Бранимир Караџић 5 роки тому
батько
коміт
c009e157e7

+ 14 - 0
3rdparty/meshoptimizer/src/meshoptimizer.h

@@ -203,6 +203,20 @@ MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, si
  */
  */
 MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size);
 MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size);
 
 
+/**
+ * Vertex buffer filters
+ * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place.
+ * count must be aligned by 4 and stride is fixed for each function to facilitate SIMD implementation.
+ *
+ * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f.
+ * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is.
+ *
+ * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with 12-bit component encoding and a 2-bit component index indicating which component to reconstruct.
+ * Each component is stored as an 16-bit integer; stride must be equal to 8.
+ */
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size);
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size);
+
 /**
 /**
  * Experimental: Mesh simplifier
  * Experimental: Mesh simplifier
  * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible
  * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible

+ 22 - 5
3rdparty/meshoptimizer/src/vertexcodec.cpp

@@ -35,9 +35,9 @@
 #define SIMD_NEON
 #define SIMD_NEON
 #endif
 #endif
 
 
-// WebAssembly SIMD implementation requires a few bleeding edge intrinsics that are only available in Chrome Canary
-#if defined(__wasm_simd128__) && defined(__wasm_unimplemented_simd128__)
+#if defined(__wasm_simd128__)
 #define SIMD_WASM
 #define SIMD_WASM
+#define SIMD_TARGET __attribute__((target("unimplemented-simd128")))
 #endif
 #endif
 
 
 #ifndef SIMD_TARGET
 #ifndef SIMD_TARGET
@@ -83,6 +83,15 @@
 #define wasmx_unpackhi_v64x2(a, b) wasm_v8x16_shuffle(a, b, 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31)
 #define wasmx_unpackhi_v64x2(a, b) wasm_v8x16_shuffle(a, b, 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31)
 #endif
 #endif
 
 
+#if defined(SIMD_WASM)
+// v128_t wasm_v8x16_swizzle(v128_t a, v128_t b)
+SIMD_TARGET
+static __inline__ v128_t __DEFAULT_FN_ATTRS wasm_v8x16_swizzle(v128_t a, v128_t b)
+{
+	return (v128_t)__builtin_wasm_swizzle_v8x16((__i8x16)a, (__i8x16)b);
+}
+#endif
+
 namespace meshopt
 namespace meshopt
 {
 {
 
 
@@ -715,6 +724,7 @@ static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsi
 #endif
 #endif
 
 
 #ifdef SIMD_WASM
 #ifdef SIMD_WASM
+SIMD_TARGET
 static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
 static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
 {
 {
 	// TODO: 8b buffer overrun - should we use splat or extend buffers?
 	// TODO: 8b buffer overrun - should we use splat or extend buffers?
@@ -730,6 +740,7 @@ static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
 	return wasmx_unpacklo_v64x2(sm0, sm1r);
 	return wasmx_unpacklo_v64x2(sm0, sm1r);
 }
 }
 
 
+SIMD_TARGET
 static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
 static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
 {
 {
 	v128_t mask_0 = wasmx_swizzle_v32x4(mask, 0, 2, 1, 3);
 	v128_t mask_0 = wasmx_swizzle_v32x4(mask, 0, 2, 1, 3);
@@ -746,6 +757,7 @@ static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1
 	mask1 = uint8_t(mask_8 >> 32);
 	mask1 = uint8_t(mask_8 >> 32);
 }
 }
 
 
+SIMD_TARGET
 static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
 static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
 {
 {
 	unsigned char byte, enc, encv;
 	unsigned char byte, enc, encv;
@@ -877,6 +889,7 @@ static uint8x16_t unzigzag8(uint8x16_t v)
 #endif
 #endif
 
 
 #ifdef SIMD_WASM
 #ifdef SIMD_WASM
+SIMD_TARGET
 static void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
 static void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
 {
 {
 	v128_t t0 = wasmx_unpacklo_v8x16(x0, x1);
 	v128_t t0 = wasmx_unpacklo_v8x16(x0, x1);
@@ -890,6 +903,7 @@ static void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
 	x3 = wasmx_unpackhi_v16x8(t1, t3);
 	x3 = wasmx_unpackhi_v16x8(t1, t3);
 }
 }
 
 
+SIMD_TARGET
 static v128_t unzigzag8(v128_t v)
 static v128_t unzigzag8(v128_t v)
 {
 {
 	v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1)));
 	v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1)));
@@ -1083,9 +1097,12 @@ size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, con
 
