| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
- // All rights reserved.
- // Code licensed under the BSD License.
- // http://www.anki3d.org/LICENSE
- #include <AnKi/Scene/Components/LightComponent.h>
- #include <AnKi/Scene/SceneNode.h>
- #include <AnKi/Scene/Frustum.h>
- #include <AnKi/Scene/SceneNode.h>
- #include <AnKi/Scene/SceneGraph.h>
- #include <AnKi/Collision.h>
- #include <AnKi/Resource/ResourceManager.h>
- #include <AnKi/Resource/ImageResource.h>
- #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
- namespace anki {
- // Calculate day of the year
- static U32 dayOfYear(U32 year, U32 month, U32 day)
- {
- struct tm date = {};
- date.tm_year = year - 1900;
- date.tm_mon = month - 1;
- date.tm_mday = day;
- mktime(&date);
- return date.tm_yday + 1;
- }
- static void solarPosition(U32 year, U32 month, U32 day, F32 hourUtc, F32 latitude, F32 longitude, F32& elevation, F32& azimuth)
- {
- const F32 N = F32(dayOfYear(year, month, day));
- // Fractional year (in radians)
- const F32 gamma = 2.0f * kPi / 365.0f * (N - 1.0f + (hourUtc - 12.0f) / 24.0f);
- // Equation of time (minutes)
- const F32 eqTime =
- 229.18f * (0.000075f + 0.001868f * cos(gamma) - 0.032077f * sin(gamma) - 0.014615f * cos(2.0f * gamma) - 0.040849f * sin(2.0f * gamma));
- // Solar declination (radians)
- const F32 decl = 0.006918f - 0.399912f * cos(gamma) + 0.070257f * sin(gamma) - 0.006758f * cos(2.0f * gamma) + 0.000907f * sin(2 * gamma)
- - 0.002697f * cos(3.0f * gamma) + 0.00148f * sin(3.0f * gamma);
- // Time offset (minutes)
- const F32 timeOffset = eqTime + 4.0f * longitude;
- // True solar time (degrees)
- const F32 tst = hourUtc * 60.0f + timeOffset;
- const F32 ha = toRad((tst / 4.0f) - 180.0f); // Hour angle in radians
- const F32 latRad = toRad(latitude);
- // Solar zenith angle
- const F32 cosZenith = sin(latRad) * sin(decl) + cos(latRad) * cos(decl) * cos(ha);
- const F32 zenith = acos(cosZenith);
- elevation = kPi / 2.0f - zenith;
- // Solar azimuth
- const F32 v = (sin(decl) - sin(latRad) * cos(zenith)) / (cos(latRad) * sin(zenith));
- const F32 azRad = acos(clamp(v, -1.0f, 1.0f));
- azimuth = azRad;
- if(ha > 0.0)
- {
- azimuth = 2.0f * kPi - azimuth;
- }
- }
- LightComponent::LightComponent(SceneNode* node)
- : SceneComponent(node, kClassType)
- , m_type(LightComponentType::kPoint)
- {
- m_point.m_radius = 1.0f;
- setLightComponentType(LightComponentType::kPoint);
- m_worldTransform = node->getWorldTransform();
- }
- LightComponent::~LightComponent()
- {
- }
- void LightComponent::setLightComponentType(LightComponentType newType)
- {
- ANKI_ASSERT(newType >= LightComponentType::kFirst && newType < LightComponentType::kCount);
- const Bool typeChanged = newType != m_type;
- if(typeChanged)
- {
- m_type = newType;
- m_shadowAtlasUvViewportCount = 0;
- m_shapeDirty = true;
- m_otherDirty = true;
- }
- }
