinit);
  2910. incrementCmdb->bindShaderProgram(incrementProg);
  2911. incrementCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2912. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2913. // Create the 2nd command buffer
  2914. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2915. CommandBufferPtr checkCmdb = gr->newCommandBuffer(cinit);
  2916. checkCmdb->bindShaderProgram(checkProg);
  2917. checkCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2918. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2919. // Create the 3rd command buffer
  2920. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2921. CommandBufferPtr incrementCmdb2 = gr->newCommandBuffer(cinit);
  2922. incrementCmdb2->bindShaderProgram(incrementProg);
  2923. incrementCmdb2->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2924. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2925. // Submit
  2926. #if 1
  2927. FencePtr fence;
  2928. incrementCmdb->flush({}, &fence);
  2929. checkCmdb->flush(Array<FencePtr, 1>{fence}, &fence);
  2930. incrementCmdb2->flush(Array<FencePtr, 1>{fence}, &fence);
  2931. fence->clientWait(MAX_SECOND);
  2932. #else
  2933. incrementCmdb->flush();
  2934. gr->finish();
  2935. checkCmdb->flush();
  2936. gr->finish();
  2937. incrementCmdb2->flush();
  2938. gr->finish();
  2939. #endif
  2940. // Verify
  2941. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  2942. Bool correct = true;
  2943. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2944. {
  2945. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  2946. if(!correct)
  2947. {
  2948. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  2949. break;
  2950. }
  2951. }
  2952. atomicsBuffer->unmap();
  2953. ANKI_TEST_EXPECT_EQ(correct, true);
  2954. COMMON_END()
  2955. }
  2956. } // end namespace anki