CommandBufferImpl.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. // Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Gr/Vulkan/CommandBufferImpl.h>
  6. #include <AnKi/Gr/GrManager.h>
  7. #include <AnKi/Gr/Vulkan/GrManagerImpl.h>
  8. #include <AnKi/Gr/Framebuffer.h>
  9. #include <AnKi/Gr/Vulkan/FramebufferImpl.h>
  10. #include <AnKi/Gr/Vulkan/AccelerationStructureImpl.h>
  11. #include <algorithm>
  12. namespace anki
  13. {
  14. CommandBufferImpl::~CommandBufferImpl()
  15. {
  16. if(m_empty)
  17. {
  18. ANKI_VK_LOGW("Command buffer was empty");
  19. }
  20. if(!m_finalized)
  21. {
  22. ANKI_VK_LOGW("Command buffer was not flushed");
  23. }
  24. m_imgBarriers.destroy(m_alloc);
  25. m_buffBarriers.destroy(m_alloc);
  26. m_memBarriers.destroy(m_alloc);
  27. m_queryResetAtoms.destroy(m_alloc);
  28. m_writeQueryAtoms.destroy(m_alloc);
  29. m_secondLevelAtoms.destroy(m_alloc);
  30. }
  31. Error CommandBufferImpl::init(const CommandBufferInitInfo& init)
  32. {
  33. m_tid = Thread::getCurrentThreadId();
  34. m_flags = init.m_flags;
  35. ANKI_CHECK(getGrManagerImpl().getCommandBufferFactory().newCommandBuffer(m_tid, m_flags, m_microCmdb));
  36. m_handle = m_microCmdb->getHandle();
  37. m_alloc = m_microCmdb->getFastAllocator();
  38. // Store some of the init info for later
  39. if(!!(m_flags & CommandBufferFlag::SECOND_LEVEL))
  40. {
  41. m_activeFb = init.m_framebuffer;
  42. m_colorAttachmentUsages = init.m_colorAttachmentUsages;
  43. m_depthStencilAttachmentUsage = init.m_depthStencilAttachmentUsage;
  44. m_state.beginRenderPass(m_activeFb);
  45. }
  46. for(DescriptorSetState& state : m_dsetState)
  47. {
  48. state.init(m_alloc);
  49. }
  50. return Error::NONE;
  51. }
  52. void CommandBufferImpl::beginRecording()
  53. {
  54. // Do the begin
  55. VkCommandBufferInheritanceInfo inheritance = {};
  56. inheritance.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
  57. VkCommandBufferBeginInfo begin = {};
  58. begin.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
  59. begin.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
  60. begin.pInheritanceInfo = &inheritance;
  61. if(!!(m_flags & CommandBufferFlag::SECOND_LEVEL))
  62. {
  63. FramebufferImpl& impl = static_cast<FramebufferImpl&>(*m_activeFb);
  64. // Calc the layouts
  65. Array<VkImageLayout, MAX_COLOR_ATTACHMENTS> colAttLayouts;
  66. for(U i = 0; i < impl.getColorAttachmentCount(); ++i)
  67. {
  68. const TextureViewImpl& view = static_cast<const TextureViewImpl&>(*impl.getColorAttachment(i));
  69. colAttLayouts[i] = view.getTextureImpl().computeLayout(m_colorAttachmentUsages[i], 0);
  70. }
  71. VkImageLayout dsAttLayout = VK_IMAGE_LAYOUT_MAX_ENUM;
  72. if(impl.hasDepthStencil())
  73. {
  74. const TextureViewImpl& view = static_cast<const TextureViewImpl&>(*impl.getDepthStencilAttachment());
  75. dsAttLayout = view.getTextureImpl().computeLayout(m_depthStencilAttachmentUsage, 0);
  76. }
  77. inheritance.renderPass = impl.getRenderPassHandle(colAttLayouts, dsAttLayout);
  78. inheritance.subpass = 0;
  79. inheritance.framebuffer = impl.getFramebufferHandle();
  80. begin.flags |= VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
  81. }
  82. vkBeginCommandBuffer(m_handle, &begin);
  83. }
  84. void CommandBufferImpl::beginRenderPass(FramebufferPtr fb,
  85. const Array<TextureUsageBit, MAX_COLOR_ATTACHMENTS>& colorAttachmentUsages,
  86. TextureUsageBit depthStencilAttachmentUsage, U32 minx, U32 miny, U32 width,
  87. U32 height)
  88. {
  89. commandCommon();
  90. ANKI_ASSERT(!insideRenderPass());
  91. m_rpCommandCount = 0;
  92. m_activeFb = fb;
  93. FramebufferImpl& fbimpl = static_cast<FramebufferImpl&>(*fb);
  94. U32 fbWidth, fbHeight;
  95. fbimpl.getAttachmentsSize(fbWidth, fbHeight);
  96. m_fbSize[0] = fbWidth;