- void LightComponent::update(SceneComponentUpdateInfo& info, Bool& updated)
- {
- const Bool moveUpdated = info.m_node->movedThisFrame();
- updated = moveUpdated || m_shapeDirty || m_otherDirty;
- if(moveUpdated)
- {
- m_worldTransform = info.m_node->getWorldTransform();
- }
- if(updated && m_type == LightComponentType::kPoint)
- {
- const Bool reallyShadow = m_shadow && m_shadowAtlasUvViewportCount == 6;
- // Upload the hash
- if(reallyShadow)
- {
- if(!m_hash.isValid())
- {
- m_hash.allocate();
- }
- if(m_shapeDirty || moveUpdated)
- {
- GpuSceneLightVisibleRenderablesHash hash = {};
- m_hash.uploadToGpuScene(hash);
- }
- }
- // Upload to the GPU scene
- GpuSceneLight gpuLight = {};
- gpuLight.m_position = m_worldTransform.getOrigin().xyz;
- gpuLight.m_radius = m_point.m_radius;
- gpuLight.m_diffuseColor = m_diffColor.xyz;
- gpuLight.m_visibleRenderablesHashIndex = (reallyShadow) ? m_hash.getIndex() : 0;
- gpuLight.m_isPointLight = 1;
- gpuLight.m_isSpotLight = 0;
- gpuLight.m_shadow = reallyShadow;
- gpuLight.m_cpuFeedback = m_shadow;
- gpuLight.m_componentArrayIndex = getArrayIndex();
- gpuLight.m_uuid = getUuid();
- for(U32 f = 0; f < m_shadowAtlasUvViewportCount; ++f)
- {
- gpuLight.m_spotLightMatrixOrPointLightUvViewports[f] = m_shadowAtlasUvViewports[f];
- }
- if(!m_gpuSceneLight.isValid())
- {
- m_gpuSceneLight.allocate();
- }
- m_gpuSceneLight.uploadToGpuScene(gpuLight);
- }
- else if(updated && m_type == LightComponentType::kSpot)
- {
- const Bool reallyShadow = m_shadow && m_shadowAtlasUvViewportCount == 1;
- // Upload the hash
- if(reallyShadow)
- {
- if(!m_hash.isValid())
- {
- m_hash.allocate();
- }
- if(m_shapeDirty || moveUpdated)
- {
- GpuSceneLightVisibleRenderablesHash hash = {};
- m_hash.uploadToGpuScene(hash);
- }
- }
- // Upload to the GPU scene
- GpuSceneLight gpuLight = {};
- gpuLight.m_position = m_worldTransform.getOrigin().xyz;
- gpuLight.m_radius = m_spot.m_distance;
- gpuLight.m_diffuseColor = m_diffColor.xyz;
- gpuLight.m_visibleRenderablesHashIndex = (reallyShadow) ? m_hash.getIndex() : 0;
- gpuLight.m_isPointLight = 0;
- gpuLight.m_isSpotLight = 1;
- gpuLight.m_shadow = reallyShadow;
- gpuLight.m_cpuFeedback = m_shadow;
- gpuLight.m_componentArrayIndex = getArrayIndex();
- gpuLight.m_uuid = getUuid();
- gpuLight.m_innerCos = cos(m_spot.m_innerAngle / 2.0f);
- gpuLight.m_direction = -m_worldTransform.getRotation().getZAxis();
- gpuLight.m_outerCos = cos(m_spot.m_outerAngle / 2.0f);
- Array<Vec3, 4> points;
- computeEdgesOfFrustum(m_spot.m_distance, m_spot.m_outerAngle, m_spot.m_outerAngle, &points[0]);
- for(U32 i = 0; i < 4; ++i)
- {
- points[i] = m_worldTransform.transform(points[i]);
- gpuLight.m_edgePoints[i] = points[i].xyz0;
- }
- if(reallyShadow)
- {
- const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
- const Mat4 proj = Mat4::calculatePerspectiveProjectionMatrix(m_spot.m_outerAngle, m_spot.m_outerAngle, kClusterObjectFrustumNearPlane,