 
 	*data++ = kVertexHeader;
 	*data++ = kVertexHeader;
 
 
-	unsigned char last_vertex[256] = {};
+	unsigned char first_vertex[256] = {};
 	if (vertex_count > 0)
 	if (vertex_count > 0)
-		memcpy(last_vertex, vertex_data, vertex_size);
+		memcpy(first_vertex, vertex_data, vertex_size);
+
+	unsigned char last_vertex[256] = {};
+	memcpy(last_vertex, first_vertex, vertex_size);
 
 
 	size_t vertex_block_size = getVertexBlockSize(vertex_size);
 	size_t vertex_block_size = getVertexBlockSize(vertex_size);
 
 
@@ -1114,7 +1131,7 @@ size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, con
 		data += kTailMaxSize - vertex_size;
 		data += kTailMaxSize - vertex_size;
 	}
 	}
 
 
-	memcpy(data, vertex_data, vertex_size);
+	memcpy(data, first_vertex, vertex_size);
 	data += vertex_size;
 	data += vertex_size;
 
 
 	assert(data >= buffer + tail_size);
 	assert(data >= buffer + tail_size);

+ 306 - 0
3rdparty/meshoptimizer/src/vertexfilter.cpp

@@ -0,0 +1,306 @@
+// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
+#include "meshoptimizer.h"
+
+#include <math.h>
+
+#if defined(__wasm_simd128__)
+#define SIMD_WASM
+#endif
+
+#ifdef SIMD_WASM
+#include <wasm_simd128.h>
+#endif
+
+#ifdef SIMD_WASM
+#define wasmx_shuffle_v32x4(v, w, i, j, k, l) wasm_v8x16_shuffle(v, w, 4 * i, 4 * i + 1, 4 * i + 2, 4 * i + 3, 4 * j, 4 * j + 1, 4 * j + 2, 4 * j + 3, 16 + 4 * k, 16 + 4 * k + 1, 16 + 4 * k + 2, 16 + 4 * k + 3, 16 + 4 * l, 16 + 4 * l + 1, 16 + 4 * l + 2, 16 + 4 * l + 3)
+#define wasmx_unpacklo_v16x8(a, b) wasm_v8x16_shuffle(a, b, 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23)
+#define wasmx_unpackhi_v16x8(a, b) wasm_v8x16_shuffle(a, b, 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31)
+#endif
+
+namespace meshopt
+{
+
+#if !defined(SIMD_WASM)
+template <typename T>
+static void decodeFilterOct(T* data, size_t count)
+{
+	const float max = float((1 << (sizeof(T) * 8 - 1)) - 1);
+
+	for (size_t i = 0; i < count; ++i)
+	{
+		// convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count
+		float x = float(data[i * 4 + 0]);
+		float y = float(data[i * 4 + 1]);
+		float z = float(data[i * 4 + 2]) - fabsf(x) - fabsf(y);
+
+		// fixup octahedral coordinates for z<0
+		float t = (z >= 0.f) ? 0.f : z;
+
+		x += (x >= 0.f) ? t : -t;
+		y += (y >= 0.f) ? t : -t;
+
+		// compute normal length & scale
+		float l = sqrtf(x * x + y * y + z * z);
+		float s = max / l;
+
+		// rounded signed float->int
+		int xf = int(x * s + (x >= 0.f ? 0.5f : -0.5f));
+		int yf = int(y * s + (y >= 0.f ? 0.5f : -0.5f));
+		int zf = int(z * s + (z >= 0.f ? 0.5f : -0.5f));
+
+		data[i * 4 + 0] = T(xf);
+		data[i * 4 + 1] = T(yf);
+		data[i * 4 + 2] = T(zf);
+	}
+}
+
+static void decodeFilterQuat(short* data, size_t count)
+{
+	const float scale = 1.f / (2047.f * sqrtf(2.f));
+
+	static const int order[4][4] = {
+	    {1, 2, 3, 0},
+	    {2, 3, 0, 1},
+	    {3, 0, 1, 2},
+	    {0, 1, 2, 3},
+	};
+
+	for (size_t i = 0; i < count; ++i)
+	{
+		// convert x/y/z to [-1..1] (scaled...)
+		float x = float(data[i * 4 + 0]) * scale;
+		float y = float(data[i * 4 + 1]) * scale;
+		float z = float(data[i * 4 + 2]) * scale;
+
+		// reconstruct w as a square root; we clamp to 0.f to avoid NaN due to precision errors
+		float ww = 1.f - x * x - y * y - z * z;