  97. m_fbSize[1] = fbHeight;
  98. ANKI_ASSERT(minx < fbWidth && miny < fbHeight);
  99. const U32 maxx = min<U32>(minx + width, fbWidth);
  100. const U32 maxy = min<U32>(miny + height, fbHeight);
  101. width = maxx - minx;
  102. height = maxy - miny;
  103. ANKI_ASSERT(minx + width <= fbWidth && miny + height <= fbHeight);
  104. m_renderArea[0] = minx;
  105. m_renderArea[1] = miny;
  106. m_renderArea[2] = width;
  107. m_renderArea[3] = height;
  108. m_colorAttachmentUsages = colorAttachmentUsages;
  109. m_depthStencilAttachmentUsage = depthStencilAttachmentUsage;
  110. m_microCmdb->pushObjectRef(fb);
  111. m_subpassContents = VK_SUBPASS_CONTENTS_MAX_ENUM;
  112. // Re-set the viewport and scissor because sometimes they are set clamped
  113. m_viewportDirty = true;
  114. m_scissorDirty = true;
  115. }
  116. void CommandBufferImpl::beginRenderPassInternal()
  117. {
  118. m_state.beginRenderPass(m_activeFb);
  119. FramebufferImpl& impl = static_cast<FramebufferImpl&>(*m_activeFb);
  120. VkRenderPassBeginInfo bi = {};
  121. bi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
  122. bi.clearValueCount = impl.getAttachmentCount();
  123. bi.pClearValues = impl.getClearValues();
  124. bi.framebuffer = impl.getFramebufferHandle();
  125. // Calc the layouts
  126. Array<VkImageLayout, MAX_COLOR_ATTACHMENTS> colAttLayouts;
  127. for(U i = 0; i < impl.getColorAttachmentCount(); ++i)
  128. {
  129. const TextureViewImpl& view = static_cast<const TextureViewImpl&>(*impl.getColorAttachment(i));
  130. colAttLayouts[i] = view.getTextureImpl().computeLayout(m_colorAttachmentUsages[i], 0);
  131. }
  132. VkImageLayout dsAttLayout = VK_IMAGE_LAYOUT_MAX_ENUM;
  133. if(impl.hasDepthStencil())
  134. {
  135. const TextureViewImpl& view = static_cast<const TextureViewImpl&>(*impl.getDepthStencilAttachment());
  136. dsAttLayout = view.getTextureImpl().computeLayout(m_depthStencilAttachmentUsage, 0);
  137. }
  138. bi.renderPass = impl.getRenderPassHandle(colAttLayouts, dsAttLayout);
  139. const Bool flipvp = flipViewport();
  140. bi.renderArea.offset.x = m_renderArea[0];
  141. if(flipvp)
  142. {
  143. ANKI_ASSERT(m_renderArea[3] <= m_fbSize[1]);
  144. }
  145. bi.renderArea.offset.y = (flipvp) ? m_fbSize[1] - (m_renderArea[1] + m_renderArea[3]) : m_renderArea[1];
  146. bi.renderArea.extent.width = m_renderArea[2];
  147. bi.renderArea.extent.height = m_renderArea[3];
  148. getGrManagerImpl().beginMarker(m_handle, impl.getName());
  149. ANKI_CMD(vkCmdBeginRenderPass(m_handle, &bi, m_subpassContents), ANY_OTHER_COMMAND);
  150. if(impl.hasPresentableTexture())
  151. {
  152. m_renderedToDefaultFb = true;
  153. }
  154. }
  155. void CommandBufferImpl::endRenderPass()
  156. {
  157. commandCommon();
  158. ANKI_ASSERT(insideRenderPass());
  159. if(m_rpCommandCount == 0)
  160. {
  161. m_subpassContents = VK_SUBPASS_CONTENTS_INLINE;
  162. beginRenderPassInternal();
  163. }
  164. ANKI_CMD(vkCmdEndRenderPass(m_handle), ANY_OTHER_COMMAND);
  165. getGrManagerImpl().endMarker(m_handle);
  166. m_activeFb.reset(nullptr);
  167. m_state.endRenderPass();
  168. // After pushing second level command buffers the state is undefined. Reset the tracker and rebind the dynamic state
  169. if(m_subpassContents == VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS)
  170. {
  171. m_state.reset();
  172. rebindDynamicState();
  173. }
  174. }
  175. void CommandBufferImpl::endRecording()
  176. {
  177. commandCommon();
  178. ANKI_ASSERT(!m_finalized);
  179. ANKI_ASSERT(!m_empty);
  180. ANKI_CMD(ANKI_VK_CHECKF(vkEndCommandBuffer(m_handle)), ANY_OTHER_COMMAND);
  181. m_finalized = true;
  182. #if ANKI_EXTRA_CHECKS
  183. static Atomic<U32> messagePrintCount(0);
  184. constexpr U32 MAX_PRINT_COUNT = 10;
  185. CString message;