- m_spot.m_distance);
- const Mat4 uvToAtlas(m_shadowAtlasUvViewports[0].z, 0.0f, 0.0f, m_shadowAtlasUvViewports[0].x, 0.0f, m_shadowAtlasUvViewports[0].w, 0.0f,
- m_shadowAtlasUvViewports[0].y, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
- m_spot.m_viewMat = Mat3x4(m_worldTransform.invert());
- m_spot.m_viewProjMat = proj * Mat4(m_spot.m_viewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
- const Mat4 texMat = uvToAtlas * biasMat4 * m_spot.m_viewProjMat;
- gpuLight.m_spotLightMatrixOrPointLightUvViewports[0] = texMat.getRow(0);
- gpuLight.m_spotLightMatrixOrPointLightUvViewports[1] = texMat.getRow(1);
- gpuLight.m_spotLightMatrixOrPointLightUvViewports[2] = texMat.getRow(2);
- gpuLight.m_spotLightMatrixOrPointLightUvViewports[3] = texMat.getRow(3);
- }
- if(!m_gpuSceneLight.isValid())
- {
- m_gpuSceneLight.allocate();
- }
- m_gpuSceneLight.uploadToGpuScene(gpuLight);
- }
- else if(m_type == LightComponentType::kDirectional)
- {
- m_gpuSceneLight.free();
- if(updated && (m_dir.m_month >= 0 && m_dir.m_day >= 0 && m_dir.m_hour >= 0.0f))
- {
- F32 hour;
- F32 lat, lon;
- if(1)
- {
- // Location: Greece
- lat = 37.983326540467026f;
- lon = 23.722718055667336f;
- // Fix hour to UTC
- hour = m_dir.m_hour - 2.0f;
- }
- else
- {
- // Location: Norway
- lat = 63.42239805509379f;
- lon = 10.400744175764066f;
- // Fix hour to UTC
- hour = m_dir.m_hour - 1.0f;
- }
- F32 elevation, azimuth;
- solarPosition(2025, m_dir.m_month, m_dir.m_day, hour, lat, lon, elevation, azimuth);
- elevation = max(elevation, toRad(10.0f)); // Don't have it negative cause the renderer can't handle it
- const F32 polarAng = kPi / 2.0f - elevation;
- Vec3 newDir;
- newDir.setFromSphericalToCartesian(polarAng, azimuth);
- newDir = -newDir;
- const Vec3 zAxis = newDir;
- Vec3 yAxis = Vec3(0.0f, 1.0f, 0.0f);
- Vec3 xAxis = yAxis.cross(zAxis);
- yAxis = zAxis.cross(xAxis);
- // printf("%f : %f %f\n", m_dir.m_hour, toDegrees(elevation), toDegrees(azimuth));
- Mat3 rot;
- rot.setXAxis(xAxis);
- rot.setYAxis(yAxis);
- rot.setZAxis(zAxis);
- m_worldTransform.setRotation(rot);
- }
- }
- m_shapeDirty = false;
- m_otherDirty = false;
- }
- void LightComponent::computeCascadeFrustums(const Frustum& primaryFrustum, ConstWeakArray<F32> cascadeDistances, WeakArray<Mat4> cascadeProjMats,
- WeakArray<Mat3x4> cascadeViewMats,
- WeakArray<Array<F32, U32(FrustumPlaneType::kCount)>> cascadePlanes) const
- {
- ANKI_ASSERT(m_type == LightComponentType::kDirectional);
- ANKI_ASSERT(m_shadow);
- ANKI_ASSERT(cascadeProjMats.getSize() <= kMaxShadowCascades && cascadeProjMats.getSize() > 0);
- ANKI_ASSERT(cascadeDistances.getSize() == cascadeProjMats.getSize());
- const U32 shadowCascadeCount = cascadeProjMats.getSize();
- // Compute the texture matrices
- if(primaryFrustum.getFrustumType() == FrustumType::kPerspective)
- {