+		float w = sqrtf(ww >= 0.f ? ww : 0.f);
+
+		// rounded signed float->int
+		int xf = int(x * 32767.f + (x >= 0.f ? 0.5f : -0.5f));
+		int yf = int(y * 32767.f + (y >= 0.f ? 0.5f : -0.5f));
+		int zf = int(z * 32767.f + (z >= 0.f ? 0.5f : -0.5f));
+		int wf = int(w * 32767.f + 0.5f);
+
+		int qc = data[i * 4 + 3] & 3;
+
+		// output order is dictated by input index
+		data[i * 4 + order[qc][0]] = short(xf);
+		data[i * 4 + order[qc][1]] = short(yf);
+		data[i * 4 + order[qc][2]] = short(zf);
+		data[i * 4 + order[qc][3]] = short(wf);
+	}
+}
+#endif
+
+#ifdef SIMD_WASM
+static void decodeFilterOctSimd(signed char* data, size_t count)
+{
+	const v128_t sign = wasm_f32x4_splat(-0.f);
+
+	for (size_t i = 0; i < count; i += 4)
+	{
+		v128_t n4 = wasm_v128_load(&data[i * 4]);
+
+		// sign-extends each of x,y in [x y ? ?] with arithmetic shifts
+		v128_t xf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 24), 24);
+		v128_t yf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 16), 24);
+
+		// unpack z; note that z is unsigned so we technically don't need to sign extend it
+		v128_t zf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 8), 24);
+
+		// convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count
+		v128_t x = wasm_f32x4_convert_i32x4(xf);
+		v128_t y = wasm_f32x4_convert_i32x4(yf);
+		v128_t z = wasm_f32x4_sub(wasm_f32x4_convert_i32x4(zf), wasm_f32x4_add(wasm_f32x4_abs(x), wasm_f32x4_abs(y)));
+
+		// fixup octahedral coordinates for z<0
+		v128_t t = wasm_v128_and(z, wasm_f32x4_lt(z, wasm_f32x4_splat(0.f)));
+
+		x = wasm_f32x4_add(x, wasm_v128_xor(t, wasm_v128_and(x, sign)));
+		y = wasm_f32x4_add(y, wasm_v128_xor(t, wasm_v128_and(y, sign)));
+
+		// compute normal length & scale
+		v128_t l = wasm_f32x4_sqrt(wasm_f32x4_add(wasm_f32x4_mul(x, x), wasm_f32x4_add(wasm_f32x4_mul(y, y), wasm_f32x4_mul(z, z))));
+		v128_t s = wasm_f32x4_div(wasm_f32x4_splat(127.f), l);
+
+		// fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value
+		const v128_t fsnap = wasm_f32x4_splat(3 << 22);
+		const v128_t fmask = wasm_i32x4_splat(0x7fffff);
+		const v128_t fbase = wasm_i32x4_splat(0x400000);
+
+		v128_t xr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(x, s), fsnap), fmask), fbase);
+		v128_t yr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(y, s), fsnap), fmask), fbase);
+		v128_t zr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(z, s), fsnap), fmask), fbase);
+
+		// combine xr/yr/zr into final value
+		v128_t res = wasm_v128_and(n4, wasm_i32x4_splat(0xff000000));
+		res = wasm_v128_or(res, wasm_v128_and(xr, wasm_i32x4_splat(0xff)));
+		res = wasm_v128_or(res, wasm_i32x4_shl(wasm_v128_and(yr, wasm_i32x4_splat(0xff)), 8));
+		res = wasm_v128_or(res, wasm_i32x4_shl(wasm_v128_and(zr, wasm_i32x4_splat(0xff)), 16));
+
+		wasm_v128_store(&data[i * 4], res);
+	}
+}
+
+static void decodeFilterOctSimd(short* data, size_t count)
+{
+	const v128_t sign = wasm_f32x4_splat(-0.f);
+	volatile v128_t zmask = wasm_i32x4_splat(0x7fff); // volatile works around LLVM shuffle "optimizations"
+
+	for (size_t i = 0; i < count; i += 4)
+	{
+		v128_t n4_0 = wasm_v128_load(&data[(i + 0) * 4]);
+		v128_t n4_1 = wasm_v128_load(&data[(i + 2) * 4]);
+
+		// gather both x/y 16-bit pairs in each 32-bit lane