  186. if(!!(m_flags & CommandBufferFlag::SMALL_BATCH))
  187. {
  188. if(m_commandCount > COMMAND_BUFFER_SMALL_BATCH_MAX_COMMANDS * 4)
  189. {
  190. message = "Command buffer has too many commands%s: %u";
  191. }
  192. }
  193. else
  194. {
  195. if(m_commandCount <= COMMAND_BUFFER_SMALL_BATCH_MAX_COMMANDS / 4)
  196. {
  197. message = "Command buffer has too few commands%s: %u";
  198. }
  199. }
  200. if(!message.isEmpty())
  201. {
  202. const U32 count = messagePrintCount.fetchAdd(1) + 1;
  203. if(count < MAX_PRINT_COUNT)
  204. {
  205. ANKI_VK_LOGW(message.cstr(), "", m_commandCount);
  206. }
  207. else if(count == MAX_PRINT_COUNT)
  208. {
  209. ANKI_VK_LOGW(message.cstr(), " (will ignore further warnings)", m_commandCount);
  210. }
  211. }
  212. #endif
  213. }
  214. void CommandBufferImpl::generateMipmaps2d(TextureViewPtr texView)
  215. {
  216. commandCommon();
  217. const TextureViewImpl& view = static_cast<const TextureViewImpl&>(*texView);
  218. const TextureImpl& tex = view.getTextureImpl();
  219. ANKI_ASSERT(tex.getTextureType() != TextureType::_3D && "Not for 3D");
  220. ANKI_ASSERT(tex.isSubresourceGoodForMipmapGeneration(view.getSubresource()));
  221. const U32 blitCount = tex.getMipmapCount() - 1u;
  222. if(blitCount == 0)
  223. {
  224. // Nothing to be done, flush the previous commands though because you may batch (and sort) things you shouldn't
  225. flushBatches(CommandBufferCommandType::ANY_OTHER_COMMAND);
  226. return;
  227. }
  228. const DepthStencilAspectBit aspect = view.getSubresource().m_depthStencilAspect;
  229. const U32 face = view.getSubresource().m_firstFace;
  230. const U32 layer = view.getSubresource().m_firstLayer;
  231. for(U32 i = 0; i < blitCount; ++i)
  232. {
  233. // Transition source
  234. if(i > 0)
  235. {
  236. VkImageSubresourceRange range;
  237. tex.computeVkImageSubresourceRange(TextureSubresourceInfo(TextureSurfaceInfo(i, 0, face, layer), aspect),
  238. range);
  239. setImageBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
  240. VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT,
  241. VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, tex.m_imageHandle,
  242. range);
  243. }
  244. // Transition destination
  245. {
  246. VkImageSubresourceRange range;
  247. tex.computeVkImageSubresourceRange(
  248. TextureSubresourceInfo(TextureSurfaceInfo(i + 1, 0, face, layer), aspect), range);
  249. setImageBarrier(VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, VK_IMAGE_LAYOUT_UNDEFINED,
  250. VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
  251. VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, tex.m_imageHandle, range);
  252. }
  253. // Setup the blit struct
  254. I32 srcWidth = tex.getWidth() >> i;
  255. I32 srcHeight = tex.getHeight() >> i;
  256. I32 dstWidth = tex.getWidth() >> (i + 1);
  257. I32 dstHeight = tex.getHeight() >> (i + 1);
  258. ANKI_ASSERT(srcWidth > 0 && srcHeight > 0 && dstWidth > 0 && dstHeight > 0);
  259. U32 vkLayer = 0;
  260. switch(tex.getTextureType())
  261. {
  262. case TextureType::_2D:
  263. case TextureType::_2D_ARRAY:
  264. break;
  265. case TextureType::CUBE:
  266. vkLayer = face;
  267. break;
  268. case TextureType::CUBE_ARRAY:
  269. vkLayer = layer * 6 + face;
  270. break;
  271. default:
  272. ANKI_ASSERT(0);
  273. break;
  274. }
  275. VkImageBlit blit;
  276. blit.srcSubresource.aspectMask = convertImageAspect(aspect);
  277. blit.srcSubresource.baseArrayLayer = vkLayer;
  278. blit.srcSubresource.layerCount = 1;
  279. blit.srcSubresource.mipLevel = i;
  280. blit.srcOffsets[0] = {0, 0, 0};
  281. blit.srcOffsets[1] = {srcWidth, srcHeight, 1};
  282. blit.dstSubresource.aspectMask = convertImageAspect(aspect);
  283. blit.dstSubresource.baseArrayLayer = vkLayer;