- // Get some stuff
- const F32 fovX = primaryFrustum.getFovX();
- const F32 fovY = primaryFrustum.getFovY();
- // Compute a sphere per cascade
- Array<Sphere, kMaxShadowCascades> boundingSpheres;
- Array<Vec3, 4> prevFarPlaneEdges;
- for(U32 cascade = 0; cascade < shadowCascadeCount; ++cascade)
- {
- if(cascade == 0)
- {
- Array<Vec3, 5> edgePoints;
- edgePoints[0] = Vec3(0.0f);
- computeEdgesOfFrustum(cascadeDistances[cascade], fovX, fovY, &edgePoints[1]);
- boundingSpheres[cascade] = computeBoundingSphere(edgePoints.getBegin(), edgePoints.getSize(), sizeof(edgePoints[0]));
- memcpy(&prevFarPlaneEdges[0], &edgePoints[1], sizeof(prevFarPlaneEdges));
- }
- else
- {
- Array<Vec3, 8> edgePoints;
- computeEdgesOfFrustum(cascadeDistances[cascade], fovX, fovY, &edgePoints[0]);
- memcpy(&edgePoints[4], &prevFarPlaneEdges[0], sizeof(prevFarPlaneEdges));
- boundingSpheres[cascade] = computeBoundingSphere(edgePoints.getBegin(), edgePoints.getSize(), sizeof(edgePoints[0]));
- memcpy(&prevFarPlaneEdges[0], &edgePoints[0], sizeof(prevFarPlaneEdges));
- }
- boundingSpheres[cascade].setCenter(primaryFrustum.getWorldTransform().transform(boundingSpheres[cascade].getCenter()));
- }
- // Compute the matrices
- for(U32 cascade = 0; cascade < shadowCascadeCount; ++cascade)
- {
- const Sphere& sphere = boundingSpheres[cascade];
- const Vec3 sphereCenter = sphere.getCenter().xyz;
- const F32 sphereRadius = sphere.getRadius();
- const Vec3& lightDir = getDirection();
- Array<Vec3, 2> sceneBounds = SceneGraph::getSingleton().getSceneBounds();
- const Vec3 sceneMin = sceneBounds[0] - Vec3(sphereRadius); // Push the bounds a bit
- const Vec3 sceneMax = sceneBounds[1] + Vec3(sphereRadius);
- // Compute the intersections with the scene bounds
- Vec3 eye;
- if(sphereCenter > sceneMin && sphereCenter < sceneMax)
- {
- // Inside the scene bounds
- const Aabb sceneBox(sceneMin, sceneMax);
- const F32 t = testCollisionInside(sceneBox, Ray(sphereCenter, -lightDir));
- eye = sphereCenter + t * (-lightDir);
- }
- else
- {
- eye = sphereCenter + sphereRadius * (-lightDir);
- }
- // View
- const Vec3 zAxis = m_worldTransform.getRotation().getZAxis();
- const Vec3 xAxis = Vec3(0.0f, 1.0f, 0.0f).cross(zAxis).normalize();
- const Vec3 yAxis = zAxis.cross(xAxis).normalize();
- Mat3x4 rot;
- rot.setXAxis(xAxis);
- rot.setYAxis(yAxis);
- rot.setZAxis(zAxis);
- rot.setTranslationPart(Vec3(0.0f));
- const Transform cascadeTransform(eye.xyz0, rot, Vec4(1.0f, 1.0f, 1.0f, 0.0f));
- const Mat4 cascadeViewMat = Mat4(cascadeTransform.invert());
- // Projection
- const F32 far = (eye - sphereCenter).length() + sphereRadius;
- Mat4 cascadeProjMat = Mat4::calculateOrthographicProjectionMatrix(sphereRadius, -sphereRadius, sphereRadius, -sphereRadius,
- kClusterObjectFrustumNearPlane, far);
- if(cascadePlanes.getSize() > 0)
- {
- cascadePlanes[cascade][FrustumPlaneType::kLeft] = -sphereRadius;
