SH.hlsl 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. // Spherical Harmonics utilities
  6. #pragma once
  7. #include <AnKi/Shaders/Common.hlsl>
  8. constexpr U32 kSHL1CoefficientCount = (1 + 1) * (1 + 1);
  9. constexpr F32 kSHBasisL0 = 1.0 / (2.0 * sqrt(kPi));
  10. constexpr F32 kSHBasisL1 = sqrt(3.0) / (2.0 * sqrt(kPi));
  11. constexpr F32 kSHCosineA0 = kPi;
  12. constexpr F32 kSHCosineA1 = (2.0 * kPi) / 3.0;
  13. constexpr F32 kSHCosineA2 = (0.25 * kPi);
  14. /// 2 bands, 4 coefficients per color component.
  15. template<typename T>
  16. struct SHL1
  17. {
  18. vector<T, 3> m_c[kSHL1CoefficientCount];
  19. };
  20. template<typename T>
  21. SHL1<T> projectOntoL1(vector<T, 3> direction, vector<T, 3> value)
  22. {
  23. SHL1<T> res;
  24. // L0
  25. res.m_c[0] = T(kSHBasisL0) * value;
  26. // L1
  27. res.m_c[1] = T(kSHBasisL1) * direction.y * value;
  28. res.m_c[2] = T(kSHBasisL1) * direction.z * value;
  29. res.m_c[3] = T(kSHBasisL1) * direction.x * value;
  30. return res;
  31. }
  32. template<typename T>
  33. SHL1<T> appendSH(SHL1<T> inputSH, vector<T, 3> direction, vector<T, 3> radiance, U32 sampleCount)
  34. {
  35. const SHL1<T> res = projectOntoL1<T>(direction, radiance);
  36. const T spherePDF = T(1) / T(kPi * 4.0);
  37. const T weight = T(1) / (T(sampleCount) * spherePDF);
  38. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  39. {
  40. inputSH.m_c[i] += res.m_c[i] * weight;
  41. }
  42. return inputSH;
  43. }
  44. template<typename T>
  45. vector<T, 3> evaluateSH(SHL1<T> sh, vector<T, 3> direction)
  46. {
  47. vector<T, 3> res = T(0);
  48. if(false)
  49. {
  50. // L0
  51. res += sh.m_c[0];
  52. // L1
  53. res += sh.m_c[1] * direction.y;
  54. res += sh.m_c[2] * direction.z;
  55. res += sh.m_c[3] * direction.x;
  56. }
  57. else
  58. {
  59. SHL1<T> convolved;
  60. convolved.m_c[0] = sh.m_c[0] * kSHCosineA0;
  61. convolved.m_c[1] = sh.m_c[1] * kSHCosineA1;
  62. convolved.m_c[2] = sh.m_c[2] * kSHCosineA1;
  63. convolved.m_c[3] = sh.m_c[3] * kSHCosineA1;
  64. const SHL1<T> projectedDelta = projectOntoL1<T>(direction, T(1));
  65. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  66. {
  67. res += convolved.m_c[i] * projectedDelta.m_c[i];
  68. }
  69. }
  70. return res;
  71. }
  72. template<typename T>
  73. SHL1<T> lerpSH(SHL1<T> a, SHL1<T> b, T f)
  74. {
  75. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  76. {
  77. a.m_c[i] = lerp(a.m_c[i], b.m_c[i], f);
  78. }
  79. return a;
  80. }
  81. template<typename T>
  82. SHL1<T> loadSH(Texture3D<Vec4> red, Texture3D<Vec4> green, Texture3D<Vec4> blue, SamplerState sampler, Vec3 uvw)
  83. {
  84. vector<T, 4> colorComp[3];
  85. colorComp[0] = red.SampleLevel(sampler, uvw, 0.0);
  86. colorComp[1] = green.SampleLevel(sampler, uvw, 0.0);
  87. colorComp[2] = blue.SampleLevel(sampler, uvw, 0.0);
  88. SHL1<T> sh;
  89. [unroll] for(U32 comp = 0; comp < 3; ++comp)
  90. {
  91. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  92. {
  93. sh.m_c[i][comp] = colorComp[comp][i];
  94. }
  95. }
  96. return sh;
  97. }
  98. template<typename T>
  99. SHL1<T> loadSH(Texture3D<Vec4> red, Texture3D<Vec4> green, Texture3D<Vec4> blue, UVec3 coords)
  100. {
  101. vector<T, 4> colorComp[3];
  102. colorComp[0] = red[coords];
  103. colorComp[1] = green[coords];
  104. colorComp[2] = blue[coords];
  105. SHL1<T> sh;
  106. [unroll] for(U32 comp = 0; comp < 3; ++comp)
  107. {
  108. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  109. {
  110. sh.m_c[i][comp] = colorComp[comp][i];
  111. }
  112. }
  113. return sh;
  114. }
  115. template<typename T>
  116. SHL1<T> loadSH(RWTexture3D<Vec4> red, RWTexture3D<Vec4> green, RWTexture3D<Vec4> blue, UVec3 coords)
  117. {
  118. vector<T, 4> colorComp[3];
  119. colorComp[0] = red[coords];
  120. colorComp[1] = green[coords];
  121. colorComp[2] = blue[coords];
  122. SHL1<T> sh;
  123. [unroll] for(U32 comp = 0; comp < 3; ++comp)
  124. {
  125. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  126. {
  127. sh.m_c[i][comp] = colorComp[comp][i];
  128. }
  129. }
  130. return sh;
  131. }
  132. template<typename T>
  133. void storeSH(SHL1<T> sh, RWTexture3D<Vec4> red, RWTexture3D<Vec4> green, RWTexture3D<Vec4> blue, UVec3 coords)
  134. {
  135. vector<T, 4> colorComp[3];
  136. [unroll] for(U32 comp = 0; comp < 3; ++comp)
  137. {
  138. [unroll] for(U32 i = 0; i < kSHL1CoefficientCount; ++i)
  139. {
  140. colorComp[comp][i] = sh.m_c[i][comp];
  141. }
  142. }
  143. red[coords] = colorComp[0];
  144. green[coords] = colorComp[1];
  145. blue[coords] = colorComp[2];
  146. }