  284. blit.dstSubresource.layerCount = 1;
  285. blit.dstSubresource.mipLevel = i + 1;
  286. blit.dstOffsets[0] = {0, 0, 0};
  287. blit.dstOffsets[1] = {dstWidth, dstHeight, 1};
  288. ANKI_CMD(vkCmdBlitImage(m_handle, tex.m_imageHandle, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, tex.m_imageHandle,
  289. VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
  290. (!!aspect) ? VK_FILTER_NEAREST : VK_FILTER_LINEAR),
  291. ANY_OTHER_COMMAND);
  292. }
  293. // Hold the reference
  294. m_microCmdb->pushObjectRef(texView);
  295. }
  296. void CommandBufferImpl::flushBarriers()
  297. {
  298. if(m_imgBarrierCount == 0 && m_buffBarrierCount == 0 && m_memBarrierCount == 0)
  299. {
  300. return;
  301. }
  302. // Sort
  303. //
  304. if(m_imgBarrierCount > 0)
  305. {
  306. std::sort(&m_imgBarriers[0], &m_imgBarriers[0] + m_imgBarrierCount,
  307. [](const VkImageMemoryBarrier& a, const VkImageMemoryBarrier& b) -> Bool {
  308. if(a.image != b.image)
  309. {
  310. return a.image < b.image;
  311. }
  312. if(a.subresourceRange.aspectMask != b.subresourceRange.aspectMask)
  313. {
  314. return a.subresourceRange.aspectMask < b.subresourceRange.aspectMask;
  315. }
  316. if(a.oldLayout != b.oldLayout)
  317. {
  318. return a.oldLayout < b.oldLayout;
  319. }
  320. if(a.newLayout != b.newLayout)
  321. {
  322. return a.newLayout < b.newLayout;
  323. }
  324. if(a.subresourceRange.baseArrayLayer != b.subresourceRange.baseArrayLayer)
  325. {
  326. return a.subresourceRange.baseArrayLayer < b.subresourceRange.baseArrayLayer;
  327. }
  328. if(a.subresourceRange.baseMipLevel != b.subresourceRange.baseMipLevel)
  329. {
  330. return a.subresourceRange.baseMipLevel < b.subresourceRange.baseMipLevel;
  331. }
  332. return false;
  333. });
  334. }
  335. // Batch
  336. //
  337. DynamicArrayAuto<VkImageMemoryBarrier> finalImgBarriers(m_alloc);
  338. U32 finalImgBarrierCount = 0;
  339. if(m_imgBarrierCount > 0)
  340. {
  341. DynamicArrayAuto<VkImageMemoryBarrier> squashedBarriers(m_alloc);
  342. U32 squashedBarrierCount = 0;
  343. squashedBarriers.create(m_imgBarrierCount);
  344. // Squash the mips by reducing the barriers
  345. for(U32 i = 0; i < m_imgBarrierCount; ++i)
  346. {
  347. const VkImageMemoryBarrier* prev = (i > 0) ? &m_imgBarriers[i - 1] : nullptr;
  348. const VkImageMemoryBarrier& crnt = m_imgBarriers[i];
  349. if(prev && prev->image == crnt.image
  350. && prev->subresourceRange.aspectMask == crnt.subresourceRange.aspectMask
  351. && prev->oldLayout == crnt.oldLayout && prev->newLayout == crnt.newLayout
  352. && prev->srcAccessMask == crnt.srcAccessMask && prev->dstAccessMask == crnt.dstAccessMask
  353. && prev->subresourceRange.baseMipLevel + prev->subresourceRange.levelCount
  354. == crnt.subresourceRange.baseMipLevel
  355. && prev->subresourceRange.baseArrayLayer == crnt.subresourceRange.baseArrayLayer
  356. && prev->subresourceRange.layerCount == crnt.subresourceRange.layerCount)
  357. {
  358. // Can batch
  359. squashedBarriers[squashedBarrierCount - 1].subresourceRange.levelCount +=
  360. crnt.subresourceRange.levelCount;
  361. }
  362. else
  363. {
  364. // Can't batch, create new barrier
  365. squashedBarriers[squashedBarrierCount++] = crnt;
  366. }
  367. }
  368. ANKI_ASSERT(squashedBarrierCount);
  369. // Squash the layers
  370. finalImgBarriers.create(squashedBarrierCount);
  371. for(U32 i = 0; i < squashedBarrierCount; ++i)
  372. {
  373. const VkImageMemoryBarrier* prev = (i > 0) ? &squashedBarriers[i - 1] : nullptr;
  374. const VkImageMemoryBarrier& crnt = squashedBarriers[i];
  375. if(prev && prev->image == crnt.image
  376. && prev->subresourceRange.aspectMask == crnt.subresourceRange.aspectMask
  377. && prev->oldLayout == crnt.oldLayout && prev->newLayout == crnt.newLayout