- cascadePlanes[cascade][FrustumPlaneType::kRight] = sphereRadius;
- cascadePlanes[cascade][FrustumPlaneType::kBottom] = -sphereRadius;
- cascadePlanes[cascade][FrustumPlaneType::kTop] = sphereRadius;
- cascadePlanes[cascade][FrustumPlaneType::kNear] = kClusterObjectFrustumNearPlane;
- cascadePlanes[cascade][FrustumPlaneType::kFar] = far;
- }
- // Now it's time to stabilize the shadows by aligning the projection matrix
- {
- // Project a random fixed point to the light matrix
- const Vec4 randomPointAlmostLightSpace = (cascadeProjMat * cascadeViewMat) * Vec3(0.0f).xyz1;
- // Chose a random low shadowmap size and align the random point
- const F32 shadowmapSize = 128.0f;
- const F32 shadowmapSize2 = shadowmapSize / 2.0f; // Div with 2 because the projected point is in NDC
- const F32 alignedX = std::round(randomPointAlmostLightSpace.x * shadowmapSize2) / shadowmapSize2;
- const F32 alignedY = std::round(randomPointAlmostLightSpace.y * shadowmapSize2) / shadowmapSize2;
- const F32 dx = alignedX - randomPointAlmostLightSpace.x;
- const F32 dy = alignedY - randomPointAlmostLightSpace.y;
- // Fix the projection matrix by applying an offset
- Mat4 correctionTranslationMat = Mat4::getIdentity();
- correctionTranslationMat.setTranslationPart(Vec3(dx, dy, 0.0f));
- cascadeProjMat = correctionTranslationMat * cascadeProjMat;
- }
- // Write the results
- cascadeProjMats[cascade] = cascadeProjMat;
- cascadeViewMats[cascade] = Mat3x4(cascadeViewMat);
- }
- }
- else
- {
- ANKI_ASSERT(!"TODO");
- }
- }
- void LightComponent::setShadowAtlasUvViewports(ConstWeakArray<Vec4> viewports)
- {
- ANKI_ASSERT(viewports.getSize() <= 6);
- if(m_type == LightComponentType::kPoint)
- {
- ANKI_ASSERT(viewports.getSize() == 0 || viewports.getSize() == 6);
- }
- else if(m_type == LightComponentType::kSpot)
- {
- ANKI_ASSERT(viewports.getSize() == 0 || viewports.getSize() == 1);
- }
- else
- {
- ANKI_ASSERT(viewports.getSize() == 0);
- }
- const Bool dirty = m_shadowAtlasUvViewportCount != viewports.getSize()
- || memcmp(m_shadowAtlasUvViewports.getBegin(), viewports.getBegin(), viewports.getSizeInBytes()) != 0;
- if(dirty)
- {
- m_shadowAtlasUvViewportCount = viewports.getSize() & 0b111;
- for(U32 i = 0; i < viewports.getSize(); ++i)
- {
- m_shadowAtlasUvViewports[i] = viewports[i];
- }
- m_shapeDirty = true;
- }
- }
- Error LightComponent::serialize(SceneSerializer& serializer)
- {
- ANKI_SERIALIZE(m_type, 1);
- ANKI_SERIALIZE(m_diffColor, 1);
- ANKI_SERIALIZE(m_point.m_radius, 1);
- ANKI_SERIALIZE(m_spot.m_distance, 1);
- ANKI_SERIALIZE(m_spot.m_outerAngle, 1);
- ANKI_SERIALIZE(m_spot.m_innerAngle, 1);
- ANKI_SERIALIZE(m_dir.m_month, 1);
- ANKI_SERIALIZE(m_dir.m_day, 1);
- ANKI_SERIALIZE(m_dir.m_hour, 1);
- U32 shadow = m_shadow;
- ANKI_SERIALIZE(shadow, 1);
- m_shadow = Bool(shadow);
- return Error::kNone;
- }
- } // end namespace anki
|