+		v128_t n4 = wasmx_shuffle_v32x4(n4_0, n4_1, 0, 2, 0, 2);
+
+		// sign-extends each of x,y in [x y] with arithmetic shifts
+		v128_t xf = wasm_i32x4_shr(wasm_i32x4_shl(n4, 16), 16);
+		v128_t yf = wasm_i32x4_shr(n4, 16);
+
+		// unpack z; note that z is unsigned so we don't need to sign extend it
+		v128_t z4 = wasmx_shuffle_v32x4(n4_0, n4_1, 1, 3, 1, 3);
+		v128_t zf = wasm_v128_and(z4, zmask);
+
+		// convert x and y to floats and reconstruct z; this assumes zf encodes 1.f at the same bit count
+		v128_t x = wasm_f32x4_convert_i32x4(xf);
+		v128_t y = wasm_f32x4_convert_i32x4(yf);
+		v128_t z = wasm_f32x4_sub(wasm_f32x4_convert_i32x4(zf), wasm_f32x4_add(wasm_f32x4_abs(x), wasm_f32x4_abs(y)));
+
+		// fixup octahedral coordinates for z<0
+		v128_t t = wasm_v128_and(z, wasm_f32x4_lt(z, wasm_f32x4_splat(0.f)));
+
+		x = wasm_f32x4_add(x, wasm_v128_xor(t, wasm_v128_and(x, sign)));
+		y = wasm_f32x4_add(y, wasm_v128_xor(t, wasm_v128_and(y, sign)));
+
+		// compute normal length & scale
+		v128_t l = wasm_f32x4_sqrt(wasm_f32x4_add(wasm_f32x4_mul(x, x), wasm_f32x4_add(wasm_f32x4_mul(y, y), wasm_f32x4_mul(z, z))));
+		v128_t s = wasm_f32x4_div(wasm_f32x4_splat(32767.f), l);
+
+		// fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value
+		const v128_t fsnap = wasm_f32x4_splat(3 << 22);
+		const v128_t fmask = wasm_i32x4_splat(0x7fffff);
+		const v128_t fbase = wasm_i32x4_splat(0x400000);
+
+		v128_t xr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(x, s), fsnap), fmask), fbase);
+		v128_t yr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(y, s), fsnap), fmask), fbase);
+		v128_t zr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(z, s), fsnap), fmask), fbase);
+
+		// mix x/z and y/0 to make 16-bit unpack easier
+		v128_t xzr = wasm_v128_or(wasm_v128_and(xr, wasm_i32x4_splat(0xffff)), wasm_i32x4_shl(zr, 16));
+		v128_t y0r = wasm_v128_and(yr, wasm_i32x4_splat(0xffff));
+
+		// pack x/y/z using 16-bit unpacks; note that this has 0 where we should have .w
+		v128_t res_0 = wasmx_unpacklo_v16x8(xzr, y0r);
+		v128_t res_1 = wasmx_unpackhi_v16x8(xzr, y0r);
+
+		// patch in .w
+		res_0 = wasm_v128_or(res_0, wasm_v128_and(n4_0, wasm_i64x2_splat(0xffff000000000000)));
+		res_1 = wasm_v128_or(res_1, wasm_v128_and(n4_1, wasm_i64x2_splat(0xffff000000000000)));
+
+		wasm_v128_store(&data[(i + 0) * 4], res_0);
+		wasm_v128_store(&data[(i + 2) * 4], res_1);
+	}
+}
+
+static void decodeFilterQuatSimd(short* data, size_t count)
+{
+	const float scale = 1.f / (2047.f * sqrtf(2.f));
+
+	for (size_t i = 0; i < count; i += 4)
+	{
+		v128_t q4_0 = wasm_v128_load(&data[(i + 0) * 4]);
+		v128_t q4_1 = wasm_v128_load(&data[(i + 2) * 4]);
+
+		// gather both x/y 16-bit pairs in each 32-bit lane
+		v128_t q4_xy = wasmx_shuffle_v32x4(q4_0, q4_1, 0, 2, 0, 2);
+		v128_t q4_zc = wasmx_shuffle_v32x4(q4_0, q4_1, 1, 3, 1, 3);
+
+		// sign-extends each of x,y in [x y] with arithmetic shifts
+		v128_t xf = wasm_i32x4_shr(wasm_i32x4_shl(q4_xy, 16), 16);
+		v128_t yf = wasm_i32x4_shr(q4_xy, 16);
+		v128_t zf = wasm_i32x4_shr(wasm_i32x4_shl(q4_zc, 16), 16);
+
+		// convert x/y/z to [-1..1] (scaled...)
+		v128_t x = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(xf), wasm_f32x4_splat(scale));