  378. && prev->srcAccessMask == crnt.srcAccessMask && prev->dstAccessMask == crnt.dstAccessMask
  379. && prev->subresourceRange.baseMipLevel == crnt.subresourceRange.baseMipLevel
  380. && prev->subresourceRange.levelCount == crnt.subresourceRange.levelCount
  381. && prev->subresourceRange.baseArrayLayer + prev->subresourceRange.layerCount
  382. == crnt.subresourceRange.baseArrayLayer)
  383. {
  384. // Can batch
  385. finalImgBarriers[finalImgBarrierCount - 1].subresourceRange.layerCount +=
  386. crnt.subresourceRange.layerCount;
  387. }
  388. else
  389. {
  390. // Can't batch, create new barrier
  391. finalImgBarriers[finalImgBarrierCount++] = crnt;
  392. }
  393. }
  394. ANKI_ASSERT(finalImgBarrierCount);
  395. }
  396. // Finish the job
  397. //
  398. vkCmdPipelineBarrier(m_handle, m_srcStageMask, m_dstStageMask, 0, m_memBarrierCount,
  399. (m_memBarrierCount) ? &m_memBarriers[0] : nullptr, m_buffBarrierCount,
  400. (m_buffBarrierCount) ? &m_buffBarriers[0] : nullptr, finalImgBarrierCount,
  401. (finalImgBarrierCount) ? &finalImgBarriers[0] : nullptr);
  402. ANKI_TRACE_INC_COUNTER(VK_PIPELINE_BARRIERS, 1);
  403. m_imgBarrierCount = 0;
  404. m_buffBarrierCount = 0;
  405. m_memBarrierCount = 0;
  406. m_srcStageMask = 0;
  407. m_dstStageMask = 0;
  408. }
  409. void CommandBufferImpl::flushQueryResets()
  410. {
  411. if(m_queryResetAtoms.getSize() == 0)
  412. {
  413. return;
  414. }
  415. std::sort(m_queryResetAtoms.getBegin(), m_queryResetAtoms.getEnd(),
  416. [](const QueryResetAtom& a, const QueryResetAtom& b) -> Bool {
  417. if(a.m_pool != b.m_pool)
  418. {
  419. return a.m_pool < b.m_pool;
  420. }
  421. ANKI_ASSERT(a.m_queryIdx != b.m_queryIdx && "Tried to reset the same query more than once");
  422. return a.m_queryIdx < b.m_queryIdx;
  423. });
  424. U32 firstQuery = m_queryResetAtoms[0].m_queryIdx;
  425. U32 queryCount = 1;
  426. VkQueryPool pool = m_queryResetAtoms[0].m_pool;
  427. for(U32 i = 1; i < m_queryResetAtoms.getSize(); ++i)
  428. {
  429. const QueryResetAtom& crnt = m_queryResetAtoms[i];
  430. const QueryResetAtom& prev = m_queryResetAtoms[i - 1];
  431. if(crnt.m_pool == prev.m_pool && crnt.m_queryIdx == prev.m_queryIdx + 1)
  432. {
  433. // Can batch
  434. ++queryCount;
  435. }
  436. else
  437. {
  438. // Flush batch
  439. vkCmdResetQueryPool(m_handle, pool, firstQuery, queryCount);
  440. // New batch
  441. firstQuery = crnt.m_queryIdx;
  442. queryCount = 1;
  443. pool = crnt.m_pool;
  444. }
  445. }
  446. vkCmdResetQueryPool(m_handle, pool, firstQuery, queryCount);
  447. m_queryResetAtoms.destroy(m_alloc);
  448. }
  449. void CommandBufferImpl::flushWriteQueryResults()
  450. {
  451. if(m_writeQueryAtoms.getSize() == 0)
  452. {
  453. return;
  454. }
  455. std::sort(&m_writeQueryAtoms[0], &m_writeQueryAtoms[0] + m_writeQueryAtoms.getSize(),
  456. [](const WriteQueryAtom& a, const WriteQueryAtom& b) -> Bool {
  457. if(a.m_pool != b.m_pool)
  458. {
  459. return a.m_pool < b.m_pool;
  460. }
  461. if(a.m_buffer != b.m_buffer)
  462. {
  463. return a.m_buffer < b.m_buffer;
  464. }
  465. if(a.m_offset != b.m_offset)
  466. {
  467. return a.m_offset < b.m_offset;
  468. }
  469. ANKI_ASSERT(a.m_queryIdx != b.m_queryIdx && "Tried to write the same query more than once");
  470. return a.m_queryIdx < b.m_queryIdx;
  471. });
  472. U32 firstQuery = m_writeQueryAtoms[0].m_queryIdx;
  473. U32 queryCount = 1;
  474. VkQueryPool pool = m_writeQueryAtoms[0].m_pool;
  475. PtrSize offset = m_writeQueryAtoms[0].m_offset;
  476. VkBuffer buff = m_writeQueryAtoms[0].m_buffer;
  477. for(U32 i = 1; i < m_writeQueryAtoms.getSize(); ++i)
  478. {
  479. const WriteQueryAtom& crnt = m_writeQueryAtoms[i];
  480. const WriteQueryAtom& prev = m_writeQueryAtoms[i - 1];
  481. if(crnt.m_pool == prev.m_pool && crnt.m_buffer == prev.m_buffer && prev.m_queryIdx + 1 == crnt.m_queryIdx
  482. && prev.m_offset + sizeof(U32) == crnt.m_offset)
  483. {
  484. // Can batch
  485. ++queryCount;
  486. }
  487. else
  488. {
  489. // Flush batch
  490. vkCmdCopyQueryPoolResults(m_handle, pool, firstQuery, queryCount, buff, offset, sizeof(U32),
  491. VK_QUERY_RESULT_PARTIAL_BIT);
  492. // New batch
  493. firstQuery = crnt.m_queryIdx;
  494. queryCount = 1;
  495. pool = crnt.m_pool;
  496. buff = crnt.m_buffer;
  497. }
  498. }
  499. vkCmdCopyQueryPoolResults(m_handle, pool, firstQuery, queryCount, buff, offset, sizeof(U32),
  500. VK_QUERY_RESULT_PARTIAL_BIT);
  501. m_writeQueryAtoms.resize(m_alloc, 0);
  502. }
  503. void CommandBufferImpl::copyBufferToTextureViewInternal(BufferPtr buff, PtrSize offset, PtrSize range,
  504. TextureViewPtr texView)
  505. {
  506. commandCommon();
  507. const TextureViewImpl& view = static_cast<const TextureViewImpl&>(*texView);
  508. const TextureImpl& tex = view.getTextureImpl();
  509. ANKI_ASSERT(tex.usageValid(TextureUsageBit::TRANSFER_DESTINATION));
  510. ANKI_ASSERT(tex.isSubresourceGoodForCopyFromBuffer(view.getSubresource()));
  511. const VkImageLayout layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
  512. const Bool is3D = tex.getTextureType() == TextureType::_3D;
  513. const VkImageAspectFlags aspect = convertImageAspect(view.getSubresource().m_depthStencilAspect);
  514. const TextureSurfaceInfo surf(view.getSubresource().m_firstMipmap, view.getSubresource().m_firstFace, 0,
  515. view.getSubresource().m_firstLayer);
  516. const TextureVolumeInfo vol(view.getSubresource().m_firstMipmap);
  517. // Compute the sizes of the mip
  518. const U32 width = tex.getWidth() >> surf.m_level;
  519. const U32 height = tex.getHeight() >> surf.m_level;
  520. ANKI_ASSERT(width && height);
  521. const U32 depth = (is3D) ? (tex.getDepth() >> surf.m_level) : 1u;
  522. if(!tex.m_workarounds)
  523. {
  524. if(!is3D)
  525. {
  526. ANKI_ASSERT(range == computeSurfaceSize(width, height, tex.getFormat()));
  527. }
  528. else
  529. {
  530. ANKI_ASSERT(range == computeVolumeSize(width, height, depth, tex.getFormat()));
  531. }
  532. // Copy
  533. VkBufferImageCopy region;
  534. region.imageSubresource.aspectMask = aspect;
  535. region.imageSubresource.baseArrayLayer = (is3D) ? tex.computeVkArrayLayer(vol) : tex.computeVkArrayLayer(surf);
  536. region.imageSubresource.layerCount = 1;
  537. region.imageSubresource.mipLevel = surf.m_level;
  538. region.imageOffset = {0, 0, 0};
  539. region.imageExtent.width = width;
  540. region.imageExtent.height = height;
  541. region.imageExtent.depth = depth;
  542. region.bufferOffset = offset;
  543. region.bufferImageHeight = 0;
  544. region.bufferRowLength = 0;
  545. ANKI_CMD(vkCmdCopyBufferToImage(m_handle, static_cast<const BufferImpl&>(*buff).getHandle(), tex.m_imageHandle,
  546. layout, 1, &region),
  547. ANY_OTHER_COMMAND);
  548. }
  549. else if(!!(tex.m_workarounds & TextureImplWorkaround::R8G8B8_TO_R8G8B8A8))
  550. {
  551. // Create a new shadow buffer
  552. const PtrSize shadowSize = (is3D) ? computeVolumeSize(width, height, depth, Format::R8G8B8A8_UNORM)
  553. : computeSurfaceSize(width, height, Format::R8G8B8A8_UNORM);
  554. BufferPtr shadow = getManager().newBuffer(
  555. BufferInitInfo(shadowSize, BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::NONE, "Workaround"));
  556. const VkBuffer shadowHandle = static_cast<const BufferImpl&>(*shadow).getHandle();
  557. m_microCmdb->pushObjectRef(shadow);
  558. // Copy to shadow buffer in batches. If the number of pixels is high and we do a single vkCmdCopyBuffer we will
  559. // need many regions. That allocation will be huge so do the copies in batches.