+		v128_t y = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(yf), wasm_f32x4_splat(scale));
+		v128_t z = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(zf), wasm_f32x4_splat(scale));
+
+		// reconstruct w as a square root; we clamp to 0.f to avoid NaN due to precision errors
+		v128_t ww = wasm_f32x4_sub(wasm_f32x4_splat(1.f), wasm_f32x4_add(wasm_f32x4_mul(x, x), wasm_f32x4_add(wasm_f32x4_mul(y, y), wasm_f32x4_mul(z, z))));
+		v128_t w = wasm_f32x4_sqrt(wasm_v128_and(ww, wasm_f32x4_ge(ww, wasm_f32x4_splat(0.f))));
+
+		v128_t s = wasm_f32x4_splat(32767.f);
+
+		// fast rounded signed float->int: addition triggers renormalization after which mantissa stores the integer value
+		const v128_t fsnap = wasm_f32x4_splat(3 << 22);
+		const v128_t fmask = wasm_i32x4_splat(0x7fffff);
+		const v128_t fbase = wasm_i32x4_splat(0x400000);
+
+		v128_t xr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(x, s), fsnap), fmask), fbase);
+		v128_t yr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(y, s), fsnap), fmask), fbase);
+		v128_t zr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(z, s), fsnap), fmask), fbase);
+		v128_t wr = wasm_i32x4_sub(wasm_v128_and(wasm_f32x4_add(wasm_f32x4_mul(w, s), fsnap), fmask), fbase);
+
+		// mix x/z and w/y to make 16-bit unpack easier
+		v128_t xzr = wasm_v128_or(wasm_v128_and(xr, wasm_i32x4_splat(0xffff)), wasm_i32x4_shl(zr, 16));
+		v128_t wyr = wasm_v128_or(wasm_v128_and(wr, wasm_i32x4_splat(0xffff)), wasm_i32x4_shl(yr, 16));
+
+		// pack x/y/z/w using 16-bit unpacks; we pack wxyz by default (for qc=0)
+		v128_t res_0 = wasmx_unpacklo_v16x8(wyr, xzr);
+		v128_t res_1 = wasmx_unpackhi_v16x8(wyr, xzr);
+
+		// compute component index shifted left by 4 (and moved into i32x4 slot)
+		v128_t cm = wasm_i32x4_shl(wasm_i32x4_shr(q4_zc, 16), 4);
+
+		// rotate and store
+		uint64_t* out = (uint64_t*)&data[i * 4];
+
+		out[0] = __builtin_rotateleft64(wasm_i64x2_extract_lane(res_0, 0), wasm_i32x4_extract_lane(cm, 0));
+		out[1] = __builtin_rotateleft64(wasm_i64x2_extract_lane(res_0, 1), wasm_i32x4_extract_lane(cm, 1));
+		out[2] = __builtin_rotateleft64(wasm_i64x2_extract_lane(res_1, 0), wasm_i32x4_extract_lane(cm, 2));
+		out[3] = __builtin_rotateleft64(wasm_i64x2_extract_lane(res_1, 1), wasm_i32x4_extract_lane(cm, 3));
+	}
+}
+#endif
+
+} // namespace meshopt
+
+void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size)
+{
+	using namespace meshopt;
+
+	assert(vertex_count % 4 == 0);
+	assert(vertex_size == 4 || vertex_size == 8);
+
+#if defined(SIMD_WASM)
+	if (vertex_size == 4)
+		decodeFilterOctSimd(static_cast<signed char*>(buffer), vertex_count);
+	else
+		decodeFilterOctSimd(static_cast<short*>(buffer), vertex_count);
+#else
+	if (vertex_size == 4)
+		decodeFilterOct(static_cast<signed char*>(buffer), vertex_count);
+	else
+		decodeFilterOct(static_cast<short*>(buffer), vertex_count);
+#endif
+}
+
+void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size)
+{
+	using namespace meshopt;
+
+	assert(vertex_count % 4 == 0);
+	assert(vertex_size == 8);
+	(void)vertex_size;
+
+#if defined(SIMD_WASM)
+	decodeFilterQuatSimd(static_cast<short*>(buffer), vertex_count);
+#else
+	decodeFilterQuat(static_cast<short*>(buffer), vertex_count);
+#endif
+}
+
+#undef SIMD_WASM