  560. const U32 regionCount = width * height * depth;
  561. const U32 REGIONS_PER_CMD_COPY_BUFFER = 32;
  562. const U32 cmdCopyBufferCount = (regionCount + REGIONS_PER_CMD_COPY_BUFFER - 1) / REGIONS_PER_CMD_COPY_BUFFER;
  563. for(U32 cmdCopyBuffer = 0; cmdCopyBuffer < cmdCopyBufferCount; ++cmdCopyBuffer)
  564. {
  565. const U32 beginRegion = cmdCopyBuffer * REGIONS_PER_CMD_COPY_BUFFER;
  566. const U32 endRegion = min(regionCount, (cmdCopyBuffer + 1) * REGIONS_PER_CMD_COPY_BUFFER);
  567. ANKI_ASSERT(beginRegion < regionCount);
  568. ANKI_ASSERT(endRegion <= regionCount);
  569. const U32 crntRegionCount = endRegion - beginRegion;
  570. DynamicArrayAuto<VkBufferCopy> regions(m_alloc);
  571. regions.create(crntRegionCount);
  572. // Populate regions
  573. U32 count = 0;
  574. for(U32 regionIdx = beginRegion; regionIdx < endRegion; ++regionIdx)
  575. {
  576. U32 x, y, d;
  577. unflatten3dArrayIndex(width, height, depth, regionIdx, x, y, d);
  578. VkBufferCopy& c = regions[count++];
  579. if(is3D)
  580. {
  581. c.srcOffset = (d * height * width + y * width + x) * 3 + offset;
  582. c.dstOffset = (d * height * width + y * width + x) * 4 + 0;
  583. }
  584. else
  585. {
  586. c.srcOffset = (y * width + x) * 3 + offset;
  587. c.dstOffset = (y * width + x) * 4 + 0;
  588. }
  589. c.size = 3;
  590. }
  591. // Do the copy to the shadow buffer
  592. ANKI_CMD(vkCmdCopyBuffer(m_handle, static_cast<const BufferImpl&>(*buff).getHandle(), shadowHandle,
  593. regions.getSize(), &regions[0]),
  594. ANY_OTHER_COMMAND);
  595. }
  596. // Set barrier
  597. setBufferBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
  598. VK_ACCESS_TRANSFER_READ_BIT, 0, shadowSize, shadowHandle);
  599. // Do the copy to the image
  600. VkBufferImageCopy region;
  601. region.imageSubresource.aspectMask = aspect;
  602. region.imageSubresource.baseArrayLayer = (is3D) ? tex.computeVkArrayLayer(vol) : tex.computeVkArrayLayer(surf);
  603. region.imageSubresource.layerCount = 1;
  604. region.imageSubresource.mipLevel = surf.m_level;
  605. region.imageOffset = {0, 0, 0};
  606. region.imageExtent.width = width;
  607. region.imageExtent.height = height;
  608. region.imageExtent.depth = depth;
  609. region.bufferOffset = 0;
  610. region.bufferImageHeight = 0;
  611. region.bufferRowLength = 0;
  612. ANKI_CMD(vkCmdCopyBufferToImage(m_handle, shadowHandle, tex.m_imageHandle, layout, 1, &region),
  613. ANY_OTHER_COMMAND);
  614. }
  615. else
  616. {
  617. ANKI_ASSERT(0);
  618. }
  619. m_microCmdb->pushObjectRef(texView);
  620. m_microCmdb->pushObjectRef(buff);
  621. }
  622. void CommandBufferImpl::rebindDynamicState()
  623. {
  624. m_viewportDirty = true;
  625. m_lastViewport = {};
  626. m_scissorDirty = true;
  627. m_lastScissor = {};
  628. // Rebind the stencil compare mask
  629. if(m_stencilCompareMasks[0] == m_stencilCompareMasks[1])
  630. {
  631. ANKI_CMD(vkCmdSetStencilCompareMask(m_handle, VK_STENCIL_FACE_FRONT_BIT | VK_STENCIL_FACE_BACK_BIT,
  632. m_stencilCompareMasks[0]),
  633. ANY_OTHER_COMMAND);
  634. }
  635. else
  636. {
  637. ANKI_CMD(vkCmdSetStencilCompareMask(m_handle, VK_STENCIL_FACE_FRONT_BIT, m_stencilCompareMasks[0]),
  638. ANY_OTHER_COMMAND);
  639. ANKI_CMD(vkCmdSetStencilCompareMask(m_handle, VK_STENCIL_FACE_BACK_BIT, m_stencilCompareMasks[1]),
  640. ANY_OTHER_COMMAND);
  641. }
  642. // Rebind the stencil write mask
  643. if(m_stencilWriteMasks[0] == m_stencilWriteMasks[1])
  644. {
  645. ANKI_CMD(vkCmdSetStencilWriteMask(m_handle, VK_STENCIL_FACE_FRONT_BIT | VK_STENCIL_FACE_BACK_BIT,
  646. m_stencilWriteMasks[0]),
  647. ANY_OTHER_COMMAND);
  648. }
  649. else
  650. {
  651. ANKI_CMD(vkCmdSetStencilWriteMask(m_handle, VK_STENCIL_FACE_FRONT_BIT, m_stencilWriteMasks[0]),
  652. ANY_OTHER_COMMAND);
  653. ANKI_CMD(vkCmdSetStencilWriteMask(m_handle, VK_STENCIL_FACE_BACK_BIT, m_stencilWriteMasks[1]),
  654. ANY_OTHER_COMMAND);
  655. }
  656. // Rebind the stencil reference
  657. if(m_stencilReferenceMasks[0] == m_stencilReferenceMasks[1])
  658. {
  659. ANKI_CMD(vkCmdSetStencilReference(m_handle, VK_STENCIL_FACE_FRONT_BIT | VK_STENCIL_FACE_BACK_BIT,
  660. m_stencilReferenceMasks[0]),
  661. ANY_OTHER_COMMAND);
  662. }
  663. else
  664. {
  665. ANKI_CMD(vkCmdSetStencilReference(m_handle, VK_STENCIL_FACE_FRONT_BIT, m_stencilReferenceMasks[0]),
  666. ANY_OTHER_COMMAND);
  667. ANKI_CMD(vkCmdSetStencilReference(m_handle, VK_STENCIL_FACE_BACK_BIT, m_stencilReferenceMasks[1]),
  668. ANY_OTHER_COMMAND);
  669. }
  670. }
  671. void CommandBufferImpl::buildAccelerationStructureInternal(AccelerationStructurePtr& as)
  672. {
  673. commandCommon();
  674. // Get objects
  675. const AccelerationStructureImpl& asImpl = static_cast<AccelerationStructureImpl&>(*as);
  676. // Create the scrach buffer
  677. BufferInitInfo bufferInit;
  678. bufferInit.m_usage = PrivateBufferUsageBit::ACCELERATION_STRUCTURE_BUILD_SCRATCH;
  679. bufferInit.m_size = asImpl.getBuildScratchBufferSize();
  680. BufferPtr scratchBuff = getManager().newBuffer(bufferInit);
  681. // Create the build info
  682. VkAccelerationStructureBuildGeometryInfoKHR buildInfo;
  683. VkAccelerationStructureBuildRangeInfoKHR rangeInfo;
  684. asImpl.generateBuildInfo(scratchBuff->getGpuAddress(), buildInfo, rangeInfo);
  685. // Do the command
  686. Array<const VkAccelerationStructureBuildRangeInfoKHR*, 1> pRangeInfos = {&rangeInfo};
  687. ANKI_CMD(vkCmdBuildAccelerationStructuresKHR(m_handle, 1, &buildInfo, &pRangeInfos[0]), ANY_OTHER_COMMAND);
  688. // Push refs
  689. m_microCmdb->pushObjectRef(as);
  690. m_microCmdb->pushObjectRef(scratchBuff);
  691. }
  692. } // end namespace anki